# 搜索旋转排序数组 II
已知存在一个按非降序排列的整数数组 nums
,数组中的值不必互不相同。
在传递给函数之前,nums
在预先未知的某个下标 k
(0 <= k < nums.length
)上进行了 旋转
,使数组变为 [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(下标 从 0
开始 计数)。例如, [0,1,2,4,4,4,5,6,6,7]
在下标 5
处经旋转后可能变为
[4,5,6,6,7,0,1,2,4,4]
。
给你 旋转后 的数组 nums
和一个整数 target
,请你编写一个函数来判断给定的目标值是否存在于数组中。如果
nums
中存在这个目标值 target
,则返回 true
,否则返回 false
。
示例 1:
输入:nums = [2,5,6,0,0,1,2], target = 0
输出:true
示例 2:
输入:nums = [2,5,6,0,0,1,2], target = 3
输出:false
提示:
1 <= nums.length <= 5000
-104 <= nums[i] <= 104
- 题目数据保证
nums
在预先未知的某个下标上进行了旋转
-104 <= target <= 104
进阶:
- 这是 搜索旋转排序数组 的延伸题目,本题中的
nums
可能包含重复元素。
- 这会影响到程序的时间复杂度吗?会有怎样的影响,为什么?
以下错误的选项是?
## aop
### before
```cpp
#include
using namespace std;
```
### after
```cpp
int main()
{
Solution sol;
vector nums = {2, 5, 6, 0, 0, 1, 2};
int target = 0;
int res;
res = sol.search(nums, target);
cout << res << endl;
return 0;
}
```
## 答案
```cpp
class Solution
{
public:
bool search(vector &nums, int target)
{
if (nums.empty() || nums.size() == 0)
{
return false;
}
int start = 0;
int end = nums.size() - 1;
int mid;
while (start <= end)
{
mid = start + (end - start) / 2;
if (nums[mid] == target)
{
return true;
}
if (nums[start] < nums[mid])
{
if (nums[mid] > target && nums[start] <= target)
{
end = mid - 1;
}
else
{
start = mid + 1;
}
}
else
{
if (nums[mid] < target && nums[end] >= target)
{
start = mid + 1;
}
else
{
end = mid - 1;
}
}
}
return false;
}
};
```
## 选项
### A
```cpp
class Solution
{
public:
bool search(const vector &nums, int target)
{
int first = 0, last = nums.size();
while (first != last)
{
const int mid = first + (last - first) / 2;
if (nums[mid == target])
{
return true;
}
if (nums[first] < nums[mid])
{
if (nums[first] <= target && target < nums[mid])
{
last = mid;
}
else
{
first = mid + 1;
}
}
else if (nums[first] > nums[mid])
{
if (nums[mid] < target && target <= nums[last - 1])
{
first = mid + 1;
}
else
{
last = mid;
}
}
else
{
first++;
}
}
return false;
}
};
```
### B
```cpp
class Solution
{
public:
bool search(vector &nums, int target)
{
if (nums.empty())
return false;
int i = 0, j = nums.size() - 1, mid;
mid = (i + j) / 2;
if (nums[mid] == target)
return true;
else if (mid != i && nums[i] == nums[mid])
{
i = mid + 1;
while (i <= j && nums[i] == nums[mid])
i++;
if (i == nums.size())
{
i = 0;
j = mid - 1;
while (i <= j && nums[j] == nums[mid])
j--;
}
}
while (i <= j)
{
mid = (i + j) / 2;
if (nums[mid] == target)
return true;
else if (nums[mid] >= nums[i])
{
if (target >= nums[i] && target < nums[mid])
{
j = mid - 1;
while (i <= j && nums[j] == nums[mid])
j--;
}
else
{
i = mid + 1;
while (i <= j && nums[i] == nums[mid])
i++;
}
}
else
{
if (target > nums[mid] && target <= nums[j])
{
i = mid + 1;
while (i <= j && nums[i] == nums[mid])
i++;
}
else
{
j = mid - 1;
while (i <= j && nums[j] == nums[mid])
j--;
}
}
}
return false;
}
};
```
### C
```cpp
class Solution
{
public:
bool search(vector &nums, int &target)
{
int n = nums.size();
if (n == 0)
return false;
int left = 0, right = n - 1;
while (left <= right)
{
int mid = (left + right) / 2;
if (nums[mid] == target)
return true;
else if (nums[mid] < nums[right])
{
if (nums[mid] < target && nums[right] >= target)
left = mid + 1;
else
right = mid - 1;
}
else if (nums[mid] > nums[right])
{
if (nums[left] <= target && nums[mid] > target)
right = mid - 1;
else
left = mid + 1;
}
else
--right;
}
return false;
}
};
```