cpuset.c 73.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
38
#include <linux/mm.h>
39
#include <linux/memory.h>
L
Linus Torvalds 已提交
40 41 42 43 44
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
46 47
#include <linux/sched.h>
#include <linux/seq_file.h>
48
#include <linux/security.h>
L
Linus Torvalds 已提交
49 50 51 52 53 54 55 56 57 58
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/backing-dev.h>
#include <linux/sort.h>

#include <asm/uaccess.h>
#include <asm/atomic.h>
59
#include <linux/mutex.h>
60 61
#include <linux/workqueue.h>
#include <linux/cgroup.h>
L
Linus Torvalds 已提交
62

63 64 65 66 67
/*
 * Tracks how many cpusets are currently defined in system.
 * When there is only one cpuset (the root cpuset) we can
 * short circuit some hooks.
 */
68
int number_of_cpusets __read_mostly;
69

70
/* Forward declare cgroup structures */
71 72 73
struct cgroup_subsys cpuset_subsys;
struct cpuset;

74 75 76 77 78 79 80 81 82
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
	time_t time;		/* clock (secs) when val computed */
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
83
struct cpuset {
84 85
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
86
	unsigned long flags;		/* "unsigned long" so bitops work */
87
	cpumask_var_t cpus_allowed;	/* CPUs allowed to tasks in cpuset */
L
Linus Torvalds 已提交
88 89 90 91 92 93 94 95
	nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */

	struct cpuset *parent;		/* my parent */

	/*
	 * Copy of global cpuset_mems_generation as of the most
	 * recent time this cpuset changed its mems_allowed.
	 */
96 97 98
	int mems_generation;

	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
99 100 101

	/* partition number for rebuild_sched_domains() */
	int pn;
102

103 104 105
	/* for custom sched domain */
	int relax_domain_level;

106 107
	/* used for walking a cpuset heirarchy */
	struct list_head stack_list;
L
Linus Torvalds 已提交
108 109
};

110 111 112 113 114 115 116 117 118 119 120 121 122
/* Retrieve the cpuset for a cgroup */
static inline struct cpuset *cgroup_cs(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
			    struct cpuset, css);
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
	return container_of(task_subsys_state(task, cpuset_subsys_id),
			    struct cpuset, css);
}
123 124 125 126
struct cpuset_hotplug_scanner {
	struct cgroup_scanner scan;
	struct cgroup *to;
};
127

L
Linus Torvalds 已提交
128 129 130 131
/* bits in struct cpuset flags field */
typedef enum {
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
132
	CS_MEM_HARDWALL,
133
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
134
	CS_SCHED_LOAD_BALANCE,
135 136
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
137 138 139 140 141
} cpuset_flagbits_t;

/* convenient tests for these bits */
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
142
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
143 144 145 146
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
147
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
148 149
}

150 151 152 153 154
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
155 156 157 158 159
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

160 161
static inline int is_memory_migrate(const struct cpuset *cs)
{
162
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
163 164
}

165 166 167 168 169 170 171 172 173 174
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
175
/*
176
 * Increment this integer everytime any cpuset changes its
L
Linus Torvalds 已提交
177 178 179 180
 * mems_allowed value.  Users of cpusets can track this generation
 * number, and avoid having to lock and reload mems_allowed unless
 * the cpuset they're using changes generation.
 *
181
 * A single, global generation is needed because cpuset_attach_task() could
L
Linus Torvalds 已提交
182 183 184 185
 * reattach a task to a different cpuset, which must not have its
 * generation numbers aliased with those of that tasks previous cpuset.
 *
 * Generations are needed for mems_allowed because one task cannot
186
 * modify another's memory placement.  So we must enable every task,
L
Linus Torvalds 已提交
187 188 189
 * on every visit to __alloc_pages(), to efficiently check whether
 * its current->cpuset->mems_allowed has changed, requiring an update
 * of its current->mems_allowed.
190
 *
191
 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
192
 * there is no need to mark it atomic.
L
Linus Torvalds 已提交
193
 */
194
static int cpuset_mems_generation;
L
Linus Torvalds 已提交
195 196 197 198 199 200

static struct cpuset top_cpuset = {
	.flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
};

