/* * Copyright (c) 2018 Sergey Lavrushkin * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * DNN tensorflow backend implementation. */ #include "dnn_backend_tf.h" #include "dnn_backend_native.h" #include "dnn_backend_native_layer_conv2d.h" #include "dnn_backend_native_layer_depth2space.h" #include "libavformat/avio.h" #include "libavutil/avassert.h" #include "../internal.h" #include "dnn_backend_native_layer_pad.h" #include "dnn_backend_native_layer_maximum.h" #include "dnn_io_proc.h" #include typedef struct TFOptions{ char *sess_config; } TFOptions; typedef struct TFContext { const AVClass *class; TFOptions options; } TFContext; typedef struct TFModel{ TFContext ctx; DNNModel *model; TF_Graph *graph; TF_Session *session; TF_Status *status; } TFModel; #define OFFSET(x) offsetof(TFContext, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM static const AVOption dnn_tensorflow_options[] = { { "sess_config", "config for SessionOptions", OFFSET(options.sess_config), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(dnn_tensorflow); static DNNReturnType execute_model_tf(const DNNModel *model, const char *input_name, AVFrame *in_frame, const char **output_names, uint32_t nb_output, AVFrame *out_frame, int do_ioproc); static void free_buffer(void *data, size_t length) { av_freep(&data); } static TF_Buffer *read_graph(const char *model_filename) { TF_Buffer *graph_buf; unsigned char *graph_data = NULL; AVIOContext *model_file_context; long size, bytes_read; if (avio_open(&model_file_context, model_filename, AVIO_FLAG_READ) < 0){ return NULL; } size = avio_size(model_file_context); graph_data = av_malloc(size); if (!graph_data){ avio_closep(&model_file_context); return NULL; } bytes_read = avio_read(model_file_context, graph_data, size); avio_closep(&model_file_context); if (bytes_read != size){ av_freep(&graph_data); return NULL; } graph_buf = TF_NewBuffer(); graph_buf->data = graph_data; graph_buf->length = size; graph_buf->data_deallocator = free_buffer; return graph_buf; } static TF_Tensor *allocate_input_tensor(const DNNData *input) { TF_DataType dt; size_t size; int64_t input_dims[] = {1, input->height, input->width, input->channels}; switch (input->dt) { case DNN_FLOAT: dt = TF_FLOAT; size = sizeof(float); break; case DNN_UINT8: dt = TF_UINT8; size = 1; break; default: av_assert0(!"should not reach here"); } return TF_AllocateTensor(dt, input_dims, 4, input_dims[1] * input_dims[2] * input_dims[3] * size); } static DNNReturnType get_input_tf(void *model, DNNData *input, const char *input_name) { TFModel *tf_model = model; TFContext *ctx = &tf_model->ctx; TF_Status *status; int64_t dims[4]; TF_Output tf_output; tf_output.oper = TF_GraphOperationByName(tf_model->graph, input_name); if (!tf_output.oper) { av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", input_name); return DNN_ERROR; } tf_output.index = 0; input->dt = TF_OperationOutputType(tf_output); status = TF_NewStatus(); TF_GraphGetTensorShape(tf_model->graph, tf_output, dims, 4, status); if (TF_GetCode(status) != TF_OK){ TF_DeleteStatus(status); av_log(ctx, AV_LOG_ERROR, "Failed to get input tensor shape: number of dimension incorrect\n"); return DNN_ERROR; } TF_DeleteStatus(status); // currently only NHWC is supported av_assert0(dims[0] == 1); input->height = dims[1]; input->width = dims[2]; input->channels = dims[3]; return DNN_SUCCESS; } static DNNReturnType