diff --git a/libavcodec/Makefile b/libavcodec/Makefile index 2c4c69db60f2bc77c638a72d6deb4a70234b7790..c46bb10beb7a70006568a8b86068941f7cfc6802 100644 --- a/libavcodec/Makefile +++ b/libavcodec/Makefile @@ -11,7 +11,7 @@ CFLAGS= $(OPTFLAGS) -Wall -g -DHAVE_AV_CONFIG_H -I.. -D_FILE_OFFSET_BITS=64 -D_L LDFLAGS= -g OBJS= common.o utils.o mem.o allcodecs.o \ - mpegvideo.o h263.o jrevdct.o jfdctfst.o \ + mpegvideo.o h263.o jrevdct.o jfdctfst.o jfdctint.o\ mpegaudio.o ac3enc.o mjpeg.o resample.o dsputil.o \ motion_est.o imgconvert.o imgresample.o msmpeg4.o \ mpeg12.o h263dec.o svq1.o rv10.o mpegaudiodec.o pcm.o simple_idct.o \ diff --git a/libavcodec/avcodec.h b/libavcodec/avcodec.h index cd40715230357404a1a26bfdd95b80eb3dcfad3e..c442df67f720db7d35bace1041613140bc3cecc1 100644 --- a/libavcodec/avcodec.h +++ b/libavcodec/avcodec.h @@ -5,8 +5,8 @@ #define LIBAVCODEC_VERSION_INT 0x000406 #define LIBAVCODEC_VERSION "0.4.6" -#define LIBAVCODEC_BUILD 4620 -#define LIBAVCODEC_BUILD_STR "4620" +#define LIBAVCODEC_BUILD 4621 +#define LIBAVCODEC_BUILD_STR "4621" enum CodecID { CODEC_ID_NONE, @@ -96,6 +96,7 @@ extern int motion_estimation_method; static const int Motion_Est_QTab[] = { ME_ZERO, ME_PHODS, ME_LOG, ME_X1, ME_EPZS, ME_FULL }; + #define FF_MAX_B_FRAMES 4 /* encoding support */ @@ -308,6 +309,12 @@ typedef struct AVCodecContext { int aspected_width; int aspected_height; + int dct_algo; +#define FF_DCT_AUTO 0 +#define FF_DCT_FASTINT 1 +#define FF_DCT_INT 2 +#define FF_DCT_MMX 3 + //FIXME this should be reordered after kabis API is finished ... //TODO kill kabi /* @@ -338,7 +345,7 @@ typedef struct AVCodecContext { uc_res6,uc_res7,uc_res8,uc_res9,uc_res10,uc_res11,uc_res12; unsigned int ui_res0,ui_res1,ui_res2,ui_res3,ui_res4,ui_res5,ui_res6,ui_res7,ui_res8,ui_res9, - ui_res10,ui_res11,ui_res12,ui_res13,ui_res14,ui_res15,ui_res16,ui_res17; + ui_res10,ui_res11,ui_res12,ui_res13,ui_res14,ui_res15,ui_res16; } AVCodecContext; typedef struct AVCodec { diff --git a/libavcodec/dsputil.c b/libavcodec/dsputil.c index 5f3d89f54b2344b6144fa84ab2b8d84780b096fb..8ce6bf71656f26d30149cb34e24d24e517573ce7 100644 --- a/libavcodec/dsputil.c +++ b/libavcodec/dsputil.c @@ -25,7 +25,6 @@ void (*ff_idct)(DCTELEM *block); void (*ff_idct_put)(UINT8 *dest, int line_size, DCTELEM *block); void (*ff_idct_add)(UINT8 *dest, int line_size, DCTELEM *block); -void (*av_fdct)(DCTELEM *block); void (*get_pixels)(DCTELEM *block, const UINT8 *pixels, int line_size); void (*diff_pixels)(DCTELEM *block, const UINT8 *s1, const UINT8 *s2, int stride); void (*put_pixels_clamped)(const DCTELEM *block, UINT8 *pixels, int line_size); @@ -1323,7 +1322,6 @@ void dsputil_init(void) pix_abs8x8_x2 = pix_abs8x8_x2_c; pix_abs8x8_y2 = pix_abs8x8_y2_c; pix_abs8x8_xy2 = pix_abs8x8_xy2_c; - av_fdct = fdct_ifast; use_permuted_idct = 1; diff --git a/libavcodec/dsputil.h b/libavcodec/dsputil.h index 28655f79c34dc3234432823de9ac2e99aa781a3e..616acc20ff6367f3513755c0df73ef67e25f989e 100644 --- a/libavcodec/dsputil.h +++ b/libavcodec/dsputil.h @@ -27,13 +27,12 @@ typedef short DCTELEM; void fdct_ifast (DCTELEM *data); +void ff_jpeg_fdct_islow (DCTELEM *data); void j_rev_dct (DCTELEM *data); void fdct_mmx(DCTELEM *block); -extern void (*av_fdct)(DCTELEM *block); - /* encoding scans */ extern UINT8 ff_alternate_horizontal_scan[64]; extern UINT8 ff_alternate_vertical_scan[64]; diff --git a/libavcodec/i386/dsputil_mmx.c b/libavcodec/i386/dsputil_mmx.c index 02558604bcd206b3e11576b077b9e73fab3eaf04..f1bace79dd6130e17a2d6b055bf0e1538ec52a0d 100644 --- a/libavcodec/i386/dsputil_mmx.c +++ b/libavcodec/i386/dsputil_mmx.c @@ -424,8 +424,6 @@ void dsputil_init_mmx(void) pix_abs8x8_y2 = pix_abs8x8_y2_mmx; pix_abs8x8_xy2= pix_abs8x8_xy2_mmx; - av_fdct = fdct_mmx; - put_pixels_tab[0] = put_pixels_mmx; put_pixels_tab[1] = put_pixels_x2_mmx; put_pixels_tab[2] = put_pixels_y2_mmx; diff --git a/libavcodec/i386/mpegvideo_mmx.c b/libavcodec/i386/mpegvideo_mmx.c index fceccf7bd2d1ecd66ec0d17f659226895d687762..10efc173f3d55a4372a61e6885163a91e2a7f710 100644 --- a/libavcodec/i386/mpegvideo_mmx.c +++ b/libavcodec/i386/mpegvideo_mmx.c @@ -552,16 +552,21 @@ void unused_var_warning_killer(){ void MPV_common_init_mmx(MpegEncContext *s) { if (mm_flags & MM_MMX) { + const int dct_algo= s->avctx->dct_algo; s->dct_unquantize_h263 = dct_unquantize_h263_mmx; s->dct_unquantize_mpeg1 = dct_unquantize_mpeg1_mmx; s->dct_unquantize_mpeg2 = dct_unquantize_mpeg2_mmx; draw_edges = draw_edges_mmx; - if(mm_flags & MM_MMXEXT){ - dct_quantize= dct_quantize_MMX2; - } else { - dct_quantize= dct_quantize_MMX; + if(dct_algo==FF_DCT_AUTO || dct_algo==FF_DCT_MMX){ + s->fdct = fdct_mmx; + + if(mm_flags & MM_MMXEXT){ + s->dct_quantize= dct_quantize_MMX2; + } else { + s->dct_quantize= dct_quantize_MMX; + } } } } diff --git a/libavcodec/i386/mpegvideo_mmx_template.c b/libavcodec/i386/mpegvideo_mmx_template.c index d84f25301376c4e0e045ec91dd6b01e27478490d..6c3e52ea5fbfa2682c945eceafd6f20450e6daca 100644 --- a/libavcodec/i386/mpegvideo_mmx_template.c +++ b/libavcodec/i386/mpegvideo_mmx_template.c @@ -40,7 +40,8 @@ static int RENAME(dct_quantize)(MpegEncContext *s, const UINT16 *qmat, *bias; static __align8 INT16 temp_block[64]; - av_fdct (block); + //s->fdct (block); + fdct_mmx (block); //cant be anything else ... if (s->mb_intra) { int dummy; diff --git a/libavcodec/jfdctint.c b/libavcodec/jfdctint.c new file mode 100644 index 0000000000000000000000000000000000000000..b10419627a1674335a5fb2982c1fb893e1dd2449 --- /dev/null +++ b/libavcodec/jfdctint.c @@ -0,0 +1,290 @@ +/* + * jfdctint.c + * + * Copyright (C) 1991-1996, Thomas G. Lane. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains a slow-but-accurate integer implementation of the + * forward DCT (Discrete Cosine Transform). + * + * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT + * on each column. Direct algorithms are also available, but they are + * much more complex and seem not to be any faster when reduced to code. + * + * This implementation is based on an algorithm described in + * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT + * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, + * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. + * The primary algorithm described there uses 11 multiplies and 29 adds. + * We use their alternate method with 12 multiplies and 32 adds. + * The advantage of this method is that no data path contains more than one + * multiplication; this allows a very simple and accurate implementation in + * scaled fixed-point arithmetic, with a minimal number of shifts. + */ + +#include +#include +#include "common.h" +#include "dsputil.h" + +#define SHIFT_TEMPS +#define DCTSIZE 8 +#define GLOBAL(x) x +#define RIGHT_SHIFT(x, n) ((x) >> (n)) + +#if 1 //def USE_ACCURATE_ROUNDING +#define DESCALE(x,n) RIGHT_SHIFT((x) + (1 << ((n) - 1)), n) +#else +#define DESCALE(x,n) RIGHT_SHIFT(x, n) +#endif + + +/* + * This module is specialized to the case DCTSIZE = 8. + */ + +#if DCTSIZE != 8 + Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ +#endif + + +/* + * The poop on this scaling stuff is as follows: + * + * Each 1-D DCT step