/*
201 202 203 204 205 206 207
 * There are two global mutexes guarding cpuset structures.  The first
 * is the main control groups cgroup_mutex, accessed via
 * cgroup_lock()/cgroup_unlock().  The second is the cpuset-specific
 * callback_mutex, below. They can nest.  It is ok to first take
 * cgroup_mutex, then nest callback_mutex.  We also require taking
 * task_lock() when dereferencing a task's cpuset pointer.  See "The
 * task_lock() exception", at the end of this comment.
208
 *
209
 * A task must hold both mutexes to modify cpusets.  If a task
210
 * holds cgroup_mutex, then it blocks others wanting that mutex,
211
 * ensuring that it is the only task able to also acquire callback_mutex
212 213
 * and be able to modify cpusets.  It can perform various checks on
 * the cpuset structure first, knowing nothing will change.  It can
214
 * also allocate memory while just holding cgroup_mutex.  While it is
215
 * performing these checks, various callback routines can briefly
216 217
 * acquire callback_mutex to query cpusets.  Once it is ready to make
 * the changes, it takes callback_mutex, blocking everyone else.
218 219
 *
 * Calls to the kernel memory allocator can not be made while holding
220
 * callback_mutex, as that would risk double tripping on callback_mutex
221 222 223
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
224
 * If a task is only holding callback_mutex, then it has read-only
225 226 227 228 229
 * access to cpusets.
 *
 * The task_struct fields mems_allowed and mems_generation may only
 * be accessed in the context of that task, so require no locks.
 *
230
 * The cpuset_common_file_read() handlers only hold callback_mutex across
231 232 233
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
234 235
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
236 237
 */

238
static DEFINE_MUTEX(callback_mutex);
239

240 241 242 243 244 245 246 247 248 249 250
/*
 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
 * buffers.  They are statically allocated to prevent using excess stack
 * when calling cpuset_print_task_mems_allowed().
 */
#define CPUSET_NAME_LEN		(128)
#define	CPUSET_NODELIST_LEN	(256)
static char cpuset_name[CPUSET_NAME_LEN];
static char cpuset_nodelist[CPUSET_NODELIST_LEN];
static DEFINE_SPINLOCK(cpuset_buffer_lock);

251 252
/*
 * This is ugly, but preserves the userspace API for existing cpuset
253
 * users. If someone tries to mount the "cpuset" filesystem, we
254 255
 * silently switch it to mount "cgroup" instead
 */
256 257 258
static int cpuset_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
L
Linus Torvalds 已提交
259
{
260 261 262 263 264 265 266 267 268 269 270
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
	int ret = -ENODEV;
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
		ret = cgroup_fs->get_sb(cgroup_fs, flags,
					   unused_dev_name, mountopts, mnt);
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
271 272 273 274 275 276 277 278
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
	.get_sb = cpuset_get_sb,
};

/*
279
 * Return in pmask the portion of a cpusets's cpus_allowed that
L
Linus Torvalds 已提交
280 281 282 283 284 285 286 287 288
 * are online.  If none are online, walk up the cpuset hierarchy
 * until we find one that does have some online cpus.  If we get
 * all the way to the top and still haven't found any online cpus,
 * return cpu_online_map.  Or if passed a NULL cs from an exit'ing
 * task, return cpu_online_map.
 *
 * One way or another, we guarantee to return some non-empty subset
 * of cpu_online_map.
 *
289
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
290 291
 */

292 293
static void guarantee_online_cpus(const struct cpuset *cs,
				  struct cpumask *pmask)
L
Linus Torvalds 已提交
294
{
295
	while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
L
Linus Torvalds 已提交
296 297
		cs = cs->parent;
	if (cs)
298
		cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
299
	else
300 301
		cpumask_copy(pmask, cpu_online_mask);
	BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
L
Linus Torvalds 已提交
302 303 304 305
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
306 307 308 309
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
 * online mems.  If we get all the way to the top and still haven't
 * found any online mems, return node_states[N_HIGH_MEMORY].
L
Linus Torvalds 已提交
310 311
 *
 * One way or another, we guarantee to return some non-empty subset
312
 * of node_states[N_HIGH_MEMORY].
L
Linus Torvalds 已提交
313
 *
314
 * Call with callback_mutex held.
L
Linus Torvalds 已提交
315 316 317 318
 */

static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
{
319 320
	while (cs && !nodes_intersects(cs->mems_allowed,
					node_states[N_HIGH_MEMORY]))
L
Linus Torvalds 已提交
321 322
		cs = cs->parent;
	if (cs)
323 324
		nodes_and(*pmask, cs->mems_allowed,
					node_states[N_HIGH_MEMORY]);
L
Linus Torvalds 已提交
325
	else
326 327
		*pmask = node_states[N_HIGH_MEMORY];
	BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
L
Linus Torvalds 已提交
328 329
}