get_output_tf(void *model, const char *input_name, int input_width, int input_height, const char *output_name, int *output_width, int *output_height) { DNNReturnType ret; TFModel *tf_model = model; TFContext *ctx = &tf_model->ctx; AVFrame *in_frame = av_frame_alloc(); AVFrame *out_frame = NULL; if (!in_frame) { av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input frame\n"); return DNN_ERROR; } out_frame = av_frame_alloc(); if (!out_frame) { av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for output frame\n"); av_frame_free(&in_frame); return DNN_ERROR; } in_frame->width = input_width; in_frame->height = input_height; ret = execute_model_tf(tf_model->model, input_name, in_frame, &output_name, 1, out_frame, 0); *output_width = out_frame->width; *output_height = out_frame->height; av_frame_free(&out_frame); av_frame_free(&in_frame); return ret; } static DNNReturnType load_tf_model(TFModel *tf_model, const char *model_filename) { TFContext *ctx = &tf_model->ctx; TF_Buffer *graph_def; TF_ImportGraphDefOptions *graph_opts; TF_SessionOptions *sess_opts; const TF_Operation *init_op; uint8_t *sess_config = NULL; int sess_config_length = 0; // prepare the sess config data if (tf_model->ctx.options.sess_config != NULL) { /* tf_model->ctx.options.sess_config is hex to present the serialized proto required by TF_SetConfig below, so we need to first generate the serialized proto in a python script, the following is a script example to generate serialized proto which specifies one GPU, we can change the script to add more options. import tensorflow as tf gpu_options = tf.GPUOptions(visible_device_list='0') config = tf.ConfigProto(gpu_options=gpu_options) s = config.SerializeToString() b = ''.join("%02x" % int(ord(b)) for b in s[::-1]) print('0x%s' % b) the script output looks like: 0xab...cd, and then pass 0xab...cd to sess_config. */ char tmp[3]; tmp[2] = '\0'; if (strncmp(tf_model->ctx.options.sess_config, "0x", 2) != 0) { av_log(ctx, AV_LOG_ERROR, "sess_config should start with '0x'\n"); return DNN_ERROR; } sess_config_length = strlen(tf_model->ctx.options.sess_config); if (sess_config_length % 2 != 0) { av_log(ctx, AV_LOG_ERROR, "the length of sess_config is not even (%s), " "please re-generate the config.\n", tf_model->ctx.options.sess_config); return DNN_ERROR; } sess_config_length -= 2; //ignore the first '0x' sess_config_length /= 2; //get the data length in byte sess_config = av_malloc(sess_config_length); if (!sess_config) { av_log(ctx, AV_LOG_ERROR, "failed to allocate memory\n"); return DNN_ERROR; } for (int i = 0; i < sess_config_length; i++) { int index = 2 + (sess_config_length - 1 - i) * 2; tmp[0] = tf_model->ctx.options.sess_config[index]; tmp[1] = tf_model->ctx.options.sess_config[index + 1]; sess_config[i] = strtol(tmp, NULL, 16); } } graph_def = read_graph(model_filename); if (!graph_def){ av_log(ctx, AV_LOG_ERROR, "Failed to read model \"%s\" graph\n", model_filename); av_freep(&sess_config); return DNN_ERROR; } tf_model->graph = TF_NewGraph(); tf_model->status = TF_NewStatus(); graph_opts = TF_NewImportGraphDefOptions(); TF_GraphImportGraphDef(tf_model->graph, graph_def, graph_opts, tf_model->status); TF_DeleteImportGraphDefOptions(graph_opts); TF_DeleteBuffer(graph_def); if (TF_GetCode(tf_model->status) != TF_OK){ TF_DeleteGraph(tf_model->graph); TF_DeleteStatus(tf_model->status); av_log(ctx, AV_LOG_ERROR, "Failed