produces outputs which are a factor of sqrt(N) + * larger than the true DCT outputs. The final outputs are therefore + * a factor of N larger than desired; since N=8 this can be cured by + * a simple right shift at the end of the algorithm. The advantage of + * this arrangement is that we save two multiplications per 1-D DCT, + * because the y0 and y4 outputs need not be divided by sqrt(N). + * In the IJG code, this factor of 8 is removed by the quantization step + * (in jcdctmgr.c), NOT in this module. + * + * We have to do addition and subtraction of the integer inputs, which + * is no problem, and multiplication by fractional constants, which is + * a problem to do in integer arithmetic. We multiply all the constants + * by CONST_SCALE and convert them to integer constants (thus retaining + * CONST_BITS bits of precision in the constants). After doing a + * multiplication we have to divide the product by CONST_SCALE, with proper + * rounding, to produce the correct output. This division can be done + * cheaply as a right shift of CONST_BITS bits. We postpone shifting + * as long as possible so that partial sums can be added together with + * full fractional precision. + * + * The outputs of the first pass are scaled up by PASS1_BITS bits so that + * they are represented to better-than-integral precision. These outputs + * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word + * with the recommended scaling. (For 12-bit sample data, the intermediate + * array is INT32 anyway.) + * + * To avoid overflow of the 32-bit intermediate results in pass 2, we must + * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis + * shows that the values given below are the most effective. + */ + +#if BITS_IN_JSAMPLE == 8 +#define CONST_BITS 13 +#define PASS1_BITS 2 +#else +#define CONST_BITS 13 +#define PASS1_BITS 1 /* lose a little precision to avoid overflow */ +#endif + +/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus + * causing a lot of useless floating-point operations at run time. + * To get around this we use the following pre-calculated constants. + * If you change CONST_BITS you may want to add appropriate values. + * (With a reasonable C compiler, you can just rely on the FIX() macro...) + */ + +#if CONST_BITS == 13 +#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */ +#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */ +#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */ +#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ +#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ +#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */ +#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */ +#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ +#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */ +#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */ +#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ +#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */ +#else +#define FIX_0_298631336 FIX(0.298631336) +#define FIX_0_390180644 FIX(0.390180644) +#define FIX_0_541196100 FIX(0.541196100) +#define FIX_0_765366865 FIX(0.765366865) +#define FIX_0_899976223 FIX(0.899976223) +#define FIX_1_175875602 FIX(1.175875602) +#define FIX_1_501321110 FIX(1.501321110) +#define FIX_1_847759065 FIX(1.847759065) +#define FIX_1_961570560 FIX(1.961570560) +#define FIX_2_053119869 FIX(2.053119869) +#define FIX_2_562915447 FIX(2.562915447) +#define FIX_3_072711026 FIX(3.072711026) +#endif + + +/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. + * For 8-bit samples with the