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Tony Luck

Working on Linux at Intel since 2000

Specializes in server features

• RAS

• RDT

• Accelerators
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The Future (according to experts)

“… domain-specific 

architectures as the only path 

forward for improved 

performance and energy 

efficiency …”
—Hennessy & Patterson “Computer Architecture, A Quantitative Approach”
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Agenda

General accelerator goodness

DSA specifics

 Linux driver implementation

User interface

Conclusion
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Existing accelerators are hard to use

Suitable only for large tasks

• Overhead to access eliminates benefit for small tasks

 Typically access physical, not virtual memory addresses

• Only usable from kernel or driver interfaces

 Limited number of instances

• Difficult to share between unrelated users
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Solution(1): Reducing the overhead - descriptor

User composes a “descriptor” in cacheable memory that contains 

all the information needed for a specific operation

• “Opcode” = which operation to perform

• Source and destination addresses for the work

• Byte count(s) for the size of operands

• Flags – may modify how the operation is performed and how completion of 

the operation is indicated

• Completion record address
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Solution(1): Reducing the overhead -

submission

New instructions to add a descriptor to a device work queue using 

an MMIO “portal” address

• MOVDIR64B

• ENQCMD

• ENQCMDS
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Solution(2): Shared virtual memory

Each descriptor includes virtual addresses of source and 

destination operands

Each request is associated with a PASID (Process Address Space 

IDentifier) that is set up by the operating system and used by the 

device to request the IOMMU translate virtual addresses to physical

OPCODE
SRC
DST
{PASID}

ENQCMD

MSR_IA32_PASID

OPCODE
SRC
DST
PASID
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Solution(3): Sharing between unrelated users

Devices have a finite amount of storage for queued requests

 In a traditional device all the users need to keep track of how many 

requests are in the queue

• Needs locking, or atomic operations on shared variable

 The ENQCMD instruction avoids this by returning status:

• RFLAGS.ZF=0 Success. The request was queued

• RFLAGS.ZF=1 Retry/Failure
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Intel® Data Streaming Accelerator

A high-performance data copy and transformation accelerator
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DSA – Use cases

Data center CPU cores spend a lot of cycles on trivial “copy” and 

“clear” page operations

• OS must clear pages before re-using them

• VMM must clear pages before assigning to a guest

• OS migrates pages between NUMA nodes when scheduler rebalances load

• Page de-duplication

• “I/O” to persistent memory (e.g. 3D-Xpoint™)

• Network solutions like DPDK. Storage solutions like SPDK
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DSA Configuration (high level view)

Work Queues Groups Engines
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DSA Operation Types
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DSA Example Descriptor and Completion 

Record
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Linux driver implementation
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Configuration tool

 There will be multiple DSA devices in a system

• Up to 8 work queues per device

Previous picture didn’t include all the details

Some use cases might involve run-time reconfiguration

Solution: Driver provides interface in /sys to configure

User space tool: accel-config

• https://github.com/intel/idxd-config
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Example accel-config “json” output
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Driver status

Basic driver with minimal functionality in v5.6

Kernel support for PASID in v5.10

Support for shared work queues and shared virtual memory v5.11

• Merge through dmaengine tree

• git://git.kernel.org/pub/scm/linux/kernel/git/vkoul/dmaengine.git

 In progress – virtualization support

Code is in drivers/dma/idxd/*

git://git.kernel.org/pub/scm/linux/kernel/git/vkoul/dmaengine.git
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User interface
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In-kernel users

Copy operations may use existing dma kernel interfaces

Or can request direct access to work queues from the driver

• iadx_request_available_wqs()
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Applications

Currently driver provides character device interface for each work 

queue

Applications open the device

Use mmap(2) to get access to the portal to submit work

Evaluating the “uacce” Linux interface to see if it can be extended
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Conclusion

Accelerator devices are coming soon

 Low latency programming model

Accessible from:

• Bare metal OS

• Applications

• Guest OS running on VMM
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