330 331 332 333 334 335
/**
 * cpuset_update_task_memory_state - update task memory placement
 *
 * If the current tasks cpusets mems_allowed changed behind our
 * backs, update current->mems_allowed, mems_generation and task NUMA
 * mempolicy to the new value.
336
 *
337 338 339 340
 * Task mempolicy is updated by rebinding it relative to the
 * current->cpuset if a task has its memory placement changed.
 * Do not call this routine if in_interrupt().
 *
341
 * Call without callback_mutex or task_lock() held.  May be
342 343
 * called with or without cgroup_mutex held.  Thanks in part to
 * 'the_top_cpuset_hack', the task's cpuset pointer will never
D
David Rientjes 已提交
344 345
 * be NULL.  This routine also might acquire callback_mutex during
 * call.
346
 *
347 348
 * Reading current->cpuset->mems_generation doesn't need task_lock
 * to guard the current->cpuset derefence, because it is guarded
349
 * from concurrent freeing of current->cpuset using RCU.
350 351 352 353 354 355 356 357 358 359 360 361 362 363
 *
 * The rcu_dereference() is technically probably not needed,
 * as I don't actually mind if I see a new cpuset pointer but
 * an old value of mems_generation.  However this really only
 * matters on alpha systems using cpusets heavily.  If I dropped
 * that rcu_dereference(), it would save them a memory barrier.
 * For all other arch's, rcu_dereference is a no-op anyway, and for
 * alpha systems not using cpusets, another planned optimization,
 * avoiding the rcu critical section for tasks in the root cpuset
 * which is statically allocated, so can't vanish, will make this
 * irrelevant.  Better to use RCU as intended, than to engage in
 * some cute trick to save a memory barrier that is impossible to
 * test, for alpha systems using cpusets heavily, which might not
 * even exist.
364 365 366 367 368
 *
 * This routine is needed to update the per-task mems_allowed data,
 * within the tasks context, when it is trying to allocate memory
 * (in various mm/mempolicy.c routines) and notices that some other
 * task has been modifying its cpuset.
L
Linus Torvalds 已提交
369 370
 */

371
void cpuset_update_task_memory_state(void)
L
Linus Torvalds 已提交
372
{
373
	int my_cpusets_mem_gen;
374
	struct task_struct *tsk = current;
375
	struct cpuset *cs;
376

377 378 379
	rcu_read_lock();
	my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
	rcu_read_unlock();
L
Linus Torvalds 已提交
380

381
	if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
382
		mutex_lock(&callback_mutex);
383
		task_lock(tsk);
384
		cs = task_cs(tsk); /* Maybe changed when task not locked */
385 386
		guarantee_online_mems(cs, &tsk->mems_allowed);
		tsk->cpuset_mems_generation = cs->mems_generation;
387 388 389 390 391 392 393 394
		if (is_spread_page(cs))
			tsk->flags |= PF_SPREAD_PAGE;
		else
			tsk->flags &= ~PF_SPREAD_PAGE;
		if (is_spread_slab(cs))
			tsk->flags |= PF_SPREAD_SLAB;
		else
			tsk->flags &= ~PF_SPREAD_SLAB;
395
		task_unlock(tsk);
396
		mutex_unlock(&callback_mutex);
397
		mpol_rebind_task(tsk, &tsk->mems_allowed);
L
Linus Torvalds 已提交
398 399 400 401 402 403 404 405
	}
}

/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
406
 * are only set if the other's are set.  Call holding cgroup_mutex.
L
Linus Torvalds 已提交
407 408 409 410
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
411
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
L
Linus Torvalds 已提交
412 413 414 415 416
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

