#include #include #include #include #include #include #include #include /* -------------------------------------------------------- */ #define do_log(level, format, ...) \ blog(level, "[compressor: '%s'] " format, \ obs_source_get_name(cd->context), ##__VA_ARGS__) #define warn(format, ...) do_log(LOG_WARNING, format, ##__VA_ARGS__) #define info(format, ...) do_log(LOG_INFO, format, ##__VA_ARGS__) #ifdef _DEBUG #define debug(format, ...) do_log(LOG_DEBUG, format, ##__VA_ARGS__) #else #define debug(format, ...) #endif /* -------------------------------------------------------- */ #define S_RATIO "ratio" #define S_THRESHOLD "threshold" #define S_ATTACK_TIME "attack_time" #define S_RELEASE_TIME "release_time" #define S_OUTPUT_GAIN "output_gain" #define S_SIDECHAIN_SOURCE "sidechain_source" #define MT_ obs_module_text #define TEXT_RATIO MT_("Compressor.Ratio") #define TEXT_THRESHOLD MT_("Compressor.Threshold") #define TEXT_ATTACK_TIME MT_("Compressor.AttackTime") #define TEXT_RELEASE_TIME MT_("Compressor.ReleaseTime") #define TEXT_OUTPUT_GAIN MT_("Compressor.OutputGain") #define TEXT_SIDECHAIN_SOURCE MT_("Compressor.SidechainSource") #define MIN_RATIO 1.0f #define MAX_RATIO 32.0f #define MIN_THRESHOLD_DB -60.0f #define MAX_THRESHOLD_DB 0.0f #define MIN_OUTPUT_GAIN_DB -32.0f #define MAX_OUTPUT_GAIN_DB 32.0f #define MIN_ATK_RLS_MS 1 #define MAX_RLS_MS 1000 #define MAX_ATK_MS 500 #define DEFAULT_AUDIO_BUF_MS 10 #define MS_IN_S 1000 #define MS_IN_S_F ((float)MS_IN_S) /* -------------------------------------------------------- */ struct compressor_data { obs_source_t *context; float *envelope_buf; size_t envelope_buf_len; float ratio; float threshold; float attack_gain; float release_gain; float output_gain; size_t num_channels; size_t sample_rate; float envelope; float slope; pthread_mutex_t sidechain_update_mutex; uint64_t sidechain_check_time; obs_weak_source_t *weak_sidechain; char *sidechain_name; pthread_mutex_t sidechain_mutex; struct circlebuf sidechain_data[MAX_AUDIO_CHANNELS]; float *sidechain_buf[MAX_AUDIO_CHANNELS]; size_t max_sidechain_frames; }; /* -------------------------------------------------------- */ static inline obs_source_t *get_sidechain(struct compressor_data *cd) { if (cd->weak_sidechain) return obs_weak_source_get_source(cd->weak_sidechain); return NULL; } static inline void get_sidechain_data(struct compressor_data *cd, const uint32_t num_samples) { size_t data_size = cd->envelope_buf_len * sizeof(float); if (!data_size) return; pthread_mutex_lock(&cd->sidechain_mutex); if (cd->max_sidechain_frames < num_samples) cd->max_sidechain_frames = num_samples; if (cd->sidechain_data[0].size < data_size) { pthread_mutex_unlock(&cd->sidechain_mutex); goto clear; } for (size_t i = 0; i < cd->num_channels; i++) circlebuf_pop_front(&cd->sidechain_data[i], cd->sidechain_buf[i], data_size); pthread_mutex_unlock(&cd->sidechain_mutex); return; clear: for (size_t i = 0; i < cd->num_channels; i++) memset(cd->sidechain_buf[i], 0, data_size); } static void resize_env_buffer(struct compressor_data *cd, size_t len) { cd->envelope_buf_len = len; cd->envelope_buf = brealloc(cd->envelope_buf, len * sizeof(float)); for (size_t i = 0; i < cd->num_channels; i++) cd->sidechain_buf[i] = brealloc(cd->sidechain_buf[i], len * sizeof(float)); } static inline float gain_coefficient(uint32_t sample_rate, float time) { return (float)exp(-1.0f / (sample_rate * time)); } static const char *compressor_name(void *unused) { UNUSED_PARAMETER(unused); return obs_module_text("Compressor"); } static void sidechain_capture(void *param, obs_source_t *source, const struct audio_data *audio_data, bool muted) { struct compressor_data *cd = param; UNUSED_PARAMETER(source); pthread_mutex_lock(&cd->sidechain_mutex); if (cd->max_sidechain_frames < audio_data->frames) cd->max_sidechain_frames = audio_data->frames; size_t expected_size = cd->max_sidechain_frames * sizeof(float); if (!expected_size) goto unlock; if (cd->sidechain_data[0].size > expected_size * 2) { for (size_t i = 0; i < cd->num_channels; i++) { circlebuf_pop_front(&cd->sidechain_data[i], NULL, expected_size); } } if (muted) { for (size_t i = 0; i < cd->num_channels; i++) { circlebuf_push_back_zero(&cd->sidechain_data[i], audio_data->frames * sizeof(float)); } } else { for (size_t i = 0; i < cd->num_channels; i++) { circlebuf_push_back(&cd->sidechain_data[i], audio_data->data[i], audio_data->frames * sizeof(float)); } } unlock: pthread_mutex_unlock(&cd->sidechain_mutex); } static void compressor_update(void *data, obs_data_t *s) { struct compressor_data *cd = data; const uint32_t sample_rate = audio_output_get_sample_rate(obs_get_audio()); const size_t num_channels = audio_output_get_channels(obs_get_audio()); const float attack_time_ms = (float)obs_data_get_int(s, S_ATTACK_TIME); const float release_time_ms = (float)obs_data_get_int(s, S_RELEASE_TIME); const float output_gain_db = (float)obs_data_get_double(s, S_OUTPUT_GAIN); const char *sidechain_name = obs_data_get_string(s, S_SIDECHAIN_SOURCE); cd->ratio = (float)obs_data_get_double(s, S_RATIO); cd->threshold = (float)obs_data_get_double(s, S_THRESHOLD); cd->attack_gain = gain_coefficient(sample_rate, attack_time_ms / MS_IN_S_F); cd->release_gain = gain_coefficient(sample_rate, release_time_ms / MS_IN_S_F); cd->output_gain = db_to_mul(output_gain_db); cd->num_channels = num_channels; cd->sample_rate = sample_rate; cd->slope = 1.0f - (1.0f / cd->ratio); bool valid_sidechain = *sidechain_name && strcmp(sidechain_name, "none") != 0; obs_weak_source_t *old_weak_sidechain = NULL; pthread_mutex_lock(&cd->sidechain_update_mutex); if (!valid_sidechain) { if (cd->weak_sidechain) { old_weak_sidechain = cd->weak_sidechain; cd->weak_sidechain = NULL; } bfree(cd->sidechain_name); cd->sidechain_name = NULL; } else { if (!cd->sidechain_name || strcmp(cd->sidechain_name, sidechain_name) != 0) { if (cd->weak_sidechain) { old_weak_sidechain = cd->weak_sidechain; cd->weak_sidechain = NULL; } bfree(cd->sidechain_name); cd->sidechain_name = bstrdup(sidechain_name); cd->sidechain_check_time = os_gettime_ns() - 3000000000; } } pthread_mutex_unlock(&cd->sidechain_update_mutex); if (old_weak_sidechain) { obs_source_t *old_sidechain = obs_weak_source_get_source(old_weak_sidechain); if (old_sidechain) { obs_source_remove_audio_capture_callback(old_sidechain, sidechain_capture, cd); obs_source_release(old_sidechain); } obs_weak_source_release(old_weak_sidechain); } size_t sample_len = sample_rate * DEFAULT_AUDIO_BUF_MS / MS_IN_S; if (cd->envelope_buf_len == 0) resize_env_buffer(cd, sample_len); } static void *compressor_create(obs_data_t *settings, obs_source_t *filter) { struct compressor_data *cd = bzalloc(sizeof(struct compressor_data)); cd->context = filter; if (pthread_mutex_init(&cd->sidechain_mutex, NULL) != 0) { blog(LOG_ERROR, "Failed to create mutex"); bfree(cd); return