to import serialized graph to model graph\n"); av_freep(&sess_config); return DNN_ERROR; } init_op = TF_GraphOperationByName(tf_model->graph, "init"); sess_opts = TF_NewSessionOptions(); if (sess_config) { TF_SetConfig(sess_opts, sess_config, sess_config_length,tf_model->status); av_freep(&sess_config); if (TF_GetCode(tf_model->status) != TF_OK) { av_log(ctx, AV_LOG_ERROR, "Failed to set config for sess options with %s\n", tf_model->ctx.options.sess_config); return DNN_ERROR; } } tf_model->session = TF_NewSession(tf_model->graph, sess_opts, tf_model->status); TF_DeleteSessionOptions(sess_opts); if (TF_GetCode(tf_model->status) != TF_OK) { av_log(ctx, AV_LOG_ERROR, "Failed to create new session with model graph\n"); return DNN_ERROR; } // Run initialization operation with name "init" if it is present in graph if (init_op){ TF_SessionRun(tf_model->session, NULL, NULL, NULL, 0, NULL, NULL, 0, &init_op, 1, NULL, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK) { av_log(ctx, AV_LOG_ERROR, "Failed to run session when initializing\n"); return DNN_ERROR; } } return DNN_SUCCESS; } #define NAME_BUFFER_SIZE 256 static DNNReturnType add_conv_layer(TFModel *tf_model, TF_Operation *transpose_op, TF_Operation **cur_op, ConvolutionalParams* params, const int layer) { TFContext *ctx = &tf_model->ctx; TF_Operation *op; TF_OperationDescription *op_desc; TF_Output input; int64_t strides[] = {1, 1, 1, 1}; TF_Tensor *tensor; int64_t dims[4]; int dims_len; char name_buffer[NAME_BUFFER_SIZE]; int32_t size; size = params->input_num * params->output_num * params->kernel_size * params->kernel_size; input.index = 0; snprintf(name_buffer, NAME_BUFFER_SIZE, "conv_kernel%d", layer); op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer); TF_SetAttrType(op_desc, "dtype", TF_FLOAT); dims[0] = params->output_num; dims[1] = params->kernel_size; dims[2] = params->kernel_size; dims[3] = params->input_num; dims_len = 4; tensor = TF_AllocateTensor(TF_FLOAT, dims, dims_len, size * sizeof(float)); memcpy(TF_TensorData(tensor), params->kernel, size * sizeof(float)); TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ av_log(ctx, AV_LOG_ERROR, "Failed to set value for kernel of conv layer %d\n", layer); return DNN_ERROR; } op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ av_log(ctx, AV_LOG_ERROR, "Failed to add kernel to conv layer %d\n", layer); return DNN_ERROR; } snprintf(name_buffer, NAME_BUFFER_SIZE, "transpose%d", layer); op_desc = TF_NewOperation(tf_model->graph, "Transpose", name_buffer); input.oper = op; TF_AddInput(op_desc, input); input.oper = transpose_op; TF_AddInput(op_desc, input); TF_SetAttrType(op_desc, "T", TF_FLOAT); TF_SetAttrType(op_desc, "Tperm", TF_INT32); op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ av_log(ctx, AV_LOG_ERROR, "Failed to add transpose to conv layer %d\n", layer); return DNN_ERROR; } snprintf(name_buffer, NAME_BUFFER_SIZE, "conv2d%d", layer); op_desc = TF_NewOperation(tf_model->graph, "Conv2D", name_buffer); input.oper = *cur_op; TF_AddInput(op_desc, input); input.oper = op; TF_AddInput(op_desc, input); TF_SetAttrType(op_desc, "T", TF_FLOAT); TF_SetAttrIntList(op_desc, "strides", strides, 4); TF_SetAttrString(op_desc, "padding", "VALID", 5); *cur_op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ av_log(ctx, AV_LOG_ERROR, "Failed to add conv2d to conv layer %d\n", layer); return