417 418 419 420 421 422
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
{
423 424 425 426 427 428 429 430 431 432 433 434 435
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
		kfree(trial);
		return NULL;
	}
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);

	return trial;
436 437 438 439 440 441 442 443
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
444
	free_cpumask_var(trial->cpus_allowed);
445 446 447
	kfree(trial);
}

L
Linus Torvalds 已提交
448 449 450 451 452 453 454
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
455
 * cgroup_mutex held.
L
Linus Torvalds 已提交
456 457 458 459 460 461 462 463 464 465 466 467 468 469
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
{
470
	struct cgroup *cont;
L
Linus Torvalds 已提交
471 472 473
	struct cpuset *c, *par;

	/* Each of our child cpusets must be a subset of us */
474 475
	list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
		if (!is_cpuset_subset(cgroup_cs(cont), trial))
L
Linus Torvalds 已提交
476 477 478 479
			return -EBUSY;
	}

	/* Remaining checks don't apply to root cpuset */
480
	if (cur == &top_cpuset)
L
Linus Torvalds 已提交
481 482
		return 0;

483 484
	par = cur->parent;

L
Linus Torvalds 已提交
485 486 487 488
	/* We must be a subset of our parent cpuset */
	if (!is_cpuset_subset(trial, par))
		return -EACCES;

489 490 491 492
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
493 494
	list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
		c = cgroup_cs(cont);
L
Linus Torvalds 已提交
495 496
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
497
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
L
Linus Torvalds 已提交
498 499 500 501 502 503 504
			return -EINVAL;
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
			return -EINVAL;
	}

505 506
	/* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
	if (cgroup_task_count(cur->css.cgroup)) {
507
		if (cpumask_empty(trial->cpus_allowed) ||
508 509 510 511 512
		    nodes_empty(trial->mems_allowed)) {
			return -ENOSPC;
		}
	}

L
Linus Torvalds 已提交
513 514 515
	return 0;
}

P
Paul Jackson 已提交
516
/*
517
 * Helper routine for generate_sched_domains().
P
Paul Jackson 已提交
518 519 520 521
 * Do cpusets a, b have overlapping cpus_allowed masks?
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
522
	return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
P
Paul Jackson 已提交
523 524
}

525 526 527 528 529 530 531 532
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

533 534 535 536 537 538 539 540 541 542 543 544 545 546
static void
update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
{
	LIST_HEAD(q);

	list_add(&c->stack_list, &q);
	while (!list_empty(&q)) {
		struct cpuset *cp;
		struct cgroup *cont;
		struct cpuset *child;

		cp = list_first_entry(&q, struct cpuset, stack_list);
		list_del(q.next);

547
		if (cpumask_empty(cp->cpus_allowed))
548 549 550 551 552 553 554 555 556 557 558 559
			continue;

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);

		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
			child = cgroup_cs(cont);
			list_add_tail(&child->stack_list, &q);
		}
	}
}

P
Paul Jackson 已提交
560
/*
561 562 563 564 565 566 567 568 569
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
 * The output of this function needs to be passed to kernel/sched.c
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
P
Paul Jackson 已提交
570
 *
L
Li Zefan 已提交
571
 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
P
Paul Jackson 已提交
572 573 574 575 576 577 578
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
579
 * Must be called with cgroup_lock held.
P
Paul Jackson 已提交
580 581
 *
 * The three key local variables below are:
582
 *    q  - a linked-list queue of cpuset pointers, used to implement a
P
Paul Jackson 已提交
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
 *	   the kernel/sched.c routine partition_sched_domains() in a
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
614 615
/* FIXME: see the FIXME in partition_sched_domains() */
static int generate_sched_domains(struct cpumask **domains,
616
			struct sched_domain_attr **attributes)
P
Paul Jackson 已提交
617
{
618
	LIST_HEAD(q);		/* queue of cpusets to be scanned */
P
Paul Jackson 已提交
619 620 621 622
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
623
	struct cpumask *doms;	/* resulting partition; i.e. sched domains */
624
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
625
	int ndoms = 0;		/* number of sched domains in result */
626
	int nslot;		/* next empty doms[] struct cpumask slot */
P
Paul Jackson 已提交
627 628

	doms = NULL;
629
	dattr = NULL;
630
	csa = NULL;
P
Paul Jackson 已提交
631 632 633

	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
634
		doms = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
635
		if (!doms)
636 637
			goto done;