NULL; } if (pthread_mutex_init(&cd->sidechain_update_mutex, NULL) != 0) { pthread_mutex_destroy(&cd->sidechain_mutex); blog(LOG_ERROR, "Failed to create mutex"); bfree(cd); return NULL; } compressor_update(cd, settings); return cd; } static void compressor_destroy(void *data) { struct compressor_data *cd = data; if (cd->weak_sidechain) { obs_source_t *sidechain = get_sidechain(cd); if (sidechain) { obs_source_remove_audio_capture_callback(sidechain, sidechain_capture, cd); obs_source_release(sidechain); } obs_weak_source_release(cd->weak_sidechain); } for (size_t i = 0; i < MAX_AUDIO_CHANNELS; i++) { circlebuf_free(&cd->sidechain_data[i]); bfree(cd->sidechain_buf[i]); } pthread_mutex_destroy(&cd->sidechain_mutex); pthread_mutex_destroy(&cd->sidechain_update_mutex); bfree(cd->sidechain_name); bfree(cd->envelope_buf); bfree(cd); } static void analyze_envelope(struct compressor_data *cd, float **samples, const uint32_t num_samples) { if (cd->envelope_buf_len < num_samples) { resize_env_buffer(cd, num_samples); } const float attack_gain = cd->attack_gain; const float release_gain = cd->release_gain; memset(cd->envelope_buf, 0, num_samples * sizeof(cd->envelope_buf[0])); for (size_t chan = 0; chan < cd->num_channels; ++chan) { if (!samples[chan]) continue; float *envelope_buf = cd->envelope_buf; float env = cd->envelope; for (uint32_t i = 0; i < num_samples; ++i) { const float env_in = fabsf(samples[chan][i]); if (env < env_in) { env = env_in + attack_gain * (env - env_in); } else { env = env_in + release_gain * (env - env_in); } envelope_buf[i] = fmaxf(envelope_buf[i], env); } } cd->envelope = cd->envelope_buf[num_samples - 1]; } static void analyze_sidechain(struct compressor_data *cd, const uint32_t num_samples) { if (cd->envelope_buf_len < num_samples) { resize_env_buffer(cd, num_samples); } get_sidechain_data(cd, num_samples); const float attack_gain = cd->attack_gain; const float release_gain = cd->release_gain; float **sidechain_buf = cd->sidechain_buf; memset(cd->envelope_buf, 0, num_samples * sizeof(cd->envelope_buf[0])); for (size_t chan = 0; chan < cd->num_channels; ++chan) { if (!sidechain_buf[chan]) continue; float *envelope_buf = cd->envelope_buf; float env = cd->envelope; for (uint32_t i = 0; i < num_samples; ++i) { const float env_in = fabsf(sidechain_buf[chan][i]); if (env < env_in) { env = env_in + attack_gain * (env - env_in); } else { env = env_in + release_gain * (env - env_in); } envelope_buf[i] = fmaxf(envelope_buf[i], env); } } cd->envelope = cd->envelope_buf[num_samples - 1]; } static inline void process_compression(const struct compressor_data *cd, float **samples, uint32_t num_samples) { for (size_t i = 0; i < num_samples; ++i) { const float env_db = mul_to_db(cd->envelope_buf[i]); float gain = cd->slope * (cd->threshold - env_db); gain = db_to_mul(fminf(0, gain)); for (size_t c = 0; c < cd->num_channels; ++c) { if (samples[c]) { samples[c][i] *= gain * cd->output_gain; } } } } static void compressor_tick(void *data, float seconds) { struct compressor_data *cd = data; char *new_name = NULL; pthread_mutex_lock(&cd->sidechain_update_mutex); if (cd->sidechain_name && !cd->weak_sidechain) { uint64_t t = os_gettime_ns(); if (t - cd->sidechain_check_time > 3000000000) { new_name = bstrdup(cd->sidechain_name); cd->sidechain_check_time = t; } } pthread_mutex_unlock(&cd->sidechain_update_mutex); if (new_name) { obs_source_t *sidechain = new_name && *new_name ? obs_get_source_by_name(new_name) : NULL; obs_weak_source_t *weak_sidechain = sidechain ? obs_source_get_weak_source(sidechain) : NULL; pthread_mutex_lock(&cd->sidechain_update_mutex); if (cd->sidechain_name && strcmp(cd->sidechain_name, new_name) == 0) { cd->weak_sidechain = weak_sidechain; weak_sidechain = NULL; } pthread_mutex_unlock(&cd->sidechain_update_mutex); if (sidechain) { obs_source_add_audio_capture_callback(sidechain, sidechain_capture, cd); obs_weak_source_release(weak_sidechain); obs_source_release(sidechain); } bfree(new_name); } UNUSED_PARAMETER(seconds); } static struct obs_audio_data *compressor_filter_audio(void *data, struct obs_audio_data *audio) { struct compressor_data *cd = data; const uint32_t num_samples = audio->frames; float **samples = (float**)audio->data; pthread_mutex_lock(&cd->sidechain_update_mutex); obs_weak_source_t *weak_sidechain = cd->weak_sidechain; pthread_mutex_unlock(&cd->sidechain_update_mutex); if (weak_sidechain) analyze_sidechain(cd, num_samples); else analyze_envelope(cd, samples, num_samples); process_compression(cd, samples, num_samples); return audio; } static void compressor_defaults(obs_data_t *s) { obs_data_set_default_double(s, S_RATIO, 10.0f); obs_data_set_default_double(s, S_THRESHOLD, -18.0f); obs_data_set_default_int(s, S_ATTACK_TIME, 6); obs_data_set_default_int(s, S_RELEASE_TIME, 60); obs_data_set_default_double(s, S_OUTPUT_GAIN, 0.0f); obs_data_set_default_string(s, S_SIDECHAIN_SOURCE, "none"); } struct sidechain_prop_info { obs_property_t *sources; obs_source_t *parent; }; static bool add_sources(void *data, obs_source_t *source) { struct sidechain_prop_info *info = data; uint32_t caps = obs_source_get_output_flags(source); if (source == info->parent) return true; if ((caps & OBS_SOURCE_AUDIO) == 0) return true; const char *name = obs_source_get_name(source); obs_property_list_add_string(info->sources, name, name); return true; } static obs_properties_t *compressor_properties(void *data) { struct compressor_data *cd = data; obs_properties_t *props = obs_properties_create(); obs_source_t *parent = NULL; if (cd) parent = obs_filter_get_parent(cd->context); obs_properties_add_float_slider(props, S_RATIO, TEXT_RATIO, MIN_RATIO, MAX_RATIO, 0.5f); obs_properties_add_float_slider(props, S_THRESHOLD, TEXT_THRESHOLD, MIN_THRESHOLD_DB, MAX_THRESHOLD_DB, 0.1f); obs_properties_add_int_slider(props, S_ATTACK_TIME, TEXT_ATTACK_TIME, MIN_ATK_RLS_MS, MAX_ATK_MS, 1); obs_properties_add_int_slider(props, S_RELEASE_TIME, TEXT_RELEASE_TIME, MIN_ATK_RLS_MS, MAX_RLS_MS, 1); obs_properties_add_float_slider(props, S_OUTPUT_GAIN, TEXT_OUTPUT_GAIN, MIN_OUTPUT_GAIN_DB, MAX_OUTPUT_GAIN_DB, 0.1f); obs_property_t *sources = obs_properties_add_list(props, S_SIDECHAIN_SOURCE, TEXT_SIDECHAIN_SOURCE, OBS_COMBO_TYPE_LIST, OBS_COMBO_FORMAT_STRING); obs_property_list_add_string(sources, obs_module_text("None"), "none"); struct sidechain_prop_info info = {sources, parent}; obs_enum_sources(add_sources, &info); UNUSED_PARAMETER(data); return props; } struct obs_source_info compressor_filter = { .id = "compressor_filter", .type = OBS_SOURCE_TYPE_FILTER, .output_flags = OBS_SOURCE_AUDIO, .get_name = compressor_name, .create = compressor_create, .destroy = compressor_destroy, .update = compressor_update, .filter_audio = compressor_filter_audio, .video_tick = compressor_tick, .get_defaults = compressor_defaults, .get_properties = compressor_properties, };