
Kernel Tracing Tools

字节跳动系统部STE团队 -宋牧春



• Lightweight and simple kernel memory leak detector

• Hard/soft irqs off latency tracing

• Non-scheduled thread in kernel space tracing

Agenda



Lightweight and simple kernel memory leak detector



Which tools can troubleshooting memory leak

• memleak.py which in the BCC tools

• kmemleak which in the kernel development tools

https://github.com/iovisor/bcc/blob/master/tools/memleak.py
https://www.kernel.org/doc/html/latest/dev-tools/kmemleak.html


Why do not we choose BCC and kernel memory leak tools

Why do not choose the memleak.py

• Save all memory allocation call traces, increase memory usage.

• Too much noise call traces, disturbing our analysis.

Why do not choose the kmemleak

• Need enable CONFIG_DEBUG_KMEMLEAK and compile the kernel.

• Need reboot the server and install the debug kernel image.

• Waste a lot of memory to maintain the metadata.

• Need to reproduce the issue.



How to troubleshoot memory leaks

The steps to debug memory leak

• Use the slabtop to determine which kmem_cache may leak.

• Trace the special kmem_cache memory allocation

• Troubleshoot call trace where memory leaks may occur

The characteristics of memory leak

• Generally speaking, there is only one memory leak in the system.

• Most of the memory allocation will be freed in a short time.



Lightweight and simple kernel memory leak detector

• Only trace one allocated address and save the address and call trace.

• Assume that this address will be freed soon.

• If it is freed for a short time, the next address is randomly selected for 

tracking.

• If not, assume that this address is leaked and print the call trace

periodically.



tracepoint:kmem:kmalloc,

tracepoint:kmem:kmalloc_node,

tracepoint:kmem:kmem_cache_alloc,

tracepoint:kmem:kmem_cache_alloc_node

{

if (args->bytes_alloc == 1024 && !@kmem_addr) {

@alloc_stack = kstack;

@kmem_addr = args->ptr;

}

}

tracepoint:kmem:kfree,

tracepoint:kmem:kmem_cache_free

{

if (@kmem_addr && @kmem_addr == args->ptr) {

delete(@kmem_addr);

delete(@alloc_stack);

}

}

Lightweight and simple kernel memory leak detector demo

interval:s:100

{

if (@kmem_addr) {

printf("kmem_addr: 0x%lx\n", @kmem_addr);

printf("%s\n", @alloc_stack);

}

}

memory alloc memory free print leak addr



Lightweight and simple kernel memory leak detector demo

Advantage:

• No need to reboot the server.

• The output information is simple and easy to analyze.

• Simple but effective. At present, three memory leaks in the internal kernel of 

ByteDance have been discovered by this tool.



Hard/soft irqs off latency tracing



How to trace hard/soft irqs off latency



How to trace hard/soft irqs off latency

Advantages:

• Simple but accurate.

• The tool is readily available.

Disadvantages:

• Need enable CONFIG_TRACE_IRQFLAGS and compile the kernel.

• Need reboot the server and install the debug kernel image.

• Need to reproduce the issue.

• The overhead is high.



Hard/soft irqs off latency traceing

Is it necessary to accurately measure the irq off latency? 



Hard/soft irqs off latency traceing

• Use a periodically hrtimer to record timestamp.

• If the interval between two timestamps is greater than 2 times the hrtimer period, we think

that the hardirqs off latency is hrtimer period.



Hard/soft irqs off latency traceing

Advantages:

• No need to compile kernel, just need insmod.

• No need to reboot server.

• The overhead is low.

Disadvantages:

• The accuracy depends on the timer sampling period, so the accuracy 

is not high. But debugging the issue is enough.



Non-scheduled thread in kernel space tracing



Non-scheduled thread in kernel space tracing

What problems may we face in the non-preemptible kernel?



The time spent in the kernel space



Non-scheduled thread in kernel space tracing

Get the start timestamp(hrtimer)

Get the end timestamp(sched tracepoint)



THANKS



More tools and open source

https://github.com/bytedance/trace-irqoff

https://github.com/bytedance/trace-noschedule

https://github.com/bytedance/trace-runqlat


