
1

Linux Kernel Fastboot

Feng Tang
Intel Linux System Engineering

2

Kernel Fastboot

➢ Linux kernel fastboot is critical for all kinds of platforms

➢ At LPC 2008, Arjan van de Ven and Auke Kok

introduced “Booting Linux in five seconds”

➢ Kernel boot time has been hugely improved over years,

but there is always space to improve

➢ Will talk about general stuff, while using a x86 In-Car

platform as reference

3

Why we worked on boot optimization

➢ Hard requirement: rear camera must be

functional in 2 seconds after power on.

➢ The boot phase contains HW, FW, bootloader,

hypervisor, kernel and user space, pre-kernel

takes 500 ms

➢ Initial kernel boot time is 3 seconds, finally we

cut it to 300 ms

4

ACRN (Xen like hypervisor)

Apollolake HW

Clear Linux

Android

kernel 4.19

Device Model

ABL (Automotive Boot Loader)

Platform Info

HW info:

* Apollolake 4 Core (1.9G/2.4G)

* 8GB RAM

* 16GB EMMC rootfs

SW info:

* VMM: ACRN hypervisor

* OS: Clear Linux with 4.19 LTS

kernel

5

Methodology – 3 Steps

Profile

Analyze

Optimize

6

How To Get Accurate Kernel Boot Time

➢ 3 kernel phases
➢ Decompression

➢ Dark phase ([0.000000])

➢ Normal phase

➢ Check kernel boot time
➢ systemd-analyze

➢ printk timestamp

➢ “Run xxx as init process”

kernel

decompress
kernel kernel

“init”

load

clock init

Systemd-analyze

Run xxx as init

7

Profile Tools
➢ initcall_debug

➢ bootchart

➢ printk with absolute timestamp
➢ Decompress

➢ Dark phase

➢ Individual dump functions
➢ Async debug

➢ Not covered by initcall_debug

➢ Ftrace
➢ New boot ftrace event patches

8

Analyze

Profiled Data

Where

How

Hotspots

Workaround for specific HW (i915,SDHC)

Unnecessary module/config for product release

Unexpected small module costs lots of time

Know where every ms is spent

Check how and why it takes so much time

9

HW FW Bootloader User space (systemd+camera app)Kernel

Kernel

Decompression

Memory

Init

SMP

Init

ACPI FW

Init

i915

GFX

LPSS

driver

eMMC

Storage

Rootfs

Mouting

2 sec

300 ms

How the Boot Time Is Consumed

10

Hotspots Overview

➢ Driver asynchronous probing

➢ Rootfs mounting

➢ Memory Init

➢ Kernel modules and kernel configs

➢ Graphics (i915)

➢ Virtualization

11

Boottime Hotspots
Kernel modules Boottime taken

i915 FB driver init 1+ sec

eDP panel detection 300 ms

ORC unwinder init 300 ms

SATA controller init 150 ms

MEI driver 300 ms

8250 driver IRQ detection 200 ms

Memory Init 150 ms

i915 init 40 ms

acpi init 60 ms

smp multi core init (4C) 30 ms

eMMC driver init 60 ms

12

Too Few Drivers Use Asynchronous Probe

➢ Driver Async-init framework setup 10 years ago, but rare drivers

use it

➢ Async probe could save a lot of time by making driver init in

parallel, like i915, network device

➢ To enable it, simply set driver’s probe_type to
PROBE_PREFER_ASYNCHRONOUS

➢ Easy to try - “driver_async_probe=driver1,driver2” in cmdline

13

Original Boot

14

Boot With Asynchronous Probe

15

RootFS Mounting Matters

➢ Mostly about storage drivers’ efficiency

➢ SATA driver init takes100 to 200 ms even without a real disk

➢ eMMC driver takes 50-100ms

➢ Move mmc driver init as early as possible

➢ Disable not used host controllers

➢ Disable not used protocols (SD/SDIO)

➢ Optimize driver’s internal hacky busy wait

➢ Add “rootwait” to cmdline

➢ Check the hidden asynchronous functions

16

Deferred Memory Init

➢ 8GB RAM’s initialization costs 100+ ms

➢ In early boot phase, we don’t need that much memory

➢ Utilize the memory hotplug feature
➢ “mem=4096m” in cmdline to only init 2 GB

➢ Use systemd service to add rest memory in parallel

17

Highest CPU Frequency Booting (IO too?)

➢ CPU frequency has huge impact over boot time,

especially for those no IO related operations.

➢ CPU frequency is set by BIOS/FW, before cpufreq

subsystem is initialized

➢ Device Init could also benefit from the frequency

changing

18

Kernel Modules and Config

➢ Use loadable module when possible

➢ Disable all not-necessary modules/drivers

➢ Disable all debug features for release version

➢ Disable existing but not used HW(like SDHC/SATA controller)

➢ Kernel size matters

19

What Can We Do Next?

➢ Universality vs Performance

➢ In-kernel deferred memory init

➢ SMP initialization for bringing up other Aps

➢ User space optimization like systemd

20

Universality vs Performance

➢ Driver wants to cover all HWs with one copy of code

➢ Many long delay in drivers is actually to cover some

broken HW

➢ i915 driver’s 32 times DPCD register read

➢ SDHC driver’s 10ms power up delay

➢ Everybody pays because of them

➢ Can we handle them in a better way?

➢ add kernel parameter to tune

➢ add quirks

21

In-kernel Deferred Memory Init

➢ User space can initialize majority of the memory with

hotplug interface

➢ Useful for platforms with huge mount of memory

➢ But it’s better to be supported in kernel. Some

developers are already working on this

22

Parallize SMP Initialization

➢ It takes about from 6 to 10 ms to bring up one AP,

depending on platforms

➢ It used to be more, has been optimized already

➢ Currently it is under the CPU hotplug framework, and

brought up one by one.

23

systemd (user space)

➢ Systemd is ~1.5MB - the loading time for emmc is 100ms

➢ Can we use a small lightweight “init” program, which

starts target programs in parallel and readahead to

preload libraries and executables?

24

Credits

Thanks to Bin Yang, Alek Du, Julie Du, Ying Huang, Andi

Kleen, Tim Chen, Jianjun Liu and many others for

supporting and reviewing

25

Q&A
Thank You!