DNN_ERROR; } snprintf(name_buffer, NAME_BUFFER_SIZE, "conv_biases%d", layer); op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer); TF_SetAttrType(op_desc, "dtype", TF_FLOAT); dims[0] = params->output_num; dims_len = 1; tensor = TF_AllocateTensor(TF_FLOAT, dims, dims_len, params->output_num * sizeof(float)); memcpy(TF_TensorData(tensor), params->biases, params->output_num * sizeof(float)); TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ av_log(ctx, AV_LOG_ERROR, "Failed to set value for conv_biases of conv layer %d\n", layer); return DNN_ERROR; } op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ av_log(ctx, AV_LOG_ERROR, "Failed to add conv_biases to conv layer %d\n", layer); return DNN_ERROR; } snprintf(name_buffer, NAME_BUFFER_SIZE, "bias_add%d", layer); op_desc = TF_NewOperation(tf_model->graph, "BiasAdd", name_buffer); input.oper = *cur_op; TF_AddInput(op_desc, input); input.oper = op; TF_AddInput(op_desc, input); TF_SetAttrType(op_desc, "T", TF_FLOAT); *cur_op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ av_log(ctx, AV_LOG_ERROR, "Failed to add bias_add to conv layer %d\n", layer); return DNN_ERROR; } snprintf(name_buffer, NAME_BUFFER_SIZE, "activation%d", layer); switch (params->activation){ case RELU: op_desc = TF_NewOperation(tf_model->graph, "Relu", name_buffer); break; case TANH: op_desc = TF_NewOperation(tf_model->graph, "Tanh", name_buffer); break; case SIGMOID: op_desc = TF_NewOperation(tf_model->graph, "Sigmoid", name_buffer); break; default: avpriv_report_missing_feature(ctx, "convolutional activation function %d", params->activation); return DNN_ERROR; } input.oper = *cur_op; TF_AddInput(op_desc, input); TF_SetAttrType(op_desc, "T", TF_FLOAT); *cur_op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ av_log(ctx, AV_LOG_ERROR, "Failed to add activation function to conv layer %d\n", layer); return DNN_ERROR; } return DNN_SUCCESS; } static DNNReturnType add_depth_to_space_layer(TFModel *tf_model, TF_Operation **cur_op, DepthToSpaceParams *params, const int layer) { TFContext *ctx = &tf_model->ctx; TF_OperationDescription *op_desc; TF_Output input; char name_buffer[NAME_BUFFER_SIZE]; snprintf(name_buffer, NAME_BUFFER_SIZE, "depth_to_space%d", layer); op_desc = TF_NewOperation(tf_model->graph, "DepthToSpace", name_buffer); input.oper = *cur_op; input.index = 0; TF_AddInput(op_desc, input); TF_SetAttrType(op_desc, "T", TF_FLOAT); TF_SetAttrInt(op_desc, "block_size", params->block_size); *cur_op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ av_log(ctx, AV_LOG_ERROR, "Failed to add depth_to_space to layer %d\n", layer); return DNN_ERROR; } return DNN_SUCCESS; } static DNNReturnType add_pad_layer(TFModel *tf_model, TF_Operation **cur_op, LayerPadParams *params, const int layer) { TFContext *ctx = &tf_model->ctx; TF_Operation *op; TF_Tensor *tensor; TF_OperationDescription *op_desc; TF_Output input; int32_t *pads; int64_t pads_shape[] = {4, 2}; char name_buffer[NAME_BUFFER_SIZE]; snprintf(name_buffer, NAME_BUFFER_SIZE, "pad%d", layer); op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer); TF_SetAttrType(op_desc, "dtype", TF_INT32); tensor = TF_AllocateTensor(TF_INT32, pads_shape, 2, 4 * 2 * sizeof(int32_t)); pads = (int32_t *)TF_TensorData(tensor); pads[0] = params->paddings[0][0]; pads[1] = params->paddings[0][1]; pads[2] = params->paddings[1][0]; pads[3] = params->paddings[1][1]; pads[4] = params->paddings[2][0]; pads[5] = params->paddings[2][1]; pads[6] = params->paddings[3][0]; pads[7] = params->paddings[3][1]; TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ av_log(ctx, AV_LOG_ERROR, "Failed to set value for pad of layer %d\n", layer); return DNN_ERROR; } op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ av_log(ctx, AV_LOG_ERROR, "Failed to add pad to layer %d\n", layer); return DNN_ERROR; } op_desc = TF_NewOperation(tf_model->graph, "MirrorPad", "mirror_pad"); input.oper = *cur_op; input.index = 0; TF_AddInput(op_desc, input); input.oper = op; TF_AddInput(op_desc, input); TF_SetAttrType(op_desc, "T", TF_FLOAT); TF_SetAttrType(op_desc, "Tpaddings", TF_INT32); TF_SetAttrString(op_desc, "mode", "SYMMETRIC", 9); *cur_op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ av_log(ctx, AV_LOG_ERROR, "Failed to add mirror_pad to layer %d\n", layer); return DNN_ERROR; } return DNN_SUCCESS; } static DNNReturnType add_maximum_layer(TFModel *tf_model, TF_Operation **cur_op, DnnLayerMaximumParams *params, const int layer) { TFContext *ctx = &tf_model->ctx; TF_Operation *op; TF_Tensor *tensor; TF_OperationDescription *op_desc; TF_Output input; float *y; char name_buffer[NAME_BUFFER_SIZE]; snprintf(name_buffer, NAME_BUFFER_SIZE, "maximum/y%d", layer); op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer); TF_SetAttrType(op_desc, "dtype", TF_FLOAT); tensor = TF_AllocateTensor(TF_FLOAT, NULL, 0, TF_DataTypeSize(TF_FLOAT)); y = (float *)TF_TensorData(tensor); *y = params->val.y; TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ av_log(ctx, AV_LOG_ERROR, "Failed to set value for maximum/y of layer %d", layer); return DNN_ERROR; } op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ av_log(ctx, AV_LOG_ERROR, "Failed to add maximum/y to layer %d\n", layer); return DNN_ERROR; } snprintf(name_buffer, NAME_BUFFER_SIZE, "maximum%d", layer); op_desc = TF_NewOperation(tf_model->graph, "Maximum", name_buffer); input.oper = *cur_op; input.index = 0; TF_AddInput(op_desc, input); input.oper = op; TF_AddInput(op_desc, input); TF_SetAttrType(op_desc, "T", TF_FLOAT); *cur_op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ av_log(ctx, AV_LOG_ERROR, "Failed to add maximum to layer %d\n", layer); return DNN_ERROR; } return DNN_SUCCESS; } static DNNReturnType load_native_model(TFModel *tf_model, const char *model_filename) { TFContext *ctx = &tf_model->ctx; int32_t layer; TF_OperationDescription *op_desc; TF_Operation *op; TF_Operation *transpose_op; TF_Tensor *tensor; TF_Output input; int32_t *transpose_perm; int64_t transpose_perm_shape[] = {4}; int64_t input_shape[] = {1, -1, -1, -1}; DNNReturnType layer_add_res; DNNModel *model = NULL; NativeModel *native_model; model = ff_dnn_load_model_native(model_filename, NULL, NULL); if (!model){ av_log(ctx, AV_LOG_ERROR, "Failed to load native model\n"); return DNN_ERROR; } native_model = model->model; tf_model->graph = TF_NewGraph(); tf_model->status = TF_NewStatus(); #define CLEANUP_ON_ERROR(tf_model) \ { \ TF_DeleteGraph(tf_model->graph); \ TF_DeleteStatus(tf_model->status); \ av_log(ctx, AV_LOG_ERROR, "Failed to set value or add operator to layer\n"); \ return DNN_ERROR; \ } op_desc = TF_NewOperation(tf_model->graph, "Placeholder", "x"); TF_SetAttrType(op_desc, "dtype", TF_FLOAT); TF_SetAttrShape(op_desc, "shape", input_shape, 4); op = TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ CLEANUP_ON_ERROR(tf_model); } op_desc = TF_NewOperation(tf_model->graph, "Const", "transpose_perm"); TF_SetAttrType(op_desc, "dtype", TF_INT32); tensor = TF_AllocateTensor(TF_INT32, transpose_perm_shape, 1, 4 * sizeof(int32_t)); transpose_perm = (int32_t *)TF_TensorData(tensor); transpose_perm[0] = 1; transpose_perm[1] = 2; transpose_perm[2] = 3; transpose_perm[3] = 0; TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ CLEANUP_ON_ERROR(tf_model); } transpose_op = TF_FinishOperation(op_desc, tf_model->status); for (layer = 0; layer < native_model->layers_num; ++layer){ switch (native_model->layers[layer].type){ case DLT_INPUT: layer_add_res = DNN_SUCCESS; break; case DLT_CONV2D: layer_add_res = add_conv_layer(tf_model, transpose_op, &op, (ConvolutionalParams *)native_model->layers[layer].params, layer); break; case DLT_DEPTH_TO_SPACE: layer_add_res = add_depth_to_space_layer(tf_model, &op, (DepthToSpaceParams *)native_model->layers[layer].params, layer); break; case DLT_MIRROR_PAD: layer_add_res = add_pad_layer(tf_model, &op, (LayerPadParams *)native_model->layers[layer].params, layer); break; case DLT_MAXIMUM: layer_add_res = add_maximum_layer(tf_model, &op, (DnnLayerMaximumParams *)native_model->layers[layer].params, layer); break; default: CLEANUP_ON_ERROR(tf_model); } if (layer_add_res != DNN_SUCCESS){ CLEANUP_ON_ERROR(tf_model); } } op_desc = TF_NewOperation(tf_model->graph, "Identity", "y"); input.oper = op; input.index = 0; TF_AddInput(op_desc, input); TF_FinishOperation(op_desc, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK){ CLEANUP_ON_ERROR(tf_model); } ff_dnn_free_model_native(&model); return DNN_SUCCESS; } DNNModel *ff_dnn_load_model_tf(const char *model_filename, const char *options, AVFilterContext *filter_ctx) { DNNModel *model = NULL; TFModel *tf_model = NULL; model = av_mallocz(sizeof(DNNModel)); if (!model){ return NULL; } tf_model = av_mallocz(sizeof(TFModel)); if (!tf_model){ av_freep(&model); return NULL; } tf_model->ctx.class = &dnn_tensorflow_class; tf_model->model = model; //parse options av_opt_set_defaults(&tf_model->ctx); if (av_opt_set_from_string(&tf_model->ctx, options, NULL, "=", "&") < 0) { av_log(&tf_model->ctx, AV_LOG_ERROR, "Failed to parse options \"%s\"\n", options); av_freep(&tf_model); av_freep(&model); return NULL; } if (load_tf_model(tf_model, model_filename) != DNN_SUCCESS){ if (load_native_model(tf_model, model_filename) != DNN_SUCCESS){ av_freep(&tf_model); av_freep(&model); return NULL; } } model->model = tf_model; model->get_input = &get_input_tf; model->get_output = &get_output_tf; model->options = options; model->filter_ctx = filter_ctx; return model; } static DNNReturnType execute_model_tf(const DNNModel *model, const char *input_name, AVFrame *in_frame, const char **output_names, uint32_t nb_output, AVFrame *out_frame, int do_ioproc) { TF_Output *tf_outputs; TFModel *tf_model = model->model; TFContext *ctx = &tf_model->ctx; DNNData input, output; TF_Tensor **output_tensors; TF_Output tf_input; TF_Tensor *input_tensor; if (get_input_tf(tf_model, &input, input_name) != DNN_SUCCESS) return DNN_ERROR; input.height = in_frame->height; input.width = in_frame->width; tf_input.oper = TF_GraphOperationByName(tf_model->graph, input_name); if (!tf_input.oper){ av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", input_name); return DNN_ERROR; } tf_input.index = 