# 交错字符串

给定三个字符串 s1s2s3,请你帮忙验证 s3 是否是由 s1 和 s2 交错 组成的。

两个字符串 st 交错 的定义与过程如下,其中每个字符串都会被分割成若干 非空 子字符串:

提示:a + b 意味着字符串 ab 连接。

 

示例 1:

输入:s1 = "aabcc", s2 = "dbbca", s3 = "aadbbcbcac"
输出:
true

示例 2:

输入:s1 = "aabcc", s2 = "dbbca", s3 = "aadbbbaccc"
输出:
false

示例 3:

输入:s1 = "", s2 = "", s3 = ""
输出:
true

 

提示:

以下错误的选项是?

## aop ### before ```c #include using namespace std; ``` ### after ```c int main() { Solution sol; bool res; string s1 = "aabcc"; string s2 = "dbbca"; string s3 = "aadbbcbcac"; res = sol.isInterleave(s1, s2, s3); cout << res; return 0; } ``` ## 答案 ```c class Solution { public: bool isInterleave(string s1, string s2, string s3) { int len1 = s1.length(); int len2 = s2.length(); int len3 = s3.length(); if (len1 + len2 != len3) return false; bool f[len1 + 1][len2 + 1]; f[0][0] = true; for (int i = 0; i < len1 + 1; i++) { for (int j = 0; j < len2 + 1; j++) { if (j > 0) { f[i][j] = f[i][j - 1] && s3[i + j - 1]; } if (i > 0) { f[i][j] = f[i][j] || (f[i - 1][j] && s3[i + j - 1]); } } } return f[len1][len2]; } }; ``` ## 选项 ### A ```c class Solution { public: bool isInterleave(string s1, string s2, string s3) { if (s1.size() + s2.size() != s3.size()) return false; int m = s1.size(), n = s2.size(), i, j, k; vector> dp(m + 1, vector(n + 1, 0)); dp[0][0] = 1; for (i = 0; i < m; i++) if (s1[i] == s3[i]) dp[i + 1][0] = 1; else break; for (i = 0; i < n; i++) if (s2[i] == s3[i]) dp[0][i + 1] = 1; else break; for (i = 1; i <= m; ++i) for (j = 1; j <= n; j++) { k = i + j; if (s1[i - 1] == s3[k - 1]) dp[i][j] |= dp[i - 1][j]; if (s2[j - 1] == s3[k - 1]) dp[i][j] |= dp[i][j - 1]; } return dp[m][n]; } }; ``` ### B ```c class Solution { public: bool isInterleave(string s1, string s2, string s3) { if (s1.size() + s2.size() != s3.size()) return false; int m = s1.size(), n = s2.size(); vector> dp(m + 1, vector(n + 1, false)); dp[0][0] = true; for (int i = 1; i <= m; ++i) dp[i][0] = dp[i - 1][0] && (s1[i - 1] == s3[i - 1]); for (int i = 1; i <= n; ++i) dp[0][i] = dp[0][i - 1] && (s2[i - 1] == s3[i - 1]); for (int i = 1; i <= m; ++i) for (int j = 1; j <= n; ++j) { dp[i][j] = (dp[i - 1][j] && s1[i - 1] == s3[i + j - 1]) || (dp[i][j - 1] && s2[j - 1] == s3[i + j - 1]); } return dp[m][n]; } }; ``` ### C ```c class Solution { public: bool isInterleave(string s1, string s2, string s3) { int s1_len = s1.size(); int s2_len = s2.size(); int s3_len = s3.size(); if (s1_len + s2_len != s3_len) return false; if (s1_len == 0 || s2_len == 0) return s1 + s2 == s3; vector> dp(s1_len + 1, vector(s2_len + 1)); dp[0][0] = true; for (int i = 0; i <= s1_len; i++) { for (int j = 0; j <= s2_len; j++) { if (dp[i][j]) { if (i < s1_len && s1[i] == s3[i + j]) dp[i + 1][j] = true; if (j < s2_len && s2[j] == s3[i + j]) dp[i][j + 1] = true; } } } return dp[s1_len][s2_len]; } }; ```