
Linux kernel page management
and lru lock optimization

Alibaba 时奎亮

Speaker Bis

时奎亮
 Alex Shi
 Alibaba 基础软件部高级专家
 LPC, kernel 峰会邀请专家
 前Linaro Stable Kernel 维护者
 前Intel LKP测试系统 维护者

Agenda

Linux memory management
Page mangement in Linux kernel
Memcg and lru lock optimization
Further chances
Upstreaming status
Questions?

 Linux memory management

Von Neumann Arch
 Basic concept

ALU Memory

In

Out

 Linux memory management

Single address
 CPU: Arm, x86, PPC etc
 Portable C program expect flat memory
 Hardware mapped in address space

 Linux memory management

Single address
 CPU: Arm, x86, PPC
 Portable C program expect flat memory
 Hardware mapped in address space

 Linux memory management

Virtual memory <—> physical memory
 Memory Management Unit

 Linux memory management

Virtual memory <—> physical memory
 Page table. pgtable_types.h
 _PAGE_BIT_PRESENT …

Page management in Linux kernel

Page fault
 Lazy allocation

 Major fault
 IO involved
 Minor fault

Page management in Linux kernel

Page fault
 cr2
 arch/x86/mm/fault.c
 mm/memory.c

Page management in Linux kernel
 1, virtual address to physical address
 2, not in TLB, not in Page Table —> page fault
 3, PTE filled w/o present bit
 4, Is it in swapcache?
 5, get a page frame, read it from swap device
 6, Add it into swap cache
 7, Add it into LRU
 8, Add it into PageTable
 9, charge it in memcg
 10, Add_anon_rmap
 11, update mmu_cache — optional

How user application get a page:

 Steps of page swap in

Page mangement in Linux kernel

https://linux-mm.org/AdvancedPageReplacement

ARC
Clock-Pro
CAR
LRU

https://linux-mm.org/AdvancedPageReplacement

Page management in Linux Kernel

Last Recent Used
 lru_lock
 PG_lru
 Lruvec.lists[NR_LRU_LISTS]

Memcg and lru lock optimization

Lru lock timing:

 A, Add page into lru lists
 B, Delete it from lru lists
 C, Moving pages between lru lists
 D, Isolation pages
 D1, reclaim
 D2, compaction
 D3, migrations
 D4, munlock
 E, Put page back

Lru lock protected objects:

 A, PG_lru
 B, List integrity
 C, PG_mlocked, munlock/split
 D, Memcg->move_lock
 E, I_pages lock
 F, Page Idle

Memcg and lru lock optimization

Before Mem cgroup

Lruvec.lists[] / node Lruvec.lists[] / memcg

Lruvec.lists[] / memcg

Lruvec.lists[] / memcg

Lruvec.lists[] / memcg

After Mem cgroup

Memcg and lru lock optimization

Per node Lru lock

Lruvec.lists[] / memcg

Lruvec.lists[] / memcg

Lruvec.lists[] / memcg

Lruvec.lists[] / memcg

Per memcg lru lock

Lruvec.lists[] / memcg

Lruvec.lists[] / memcg

Lruvec.lists[] / memcg

Lruvec.lists[] / memcg

Memcg and lru lock optimization

Is that Simple?

Memcg and lru lock optimization

To guard page’s memcg change:

A, relock on lru_lock

B, lock_page_memcg

C, TestClearPageLRU

Memcg and lru lock optimization
 1, virtual address to physical address
 2, not in TLB, check Page Table
 3, PTE show it is in swap device
 4, Is it in swapcache?
 5, get a page frame, read it from swap device
 6, Add it into swap cache
 7, Add it into LRU. Pending in pagevec
 8, Add it into PageTable
 9, Charge it in memcg
 10, Add_anon_rmap
 11, update mmu_cache

Move step 9 before step 7

How user application get a page:

 Steps of page swap in

Memcg and lru lock optimization
commit 4c6355b25e
mm: memcontrol: charge swapin pages on instantiation

 Right now, users that are otherwise memory controlled can easily escape
 their containment and allocate significant amounts of memory that they're
 not being charged for. That's because swap readahead pages are not being
 charged until somebody actually faults them into their page table. This
 can be exploited with MADV_WILLNEED, which triggers arbitrary readahead
 allocations without charging the pages.

 There are additional problems with the delayed charging of swap pages:

 1. To implement refault/workingset detection for anonymous pages, we
 need to have a target LRU available at swapin time, but the LRU is not
 determinable until the page has been charged.

 2. To implement per-cgroup LRU locking, we need page->mem_cgroup to be
 stable when the page is isolated from the LRU; otherwise, the locks
 change under us. But swapcache gets charged after it's already on the
 LRU, and even if we cannot isolate it ourselves (since charging is not
 exactly optional).

 The previous patch ensured we always maintain cgroup ownership records for
 swap pages. This patch moves the swapcache charging point from the fault
 handler to swapin time to fix all of the above problems.