0; input_tensor = allocate_input_tensor(&input); if (!input_tensor){ av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input tensor\n"); return DNN_ERROR; } input.data = (float *)TF_TensorData(input_tensor); if (do_ioproc) { if (tf_model->model->pre_proc != NULL) { tf_model->model->pre_proc(in_frame, &input, tf_model->model->filter_ctx); } else { ff_proc_from_frame_to_dnn(in_frame, &input, ctx); } } if (nb_output != 1) { // currently, the filter does not need multiple outputs, // so we just pending the support until we really need it. avpriv_report_missing_feature(ctx, "multiple outputs"); return DNN_ERROR; } tf_outputs = av_malloc_array(nb_output, sizeof(*tf_outputs)); if (tf_outputs == NULL) { av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for *tf_outputs\n"); \ return DNN_ERROR; } output_tensors = av_mallocz_array(nb_output, sizeof(*output_tensors)); if (!output_tensors) { av_freep(&tf_outputs); av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for output tensor\n"); \ return DNN_ERROR; } for (int i = 0; i < nb_output; ++i) { tf_outputs[i].oper = TF_GraphOperationByName(tf_model->graph, output_names[i]); if (!tf_outputs[i].oper) { av_freep(&tf_outputs); av_freep(&output_tensors); av_log(ctx, AV_LOG_ERROR, "Could not find output \"%s\" in model\n", output_names[i]); \ return DNN_ERROR; } tf_outputs[i].index = 0; } TF_SessionRun(tf_model->session, NULL, &tf_input, &input_tensor, 1, tf_outputs, output_tensors, nb_output, NULL, 0, NULL, tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK) { av_freep(&tf_outputs); av_freep(&output_tensors); av_log(ctx, AV_LOG_ERROR, "Failed to run session when executing model\n"); return DNN_ERROR; } for (uint32_t i = 0; i < nb_output; ++i) { output.height = TF_Dim(output_tensors[i], 1); output.width = TF_Dim(output_tensors[i], 2); output.channels = TF_Dim(output_tensors[i], 3); output.data = TF_TensorData(output_tensors[i]); output.dt = TF_TensorType(output_tensors[i]); if (do_ioproc) { if (tf_model->model->post_proc != NULL) { tf_model->model->post_proc(out_frame, &output, tf_model->model->filter_ctx); } else { ff_proc_from_dnn_to_frame(out_frame, &output, ctx); } } else { out_frame->width = output.width; out_frame->height = output.height; } } for (uint32_t i = 0; i < nb_output; ++i) { if (output_tensors[i]) { TF_DeleteTensor(output_tensors[i]); } } TF_DeleteTensor(input_tensor); av_freep(&output_tensors); av_freep(&tf_outputs); return DNN_SUCCESS; } DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, const char *input_name, AVFrame *in_frame, const char **output_names, uint32_t nb_output, AVFrame *out_frame) { TFModel *tf_model = model->model; TFContext *ctx = &tf_model->ctx; if (!in_frame) { av_log(ctx, AV_LOG_ERROR, "in frame is NULL when execute model.\n"); return DNN_ERROR; } if (!out_frame) { av_log(ctx, AV_LOG_ERROR, "out frame is NULL when execute model.\n"); return DNN_ERROR; } return execute_model_tf(model, input_name, in_frame, output_names, nb_output, out_frame, 1); } void ff_dnn_free_model_tf(DNNModel **model) { TFModel *tf_model; if (*model){ tf_model = (*model)->model; if (tf_model->graph){ TF_DeleteGraph(tf_model->graph); } if (tf_model->session){ TF_CloseSession(tf_model->session, tf_model->status); TF_DeleteSession(tf_model->session, tf_model->status); } if (tf_model->status){ TF_DeleteStatus(tf_model->status); } av_freep(&tf_model); av_freep(model); } }