638 639 640
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
641
			update_domain_attr_tree(dattr, &top_cpuset);
642
		}
643
		cpumask_copy(doms, top_cpuset.cpus_allowed);
644 645 646

		ndoms = 1;
		goto done;
P
Paul Jackson 已提交
647 648 649 650 651 652 653
	}

	csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
	if (!csa)
		goto done;
	csn = 0;

654 655
	list_add(&top_cpuset.stack_list, &q);
	while (!list_empty(&q)) {
P
Paul Jackson 已提交
656 657
		struct cgroup *cont;
		struct cpuset *child;   /* scans child cpusets of cp */
658

659 660 661
		cp = list_first_entry(&q, struct cpuset, stack_list);
		list_del(q.next);

662
		if (cpumask_empty(cp->cpus_allowed))
663 664
			continue;

665 666 667 668 669 670 671
		/*
		 * All child cpusets contain a subset of the parent's cpus, so
		 * just skip them, and then we call update_domain_attr_tree()
		 * to calc relax_domain_level of the corresponding sched
		 * domain.
		 */
		if (is_sched_load_balance(cp)) {
P
Paul Jackson 已提交
672
			csa[csn++] = cp;
673 674
			continue;
		}
675

P
Paul Jackson 已提交
676 677
		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
			child = cgroup_cs(cont);
678
			list_add_tail(&child->stack_list, &q);
P
Paul Jackson 已提交
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
		}
  	}

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

709 710 711 712
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
713
	doms = kmalloc(ndoms * cpumask_size(), GFP_KERNEL);
714
	if (!doms)
715 716 717 718 719 720
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
721
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
P
Paul Jackson 已提交
722 723 724

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
725
		struct cpumask *dp;
P
Paul Jackson 已提交
726 727
		int apn = a->pn;

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

		dp = doms + nslot;

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
				printk(KERN_WARNING
				 "rebuild_sched_domains confused:"
				  " nslot %d, ndoms %d, csn %d, i %d,"
				  " apn %d\n",
				  nslot, ndoms, csn, i, apn);
				warnings--;
P
Paul Jackson 已提交
744
			}
745 746
			continue;
		}
P
Paul Jackson 已提交
747

748
		cpumask_clear(dp);
749 750 751 752 753 754
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
755
				cpumask_or(dp, dp, b->cpus_allowed);
756 757 758 759 760
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
P
Paul Jackson 已提交
761 762
			}
		}
763
		nslot++;
P
Paul Jackson 已提交
764 765 766
	}
	BUG_ON(nslot != ndoms);

767 768 769
done:
	kfree(csa);

770 771 772 773 774 775 776
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
 * Call with neither cgroup_mutex held nor within get_online_cpus().
 * Takes both cgroup_mutex and get_online_cpus().
 *
 * Cannot be directly called from cpuset code handling changes
 * to the cpuset pseudo-filesystem, because it cannot be called
 * from code that already holds cgroup_mutex.
 */
static void do_rebuild_sched_domains(struct work_struct *unused)
{
	struct sched_domain_attr *attr;
795
	struct cpumask *doms;
796 797
	int ndoms;

798
	get_online_cpus();
799 800 801 802 803 804 805 806 807

	/* Generate domain masks and attrs */
	cgroup_lock();
	ndoms = generate_sched_domains(&doms, &attr);
	cgroup_unlock();

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);

808
	put_online_cpus();
809
}
P
Paul Jackson 已提交
810

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);

/*
 * Rebuild scheduler domains, asynchronously via workqueue.
 *
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
 *
 * The rebuild_sched_domains() and partition_sched_domains()
 * routines must nest cgroup_lock() inside get_online_cpus(),
 * but such cpuset changes as these must nest that locking the
 * other way, holding cgroup_lock() for much of the code.
 *
 * So in order to avoid an ABBA deadlock, the cpuset code handling
 * these user changes delegates the actual sched domain rebuilding
 * to a separate workqueue thread, which ends up processing the
 * above do_rebuild_sched_domains() function.
 */
static void async_rebuild_sched_domains(void)
{
	schedule_work(&rebuild_sched_domains_work);
}