+ /*
+ * The swap entry is ours to swap in. Prepare the new page.
+ */
+
+ __SetPageLocked(page);
+ __SetPageSwapBacked(page);
+
+ /* May fail (-ENOMEM) if XArray node allocation failed. */
+ if (add_to_swap_cache(page, entry, gfp_mask & GFP_KERNEL)) {
+ put_swap_page(page, entry);
+ goto fail_unlock;
+ }
+
+ if (mem_cgroup_charge(page, NULL, gfp_mask, false)) {
+ delete_from_swap_cache(page);
+ goto fail_unlock;
+ }
+
+ /* Caller will initiate read into locked page */
+ SetPageWorkingset(page);
+ lru_cache_add_anon(page);
+ *new_page_allocated = true;
+ return page;

Memcg and lru lock optimization

Memory Lock sequence change

Memcg and lru lock optimization

To guard page’s memcg change:

A, relock on lru_lock

B, lock_page_memcg

C, TestClearPageLRU

Memcg and lru lock optimization

To guard page’s memcg change:

A, relock on lru_lock

B, lock_page_memcg

C, TestClearPageLRU

Currently lru_lock still guards both lru list and page's lru bit, that's
ok. but if we want to use specific lruvec lock on the page, we need to
pin down the page's lruvec/memcg during locking. Just taking lruvec
lock first may be undermined by the page's memcg charge/migration. To
fix this problem, we could clear the lru bit out of locking and use
it as pin down action to block the page isolation in memcg changing.

So now a standard steps of page isolation is following:
1, get_page(); #pin the page avoid to be free

 + if TestClearPageLRU() #block other isolation like memcg change
2, spin_lock on lru_lock; #serialize lru list access

 - ClearPageLRU();
3, delete page from lru list;

The step 2 could be optimzed/replaced in scenarios which page is
unlikely be accessed or be moved between memcgs.

This patch start with the first part: TestClearPageLRU, which combines
PageLRU check and ClearPageLRU into a macro func TestClearPageLRU. This
function will be used as page isolation precondition to prevent other
isolations some where else. Then there are may !PageLRU page on lru
list, need to remove BUG() checking accordingly.

There 2 rules for lru bit now:
1, the lru bit still indicate if a page on lru list, just in some
 temporary moment(isolating), the page may have no lru bit when
 it's on lru list. but the page still must be on lru list when the
 lru bit set.
2, have to remove lru bit before delete it from lru list.

Memcg and lru lock optimization

Lru lock normal usages:

 A, Add page into lru lists
 B, Delete it from lru lists
 C, Moving pages between lru lists
 D, Isolation pages
 D1, reclaim
 D2, compaction
 D3, migrations
 D4, munlock
 E, Put page back

Lru lock Protected object:

 - A, PG_lru
 B, List integrity

 - C, PG_mlocked, unlock/split
 - D, Memcg->move_lock
 - E, I_pages lock
 - F, Page Idle

Memcg and lru lock optimization

Testing result:

 New test case:
 Per memcg lru-file-readtwice
 2 dd in a memcg
 Dockerfile, vm-scalablity patch
 https://lkml.org/lkml/2020/8/26/212

 Daniel Jordan
 https://lkml.org/lkml/2020/9/24/1054
 0%

50%

100%

150%

200%

250%

300%

20 memcgs 40 memcgs 80 memcgs

performance

https://lkml.org/lkml/2020/8/26/212

Memcg and lru lock optimization

Any shortages?

 1, Extra atomic write when page not in lru
 isolate_lru_page()

Further chances

Further optimization:

 Sort lru lists before relocking
 Fairness locking issue

static void pagevec_lru_move_fn(struct pagevec *pvec,
 void (*move_fn)(struct page *page, struct lruvec *lruvec))
{
 int i;
 struct lruvec *lruvec = NULL;
 unsigned long flags = 0;

 for (i = 0; i < pagevec_count(pvec); i++) {
 struct page *page = pvec->pages[i];

 /* block memcg migration during page moving between lru */
 if (!TestClearPageLRU(page))
 continue;

 lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
 (*move_fn)(page, lruvec);

 SetPageLRU(page);
 }
 if (lruvec)
 unlock_page_lruvec_irqrestore(lruvec, flags);
 release_pages(pvec->pages, pvec->nr);
 pagevec_reinit(pvec);
}

Further chances

Further optimization:

 Per lru lock for each of lists

enum lru_list {
 LRU_INACTIVE_ANON = LRU_BASE,
 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
 LRU_UNEVICTABLE,
 NR_LRU_LISTS
};

Struct lurvec {
 Struct list_head lists[NR_LRU_LISTS];
 spinlock_t lru_lock;

Upstreaming Status

First proposal:

 Hugh Dickins & Konstantin Khlebnikov
 https://fa.linux.kernel.narkive.com/9UwfrOeI/patch-0-10-mm-memcg-per-memcg-per-zone-lru-locking

Back in LKML:

 Last Oct
 Johannes Weiner, Feb, suggest TestClearPageLRU
 Than Found memcg charge timing wrong,
 V13 finished the main solution

Review:
 Alexander Dukcy, reviewed 5 weeks in July 2020
 Hugh Dickins reviewed 4 weeks in Sep 2020

Questions &
Thanks !

Others

LKP found fio.readiops -30%

Reason:
 Qspinlock false sharing

diff --git a/include/linux/mmzone.h b/include/linux/mmzone.h
index a75e6d0effcb..58b21bffef95 100644
--- a/include/linux/mmzone.h
+++ b/include/linux/mmzone.h
@@ -272,9 +272,9 @@ enum lruvec_flags {
 };

 struct lruvec {
+ struct list_head lists[NR_LRU_LISTS];
 /* per lruvec lru_lock for memcg */
 spinlock_t lru_lock;
- struct list_head lists[NR_LRU_LISTS];
 /*
 * These track the cost of reclaiming one LRU - file or anon -
 * over the other. As the observed cost of reclaiming one LRU

enum lru_list {
 LRU_INACTIVE_ANON = LRU_BASE,
 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
 LRU_UNEVICTABLE,
 NR_LRU_LISTS
};

