#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2023/2/22 14:09 # @Author : clong # @File : preprocess_data.py.py # Copyright (c) 2021, EleutherAI # This file is based on code by the authors denoted below and has been modified from its original version. # # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Processing data for pretraining.""" import argparse import multiprocessing import os import sys import lm_dataformat as lmd import numpy as np sys.path.append( os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)) ) import time import tqdm import torch import ftfy from megatron.tokenizer import build_tokenizer from megatron.data import indexed_dataset from threading import Semaphore class Encoder(object): def __init__(self, args): self.args = args def initializer(self): # Use Encoder class as a container for global data Encoder.tokenizer = build_tokenizer(self.args) def encode(self, text): if self.args.ftfy: text = ftfy.fix_text(text) ids = {} for key in self.args.jsonl_keys: doc_ids = [] text_ids = Encoder.tokenizer.tokenize(text) if len(text_ids) > 0: doc_ids.append(text_ids) if self.args.append_eod: doc_ids[-1].append(Encoder.tokenizer.eod) ids[key] = doc_ids return ids, len(text) def get_args(): parser = argparse.ArgumentParser() group = parser.add_argument_group(title="input data") group.add_argument( "--input", type=str, required=True, help="Path to input jsonl files or lmd archive(s) - if using multiple archives, put them in a comma separated " "list", ) group.add_argument( "--jsonl-keys", nargs="+", default=["text"], help="space separate listed of keys to extract from jsonl. Defa", ) group.add_argument( "--num-docs", default=None, help="Optional: Number of documents in the input data (if known) for an accurate progress bar.", type=int, ) group = parser.add_argument_group(title="tokenizer") group.add_argument( "--tokenizer-type", type=str, required=True, choices=[ "HFGPT2Tokenizer", "HFTokenizer", "GPT2BPETokenizer", "CharLevelTokenizer", "TiktokenTokenizer", ], help="What type of tokenizer to use.", ) group.add_argument( "--vocab-file", type=str, default=None, help="Path to the vocab file" ) group.add_argument( "--merge-file", type=str, default=None, help="Path to the BPE merge file (if necessary).", ) group.add_argument( "--append-eod", action="store_true", help="Append an token to the end of a document.", ) group.add_argument("--ftfy", action="store_true", help="Use ftfy to clean text") group = parser.add_argument_group(title="output data") group.add_argument( "--output-prefix", type=str, required=True, help="Path to binary output file without suffix", ) group.add_argument( "--dataset-impl", type=str, default="mmap", choices=["lazy", "cached", "mmap"], help="Dataset implementation to use. Default: mmap", ) group = parser.add_argument_group(title="runtime") group.add_argument( "--workers", type=int, default=1, help="Number of worker processes to launch" ) group.add_argument( "--log-interval", type=int, default=100, help="Interval between progress updates", ) args = parser.parse_args() args.keep_empty = False # some default/dummy values for the tokenizer args.rank = 0 args.make_vocab_size_divisible_by = 128 args.model_parallel_size = 1 return args def yield_from_files(fnames: list, semaphore): """ Iterator over input documents using lm_dataformat. Should be able to handle jsons / texts / other compressed formats. Also filters out empty documents. :param fnames: list of filenames """ def yielder(fname, semaphore): for f in filter(lambda x: x, lmd.Reader(fname).stream_data()): semaphore.acquire() yield f for fname in fnames: semaphore.acquire() yield from yielder(fname, semaphore) def main(): args = get_args() encoder = Encoder(args) tokenizer = build_tokenizer(args) print(f"Vocab size: {tokenizer.vocab_size}") print(f"Output prefix: {args.output_prefix}") # build a semaphore object to stop `yield_from_files` from getting ahead of encoder.encode and # hence building up memory semaphore = Semaphore(10000 + args.workers) # use multiprocessing to iterate over input documents fin = yield_from_files(args.input.split(","), semaphore) if args.workers > 1: pool = multiprocessing.Pool(args.workers, initializer=encoder.initializer) encoded_docs = pool.imap(encoder.encode, fin, chunksize=25) else: encoder.initializer() encoded_docs = (encoder.encode(doc) for doc in fin) # make a dataset builder for each key in args.jsonl_keys # each key will output to a different file beginning with args.output_prefix output_bin_files = {} output_idx_files = {} builders = {} for key in args.jsonl_keys: output_bin_files[key] = "{}_{}_{}.bin".format( args.output_prefix, key, "document" ) output_idx_files[key] = "{}_{}_{}.idx".format( args.output_prefix, key, "document" ) builders[key] = indexed_dataset.make_builder( output_bin_files[key], impl=args.dataset_impl, vocab_size=tokenizer.vocab_size, ) # actually do tokenization proc_start = time.time() total_bytes_processed = 0 pbar = tqdm.tqdm() for i, (doc, bytes_processed) in enumerate(encoded_docs, start=1): total_bytes_processed += bytes_processed # release semaphore so `yield_from_files` can add another file to the buffer semaphore.release() # add each tokenized document / sentence for key, sentences in doc.items(): for sentence in sentences: builders[key].add_item(np.array(sentence, dtype=builders[key].dtype)) # separate with eos token builders[key].end_document() # log progress if i % args.log_interval == 0: current = time.time() elapsed = current - proc_start mbs = total_bytes_processed / elapsed / 1024 / 1024 pbar.set_description( f"Processed {i}{'' if args.num_docs is None else '/' + str(args.num_docs)} documents ({i / elapsed} docs/s, {mbs} MB/s)." ) if i != 0: pbar.update(args.log_interval) # save output file for key in args.jsonl_keys: builders[key].finalize(output_idx_files[key]) if __name__ == "__main__": main()