/*
 * Accomplishes the same scheduler domain rebuild as the above
 * async_rebuild_sched_domains(), however it directly calls the
 * rebuild routine synchronously rather than calling it via an
 * asynchronous work thread.
 *
 * This can only be called from code that is not holding
 * cgroup_mutex (not nested in a cgroup_lock() call.)
 */
void rebuild_sched_domains(void)
{
	do_rebuild_sched_domains(NULL);
P
Paul Jackson 已提交
849 850
}

C
Cliff Wickman 已提交
851 852 853 854 855
/**
 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
 * @tsk: task to test
 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
 *
856
 * Call with cgroup_mutex held.  May take callback_mutex during call.
C
Cliff Wickman 已提交
857 858 859
 * Called for each task in a cgroup by cgroup_scan_tasks().
 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
 * words, if its mask is not equal to its cpuset's mask).
860
 */
861 862
static int cpuset_test_cpumask(struct task_struct *tsk,
			       struct cgroup_scanner *scan)
C
Cliff Wickman 已提交
863
{
864
	return !cpumask_equal(&tsk->cpus_allowed,
C
Cliff Wickman 已提交
865 866
			(cgroup_cs(scan->cg))->cpus_allowed);
}
867

C
Cliff Wickman 已提交
868 869 870 871 872 873 874 875 876 877 878
/**
 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
 * @tsk: task to test
 * @scan: struct cgroup_scanner containing the cgroup of the task
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup whose
 * cpus_allowed mask needs to be changed.
 *
 * We don't need to re-check for the cgroup/cpuset membership, since we're
 * holding cgroup_lock() at this point.
 */
879 880
static void cpuset_change_cpumask(struct task_struct *tsk,
				  struct cgroup_scanner *scan)
C
Cliff Wickman 已提交
881
{
882
	set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
C
Cliff Wickman 已提交
883 884
}

885 886 887
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
888
 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
889 890 891 892 893 894
 *
 * Called with cgroup_mutex held
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 *
895 896
 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
 * if @heap != NULL.
897
 */
898
static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
899 900 901 902 903 904
{
	struct cgroup_scanner scan;

	scan.cg = cs->css.cgroup;
	scan.test_task = cpuset_test_cpumask;
	scan.process_task = cpuset_change_cpumask;
905 906
	scan.heap = heap;
	cgroup_scan_tasks(&scan);
907 908
}

C
Cliff Wickman 已提交
909 910 911 912 913
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
 * @buf: buffer of cpu numbers written to this cpuset
 */
914 915
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
L
Linus Torvalds 已提交
916
{
917
	struct ptr_heap heap;
C
Cliff Wickman 已提交
918 919
	int retval;
	int is_load_balanced;
L
Linus Torvalds 已提交
920

921 922 923 924
	/* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
	if (cs == &top_cpuset)
		return -EACCES;

925
	/*
926
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
927 928 929
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
930
	 */
931
	if (!*buf) {
932
		cpumask_clear(trialcs->cpus_allowed);
933
	} else {
934
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
935 936
		if (retval < 0)
			return retval;
937

938
		if (!cpumask_subset(trialcs->cpus_allowed, cpu_online_mask))
939
			return -EINVAL;
940
	}
941
	retval = validate_change(cs, trialcs);
942 943
	if (retval < 0)
		return retval;
P
Paul Jackson 已提交
944

P
Paul Menage 已提交
945
	/* Nothing to do if the cpus didn't change */
946
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
P
Paul Menage 已提交
947
		return 0;
C
Cliff Wickman 已提交
948

949 950 951 952
	retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
	if (retval)
		return retval;

953
	is_load_balanced = is_sched_load_balance(trialcs);
P
Paul Jackson 已提交
954

955
	mutex_lock(&callback_mutex);
956
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
957
	mutex_unlock(&callback_mutex);
P
Paul Jackson 已提交
958

P
Paul Menage 已提交
959 960
	/*
	 * Scan tasks in the cpuset, and update the cpumasks of any
C
Cliff Wickman 已提交
961
	 * that need an update.
P
Paul Menage 已提交
962
	 */
963 964 965
	update_tasks_cpumask(cs, &heap);

	heap_free(&heap);
C
Cliff Wickman 已提交
966

P
Paul Menage 已提交
967
	if (is_load_balanced)
968
		async_rebuild_sched_domains();
969
	return 0;
L
Linus Torvalds 已提交
970 971
}