recommended scaling, all the variable + * and constant values involved are no more than 16 bits wide, so a + * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. + * For 12-bit samples, a full 32-bit multiplication will be needed. + */ + +#if BITS_IN_JSAMPLE == 8 +#define MULTIPLY(var,const) MULTIPLY16C16(var,const) +#else +#define MULTIPLY(var,const) ((var) * (const)) +#endif + + +/* + * Perform the forward DCT on one block of samples. + */ + +GLOBAL(void) +ff_jpeg_fdct_islow (DCTELEM * data) +{ + INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; + INT32 tmp10, tmp11, tmp12, tmp13; + INT32 z1, z2, z3, z4, z5; + DCTELEM *dataptr; + int ctr; + SHIFT_TEMPS + + /* Pass 1: process rows. */ + /* Note results are scaled up by sqrt(8) compared to a true DCT; */ + /* furthermore, we scale the results by 2**PASS1_BITS. */ + + dataptr = data; + for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { + tmp0 = dataptr[0] + dataptr[7]; + tmp7 = dataptr[0] - dataptr[7]; + tmp1 = dataptr[1] + dataptr[6]; + tmp6 = dataptr[1] - dataptr[6]; + tmp2 = dataptr[2] + dataptr[5]; + tmp5 = dataptr[2] - dataptr[5]; + tmp3 = dataptr[3] + dataptr[4]; + tmp4 = dataptr[3] - dataptr[4]; + + /* Even part per LL&M figure 1 --- note that published figure is faulty; + * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". + */ + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp1 + tmp2; + tmp12 = tmp1 - tmp2; + + dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS); + dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS); + + z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); + dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), + CONST_BITS-PASS1_BITS); + dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), + CONST_BITS-PASS1_BITS); + + /* Odd part per figure 8 --- note paper omits factor of sqrt(2). + * cK represents cos(K*pi/16). + * i0..i3 in the paper are tmp4..tmp7 here. + */ + + z1 = tmp4 + tmp7; + z2 = tmp5 + tmp6; + z3 = tmp4 + tmp6; + z4 = tmp5 + tmp7; + z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ + + tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ + tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ + tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ + tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ + z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ + z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ + z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ + z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ + + z3 += z5; + z4 += z5; + + dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS); + dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS); + dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS); + dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS); + + dataptr += DCTSIZE; /* advance pointer to next row */ + } + + /* Pass 2: process columns. + * We remove the PASS1_BITS scaling, but leave the results scaled up + * by an overall factor of 8. + */ + + dataptr = data; + for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { + tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; + tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; + tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; + tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; + tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; + tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; + tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; + tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; + + /* Even part per LL&M figure 1 --- note