
Accelerators For Everyone

China Linux Kernel Conference (October 24th, 2020)

Tony Luck. Principal Engineer. Intel Architecture, Graphics, & Software Group



2

Tony Luck

Working on Linux at Intel since 2000

Specializes in server features

• RAS

• RDT

• Accelerators



3

The Future (according to experts)

“… domain-specific 

architectures as the only path 

forward for improved 

performance and energy 

efficiency …”
—Hennessy & Patterson “Computer Architecture, A Quantitative Approach”



4

Agenda

General accelerator goodness

DSA specifics

 Linux driver implementation

User interface

Conclusion



5

Existing accelerators are hard to use

Suitable only for large tasks

• Overhead to access eliminates benefit for small tasks

 Typically access physical, not virtual memory addresses

• Only usable from kernel or driver interfaces

 Limited number of instances

• Difficult to share between unrelated users



6

Solution(1): Reducing the overhead - descriptor

User composes a “descriptor” in cacheable memory that contains 

all the information needed for a specific operation

• “Opcode” = which operation to perform

• Source and destination addresses for the work

• Byte count(s) for the size of operands

• Flags – may modify how the operation is performed and how completion of 

the operation is indicated

• Completion record address



7

Solution(1): Reducing the overhead -

submission

New instructions to add a descriptor to a device work queue using 

an MMIO “portal” address

• MOVDIR64B

• ENQCMD

• ENQCMDS



8

Solution(2): Shared virtual memory

Each descriptor includes virtual addresses of source and 

destination operands

Each request is associated with a PASID (Process Address Space 

IDentifier) that is set up by the operating system and used by the 

device to request the IOMMU translate virtual addresses to physical

OPCODE
SRC
DST
{PASID}

ENQCMD

MSR_IA32_PASID

OPCODE
SRC
DST
PASID



9

Solution(3): Sharing between unrelated users

Devices have a finite amount of storage for queued requests

 In a traditional device all the users need to keep track of how many 

requests are in the queue

• Needs locking, or atomic operations on shared variable

 The ENQCMD instruction avoids this by returning status:

• RFLAGS.ZF=0 Success. The request was queued

• RFLAGS.ZF=1 Retry/Failure



10

Intel® Data Streaming Accelerator

A high-performance data copy and transformation accelerator



11

DSA – Use cases

Data center CPU cores spend a lot of cycles on trivial “copy” and 

“clear” page operations

• OS must clear pages before re-using them

• VMM must clear pages before assigning to a guest

• OS migrates pages between NUMA nodes when scheduler rebalances load

• Page de-duplication

• “I/O” to persistent memory (e.g. 3D-Xpoint™)

• Network solutions like DPDK. Storage solutions like SPDK



12

DSA Configuration (high level view)

Work Queues Groups Engines



13

DSA Operation Types



14

DSA Example Descriptor and Completion 

Record



15

Linux driver implementation



16

Configuration tool

 There will be multiple DSA devices in a system

• Up to 8 work queues per device

Previous picture didn’t include all the details

Some use cases might involve run-time reconfiguration

Solution: Driver provides interface in /sys to configure

User space tool: accel-config

• https://github.com/intel/idxd-config



17

Example accel-config “json” output



18

Driver status

Basic driver with minimal functionality in v5.6

Kernel support for PASID in v5.10

Support for shared work queues and shared virtual memory v5.11

• Merge through dmaengine tree

• git://git.kernel.org/pub/scm/linux/kernel/git/vkoul/dmaengine.git

 In progress – virtualization support

Code is in drivers/dma/idxd/*

git://git.kernel.org/pub/scm/linux/kernel/git/vkoul/dmaengine.git


19

User interface



20

In-kernel users

Copy operations may use existing dma kernel interfaces

Or can request direct access to work queues from the driver

• iadx_request_available_wqs()



21

Applications

Currently driver provides character device interface for each work 

queue

Applications open the device

Use mmap(2) to get access to the portal to submit work

Evaluating the “uacce” Linux interface to see if it can be extended



22

Conclusion

Accelerator devices are coming soon

 Low latency programming model

Accessible from:

• Bare metal OS

• Applications

• Guest OS running on VMM



23


