# Hello World HelloWorld, 请阅读如下代码: ```python import numpy as np def test(): X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]]) y = np.dot(X, np.array([1, 2])) + 3 // TODO(选择选项中的代码填充此处) y_predict = reg.predict(np.array([[3, 5]])) print(y_predict) if __name__ == '__main__': test() ``` 若将以下选项中的代码分别填充到上述代码中**TODO**处,哪个选项不是线性模型? ## template ```java import numpy as np def test(): X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]]) y = np.dot(X, np.array([1, 2])) + 3 // 下面的 code 占位符会被替换成答案和选项代码 $code y_predict = reg.predict(np.array([[3, 5]])) print(y_predict) if __name__ == '__main__': test() ``` ## 答案 ```python from sklearn import svm reg = svm.SVC(kernel='rbf').fit(X, y) ``` ## 选项 ### 使用 LinearRegression ```python from sklearn.linear_model import LinearRegression reg = LinearRegression().fit(X, y) ``` ### 使用岭回归 ```python from sklearn.linear_model import Ridge reg = Ridge(alpha=0.1) ``` ### 使用拉索算法 ```python from sklearn.linear_model import Lasso reg = Lasso(alpha=0.1).fit(X, y) ```