# 波动数列 **问题描述** 观察这个数列: 1 3 0 2 -1 1 -2 ... 这个数列中后一项总是比前一项增加2或者减少3。 栋栋对这种数列很好奇,他想知道长度为n 和为s而且后一项总是比前一项增加a或者减少b的整数数列可能有多少种呢? **输入格式** 输入的第一行包含四个整数n s a b,含义如前面说述。 **输出格式** 输出一行,包含一个整数,表示满足条件的方案数。由于这个数很大,请输出方案数除以100000007的余数。 **样例输入** ``` 4 10 2 3 ``` **样例输出** ``` 2 ``` **样例说明** 这两个数列分别是2 4 1 3和7 4 1 -2。 以下错误的一项是? ## aop ### before ```cpp #include using namespace std; ``` ### after ```cpp ``` ## 答案 ```cpp long long n, s, a, b; long long sum; long long cnt = 0; long long mo = 100000007; int dfs(long long nn, long long rn) { sum += nn; if (rn == 0) { if (sum == s) { sum -= nn; cnt++; cnt %= mo; return 1; } else { sum -= nn; return 0; } } dfs(nn + a, rn - 1); dfs(nn + b, rn - 1); sum -= nn; } int main(void) { cin >> n >> s >> a >> b; for (long long i = s - n * a; i < s + n * b; i++) { sum = 0; dfs(i, n - 1); } cout << cnt << endl; return 0; } ``` ## 选项 ### A ```cpp #define MAXN 1100 #define MOD 100000007 using namespace std; int F[2][MAXN * MAXN]; int e = 0; long long n, s, a, b; int cnt = 0; void calc(int elem) { int i, j; memset(F, 0, sizeof(F)); F[e][0] = 1; for (i = 1; i < n; i++) { e = 1 - e; for (j = 0; j <= i * (i + 1) / 2; j++) { if (i > j) F[e][j] = F[1 - e][j]; else F[e][j] = (F[1 - e][j] + F[1 - e][j - i]) % MOD; } } } int main() { cin >> n >> s >> a >> b; long long i, t; calc(n * (n - 1) / 2); for (i = 0; i <= n * (n - 1) / 2; i++) { t = s - i * a + (n * (n - 1) / 2 - i) * b; if (t % n == 0) cnt = (cnt + F[e][i]) % MOD; } printf("%d", cnt); return 0; } ``` ### B ```cpp int n, s, a, b; int num; void dfn(int cur, int all, int id) { if (id == n) { if (all == s) { num++; num = num % 100000007; return; } else { return; } } dfn(cur + a, all + cur + a, id + 1); dfn(cur - b, all + cur - b, id + 1); } int main() { long long i, total; cin >> n >> s >> a >> b; total = s + n * b; for (i = s - n * a; i <= total; i++) { dfn(i, i, 1); } cout << num; return 0; } ``` ### C ```cpp const int MAXN = 1050; typedef long long ll; const int mod = 100000007; int main() { ll n, s, a, b; scanf("%lld%lld%lld%lld", &n, &s, &a, &b); int T = n * (n - 1) / 2; int dp[2][T + 1]; memset(dp, 0, sizeof(dp)); int *crt = dp[0]; int *next = dp[1]; crt[0] = 1; next[0] = 1; for (int i = 1; i < n; i++) { for (int j = 0; j <= (i + 1) * i / 2; j++) { if (j < i) next[j] = crt[j] % mod; else next[j] = (crt[j] + crt[j - i]) % mod; } swap(crt, next); } ll ans = 0; for (ll ta = 0; ta <= T; ta++) { ll num = s + (T - ta) * b - ta * a; if (num % n == 0) { ans = (ans + crt[ta]) % mod; } } cout << ans; return 0; } ```