第4课 逻辑回归——给病患和鸢尾花分类

我们已经通过线性回归模型成功解决了回归问题,本课就来处理分类问题。分类问题与回归问题,是机器学习两大主要应用。

分类问题覆盖面很广泛:有二元分类,如根据考试成绩推断是否被录取、根据消费记录判断信用卡是否可以申请,以及预测某天是否将发生地震等;有多元分类,如消费群体的划分、个人信用的评级等;还有图像识别、语音识别等,在本质上也是很多个类别的分类问题。

垃圾分类器帮助市民确定垃圾的类别

本课要讲的专用于分类的机器学习算法,叫逻辑回归(logistic regression),简称Logreg。

“等等,咖哥。”小冰问道,“你刚才说,机器学习两大主要应用是回归问题和分类问题,可你又说这个逻辑回归算法,专用于分类问题,这我就不明白了,专用于分类问题的算法,为什么叫逻辑回归,不叫‘逻辑分类’算法呢?”

“哈哈。”咖哥说,“你这就有点咬文嚼字了。逻辑回归算法的本质其实仍然是回归。这个算法也是通过调整权重w和偏置b来找到线性函数来计算数据样本属于某一类的概率。比如二元分类,一个样本有60%的概率属于A类,有20%的概率属于B类,算法就会判断样本属于A类。”

咖哥接着说:“不过,在介绍这些细节之前,还是先看本课重点吧。”

“Stop!咖哥,”小冰听说了逻辑回归能解决各种分类问题之后,突然喊道,“我想到了我的一个朋友现在正在做的一个医疗产品,也许这个逻辑回归机器学习模型可以帮到他!”

“好啊,那不妨先听一听你的具体需求吧。”咖哥回答。