that published figure is faulty; + * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". + */ + + tmp10 = tmp0 + tmp3; + tmp13 = tmp0 - tmp3; + tmp11 = tmp1 + tmp2; + tmp12 = tmp1 - tmp2; + + dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS); + dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS); + + z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); + dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), + CONST_BITS+PASS1_BITS); + dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), + CONST_BITS+PASS1_BITS); + + /* Odd part per figure 8 --- note paper omits factor of sqrt(2). + * cK represents cos(K*pi/16). + * i0..i3 in the paper are tmp4..tmp7 here. + */ + + z1 = tmp4 + tmp7; + z2 = tmp5 + tmp6; + z3 = tmp4 + tmp6; + z4 = tmp5 + tmp7; + z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ + + tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ + tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ + tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ + tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ + z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ + z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ + z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ + z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ + + z3 += z5; + z4 += z5; + + dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, + CONST_BITS+PASS1_BITS); + dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, + CONST_BITS+PASS1_BITS); + dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, + CONST_BITS+PASS1_BITS); + dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, + CONST_BITS+PASS1_BITS); + + dataptr++; /* advance pointer to next column */ + } +} diff --git a/libavcodec/mpegvideo.c b/libavcodec/mpegvideo.c index 3ffbaa253394ac4eecff333126766a51bd8f8dfe..7f1f4f2b6b395eccf082945ab489972ddc179394 100644 --- a/libavcodec/mpegvideo.c +++ b/libavcodec/mpegvideo.c @@ -36,7 +36,6 @@ static void dct_unquantize_h263_c(MpegEncContext *s, static void draw_edges_c(UINT8 *buf, int wrap, int width, int height, int w); static int dct_quantize_c(MpegEncContext *s, DCTELEM *block, int n, int qscale, int *overflow); -int (*dct_quantize)(MpegEncContext *s, DCTELEM *block, int n, int qscale, int *overflow)= dct_quantize_c; void (*draw_edges)(UINT8 *buf, int wrap, int width, int height, int w)= draw_edges_c; static void emulated_edge_mc(MpegEncContext *s, UINT8 *src, int linesize, int block_w, int block_h, int src_x, int src_y, int w, int h); @@ -76,14 +75,25 @@ extern UINT8 zigzag_end[64]; /* default motion estimation */ int motion_estimation_method = ME_EPZS; -static void convert_matrix(int (*qmat)[64], uint16_t (*qmat16)[64], uint16_t (*qmat16_bias)[64], +static void convert_matrix(MpegEncContext *s, int (*qmat)[64], uint16_t (*qmat16)[64], uint16_t (*qmat16_bias)[64], const UINT16 *quant_matrix, int bias) { int qscale; for(qscale=1; qscale<32; qscale++){ int i; - if (av_fdct == fdct_ifast) { + if (s->fdct == ff_jpeg_fdct_islow) { + for(i=0;i<64;i++) { + const int j= block_permute_op(i); + /* 16 <= qscale * quant_matrix[i] <= 7905 */ + /* 19952 <= aanscales[i] * qscale * quant_matrix[i] <= 249205026 */ + /* (1<<36)/19952 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i]) >= (1<<36)/249205026 */ + /* 3444240 >= (1<<36)/(aanscales[i] * qscale * quant_matrix[i]) >= 275 */ + + qmat[qscale][j] = (int)((UINT64_C(1) << (QMAT_SHIFT-3)) / + (qscale * quant_matrix[j])); + } + } else if (s->fdct == fdct_ifast) { for(i=0;i<64;i++) { const int j= block_permute_op(i); /* 16 <= qscale * quant_matrix[i] <= 7905 */ @@ -130,6 +140,12 @@ int MPV_common_init(MpegEncContext *s) s->dct_unquantize_h263 = dct_unquantize_h263_c; s->dct_unquantize_mpeg1 = dct_unquantize_mpeg1_c; s->dct_unquantize_mpeg2 = dct_unquantize_mpeg2_c; + s->dct_quantize= dct_quantize_c; + + if(s->avctx->dct_algo==FF_DCT_FASTINT) + s->fdct = fdct_ifast; + else + s->fdct = ff_jpeg_fdct_islow; #ifdef HAVE_MMX MPV_common_init_mmx(s); @@ -563,9 +579,9 @@ int MPV_encode_init(AVCodecContext *avctx) /* precompute matrix */ /* for mjpeg, we do include qscale in the matrix */ if (s->out_format != FMT_MJPEG) { - convert_matrix(s->q_intra_matrix, s->q_intra_matrix16, s->q_intra_matrix16_bias, + convert_matrix(s, s->q_intra_matrix, s->q_intra_matrix16, s->q_intra_matrix16_bias, s->intra_matrix, s->intra_quant_bias); - convert_matrix(s->q_inter_matrix, s->q_inter_matrix16, s->q_inter_matrix16_bias, + convert_matrix(s, s->q_inter_matrix, s->q_inter_matrix16, s->q_inter_matrix16_bias, s->inter_matrix, s->inter_quant_bias); } @@ -1812,14 +1828,14 @@ static void encode_mb(MpegEncContext *s, int motion_x, int motion_y) if(s->out_format==FMT_MJPEG){ for(i=0;i<6;i++) { int overflow; - s->block_last_index[i] = dct_quantize(s, s->block[i], i, 8, &overflow); + s->block_last_index[i] = s->dct_quantize(s, s->block[i], i, 8, &overflow); if (overflow) clip_coeffs(s, s->block[i], s->block_last_index[i]); } }else{ for(i=0;i<6;i++) { if(!skip_dct[i]){ int overflow; - s->block_last_index[i] = dct_quantize(s, s->block[i], i, s->qscale, &overflow); + s->block_last_index[i] = s->dct_quantize(s, s->block[i], i, s->qscale, &overflow); // FIXME we could decide to change to quantizer instead of clipping // JS: I don't think that would be a good idea it could lower quality instead // of improve it. Just INTRADC clipping deserves changes in quantizer @@ -2081,7 +2097,7 @@ static void encode_picture(MpegEncContext *s, int picture_number) s->intra_matrix[0] = ff_mpeg1_default_intra_matrix[0]; for(i=1;i<64;i++) s->intra_matrix[i] = CLAMP_TO_8BIT((ff_mpeg1_default_intra_matrix[i] * s->qscale) >> 3); - convert_matrix(s->q_intra_matrix, s->q_intra_matrix16, + convert_matrix(s, s->q_intra_matrix, s->q_intra_matrix16, s->q_intra_matrix16_bias, s->intra_matrix, s->intra_quant_bias); } @@ -2446,7 +2462,7 @@ static int dct_quantize_c(MpegEncContext *s, int max=0; unsigned int threshold1, threshold2; - av_fdct (block); + s->fdct (block); /* we need this permutation so that we correct the IDCT permutation. will be moved into DCT code */ diff --git a/libavcodec/mpegvideo.h b/libavcodec/mpegvideo.h index ce9282c5f5162e96aa048c6d7fb0dd2283f1e144..d4766dc5621e851c2408a0b4928926e007f7bdc2 100644 --- a/libavcodec/mpegvideo.h +++ b/libavcodec/mpegvideo.h @@ -465,6 +465,8 @@ typedef struct MpegEncContext { DCTELEM *block, int n, int qscale); void (*dct_unquantize)(struct MpegEncContext *s, // unquantizer to use (mpeg4 can use both) DCTELEM *block, int n, int qscale); + int (*dct_quantize)(struct MpegEncContext *s, DCTELEM *block, int n, int qscale, int *overflow); + void (*fdct)(DCTELEM *block); } MpegEncContext; int MPV_common_init(MpegEncContext *s); @@ -478,7 +480,6 @@ void MPV_common_init_mmx(MpegEncContext *s); #ifdef ARCH_ALPHA void MPV_common_init_axp(MpegEncContext *s); #endif -extern int (*dct_quantize)(MpegEncContext *s, DCTELEM *block, int n, int qscale, int *overflow); extern void (*draw_edges)(UINT8 *buf, int wrap, int width, int height, int w); void ff_conceal_past_errors(MpegEncContext *s, int conceal_all); void ff_copy_bits(PutBitContext *pb, UINT8 *src, int length);