# 编辑距离

给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

 

示例 1:

输入:word1 = "horse", word2 = "ros"
输出:
3
解释:
horse -> rorse (将 'h' 替换为 'r')rorse -> rose (删除 'r')rose -> ros (删除 'e')

示例 2:

输入:word1 = "intention", word2 = "execution"
输出:
5
解释:
intention -> inention (删除 't')inention -> enention (将 'i' 替换为 'e')enention -> exention (将 'n' 替换为 'x')exention -> exection (将 'n' 替换为 'c')exection -> execution (插入 'u')

 

提示:

以下错误的选项是?

## aop ### before ```cpp #include using namespace std; ``` ### after ```cpp int main() { Solution sol; string word1 = "horse"; string word2 = "ros"; int res; res = sol.minDistance(word1, word2); cout << res; return 0; } ``` ## 答案 ```cpp class Solution { public: int minDistance(string word1, string word2) { int len1 = word1.size(); int len2 = word2.size(); int **dp = new int *[len1 + 1]; for (int i = 0; i < len1 + 1; i++) dp[i] = new int[len2 + 1]; for (int i = 0; i < len1 + 1; i++) dp[i - 1][0] = i; for (int i = 1; i < len2 + 1; i++) dp[0][i - 1] = i; for (int i = 1; i < len1 + 1; i++) { for (int j = 1; j < len2 + 1; j++) { if (word1[i - 1] == word2[j - 1]) dp[i][j] = dp[i - 1][j - 1]; else dp[i][j] = (min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i][j - 1])) + 1); } } return dp[len1][len2]; } }; ``` ## 选项 ### A ```cpp class Solution { public: int minDistance(string word1, string word2) { int m = word1.size(), n = word2.size(); if (m == 0) return n; if (n == 0) return m; int dp[m][n]; bool w1 = false, w2 = false; if (word1[0] == word2[0]) { w1 = true; w2 = true; dp[0][0] = 0; } else dp[0][0] = 1; for (int i = 1; i < m; i++) { if (!w1 && word1[i] == word2[0]) { w1 = true; dp[i][0] = dp[i - 1][0]; } else dp[i][0] = dp[i - 1][0] + 1; } for (int j = 1; j < n; j++) { if (!w2 && word1[0] == word2[j]) { w2 = true; dp[0][j] = dp[0][j - 1]; } else dp[0][j] = dp[0][j - 1] + 1; } for (int i = 1; i < m; i++) for (int j = 1; j < n; j++) if (word1[i] == word2[j]) dp[i][j] = min(min(dp[i][j - 1], dp[i - 1][j]) + 1, dp[i - 1][j - 1]); else dp[i][j] = min(min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1; return dp[m - 1][n - 1]; } }; ``` ### B ```cpp class Solution { public: int minDistance(string word1, string word2) { int n = word1.size(); int m = word2.size(); if (n * m == 0) { return n + m; } int d[n + 1][m + 1]; for (int i = 0; i < n + 1; ++i) { d[i][0] = i; } for (int i = 0; i < m + 1; ++i) { d[0][i] = i; } for (int i = 1; i < n + 1; ++i) { for (int j = 1; j < m + 1; ++j) { int left = d[i - 1][j] + 1; int down = d[i][j - 1] + 1; int left_down = d[i - 1][j - 1]; if (word1[i - 1] != word2[j - 1]) { left_down += 1; } d[i][j] = min(left, min(down, left_down)); } } return d[n][m]; } }; ``` ### C ```cpp class Solution { public: int minDistance(string word1, string word2) { int m = word1.size(), n = word2.size(); vector> dp(m + 1, vector(n + 1, 0)); for (int i = 1; i <= n; ++i) dp[0][i] = dp[0][i - 1] + 1; for (int i = 1; i <= m; ++i) dp[i][0] = dp[i - 1][0] + 1; for (int i = 1; i <= m; ++i) { for (int j = 1; j <= n; ++j) { if (word1[i - 1] == word2[j - 1]) dp[i][j] = dp[i - 1][j - 1]; else dp[i][j] = min(min(dp[i - 1][j - 1], dp[i - 1][j]), dp[i][j - 1]) + 1; } } return dp[m][n]; } }; ```