# 大数乘法 对于32位字长的机器,大约超过20亿,用int类型就无法表示了,我们可以选择int64类型,但无论怎样扩展,固定的整数类型总是有表达的极限!如果对超级大整数进行精确运算呢?一个简单的办法是:仅仅使用现有类型,但是把大整数的运算化解为若干小整数的运算,即所谓:“分块法”。 ![](https://img-blog.csdn.net/20160125091111485) 上图表示了分块乘法的原理。可以把大数分成多段(此处为2段)小数,然后用小数的多次运算组合表示一个大数。可以根据int的承载能力规定小块的大小,比如要把int分成2段,则小块可取10000为上限值。注意,小块在进行纵向累加后,需要进行进位校正。 ## aop ### before ```cpp #include ``` ### after ```cpp int main(int argc, char *argv[]) { int x[] = {0, 0, 0, 0}; bigmul(87654321, 12345678, x); printf("%d%d%d%d\n", x[0], x[1], x[2], x[3]); return 0; } ``` ## 答案 ```cpp void bigmul(int x, int y, int r[]) { int base = 10000; int x2 = x / base; int x1 = x % base; int y2 = y / base; int y1 = y % base; int n1 = x1 * y1; int n2 = x1 * y2; int n3 = x2 * y1; int n4 = x2 * y2; r[3] = n1 % base; r[2] = n1 / base + n2 % base + n3 % base; r[1] = n2 / base + n3 / base + n4 % base; r[0] = n4 / base; r[1] += r[2] / base; r[2] = r[2] % base; r[0] += r[1] / base; r[1] = r[1] % base; } ``` ## 选项 ### A ```cpp void bigmul(int x, int y, int r[]) { int base = 10000; int x2 = x / base; int x1 = x % base; int y2 = y / base; int y1 = y % base; int n1 = x1 * y1; int n2 = x1 * y2; int n3 = x2 * y1; int n4 = x2 * y2; r[3] = n1 % base; r[2] = n1 / base + n2 % base + n3 % base; r[1] = n2 / base + n3 / base + n4 % base; r[0] = n4 / base; r[1] += r[2] % base; r[2] = r[2] / base; r[0] += r[1] / base; r[1] = r[1] % base; } ``` ### B ```cpp void bigmul(int x, int y, int r[]) { int base = 10000; int x2 = x / base; int x1 = x % base; int y2 = y / base; int y1 = y % base; int n1 = x1 * y1; int n2 = x1 * y2; int n3 = x2 * y1; int n4 = x2 * y2; r[3] = n1 % base; r[2] = n1 / base + n2 % base + n3 % base; r[1] = n2 / base + n3 / base + n4 / base; r[0] = n4 / base; r[1] += r[2] / base; r[2] = r[2] % base; r[0] += r[1] / base; r[1] = r[1] % base; } ``` ### C ```cpp void bigmul(int x, int y, int r[]) { int base = 10000; int x2 = x / base; int x1 = x % base; int y2 = y / base; int y1 = y % base; int n1 = x1 * y1; int n2 = x1 * y2; int n3 = x2 * y1; int n4 = x2 * y2; r[3] = n1 % base; r[2] = n1 / base + n2 % base + n3 % base; r[1] = n2 / base + n3 % base + n4 / base; r[0] = n4 / base; r[1] += r[2] / base; r[2] = r[2] % base; r[0] += r[1] / base; r[1] = r[1] % base; } ```