972 973 974 975 976 977 978 979
/*
 * cpuset_migrate_mm
 *
 *    Migrate memory region from one set of nodes to another.
 *
 *    Temporarilly set tasks mems_allowed to target nodes of migration,
 *    so that the migration code can allocate pages on these nodes.
 *
980
 *    Call holding cgroup_mutex, so current's cpuset won't change
981
 *    during this call, as manage_mutex holds off any cpuset_attach()
982 983
 *    calls.  Therefore we don't need to take task_lock around the
 *    call to guarantee_online_mems(), as we know no one is changing
984
 *    our task's cpuset.
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
 *
 *    Hold callback_mutex around the two modifications of our tasks
 *    mems_allowed to synchronize with cpuset_mems_allowed().
 *
 *    While the mm_struct we are migrating is typically from some
 *    other task, the task_struct mems_allowed that we are hacking
 *    is for our current task, which must allocate new pages for that
 *    migrating memory region.
 *
 *    We call cpuset_update_task_memory_state() before hacking
 *    our tasks mems_allowed, so that we are assured of being in
 *    sync with our tasks cpuset, and in particular, callbacks to
 *    cpuset_update_task_memory_state() from nested page allocations
 *    won't see any mismatch of our cpuset and task mems_generation
 *    values, so won't overwrite our hacked tasks mems_allowed
 *    nodemask.
 */

static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
	struct task_struct *tsk = current;

	cpuset_update_task_memory_state();

	mutex_lock(&callback_mutex);
	tsk->mems_allowed = *to;
	mutex_unlock(&callback_mutex);

	do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);

	mutex_lock(&callback_mutex);
1017
	guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
1018 1019 1020
	mutex_unlock(&callback_mutex);
}

1021 1022
static void *cpuset_being_rebound;

1023 1024 1025 1026 1027 1028 1029 1030 1031
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 * @oldmem: old mems_allowed of cpuset cs
 *
 * Called with cgroup_mutex held
 * Return 0 if successful, -errno if not.
 */
static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem)
L
Linus Torvalds 已提交
1032
{
1033
	struct task_struct *p;
1034 1035
	struct mm_struct **mmarray;
	int i, n, ntasks;
1036
	int migrate;
1037
	int fudge;
1038
	struct cgroup_iter it;
1039
	int retval;
1040

1041
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1042 1043

	fudge = 10;				/* spare mmarray[] slots */
1044
	fudge += cpumask_weight(cs->cpus_allowed);/* imagine 1 fork-bomb/cpu */
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
	retval = -ENOMEM;

	/*
	 * Allocate mmarray[] to hold mm reference for each task
	 * in cpuset cs.  Can't kmalloc GFP_KERNEL while holding
	 * tasklist_lock.  We could use GFP_ATOMIC, but with a
	 * few more lines of code, we can retry until we get a big
	 * enough mmarray[] w/o using GFP_ATOMIC.
	 */
	while (1) {
1055
		ntasks = cgroup_task_count(cs->css.cgroup);  /* guess */
1056 1057 1058 1059
		ntasks += fudge;
		mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
		if (!mmarray)
			goto done;
1060
		read_lock(&tasklist_lock);		/* block fork */
1061
		if (cgroup_task_count(cs->css.cgroup) <= ntasks)
1062
			break;				/* got enough */
1063
		read_unlock(&tasklist_lock);		/* try again */
1064 1065 1066 1067 1068 1069
		kfree(mmarray);
	}

	n = 0;

	/* Load up mmarray[] with mm reference for each task in cpuset. */
1070 1071
	cgroup_iter_start(cs->css.cgroup, &it);
	while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
1072 1073 1074 1075 1076
		struct mm_struct *mm;

		if (n >= ntasks) {
			printk(KERN_WARNING
				"Cpuset mempolicy rebind incomplete.\n");
1077
			break;
1078 1079 1080 1081 1082
		}
		mm = get_task_mm(p);
		if (!mm)
			continue;
		mmarray[n++] = mm;
1083 1084
	}
	cgroup_iter_end(cs->css.cgroup, &it);
1085
	read_unlock(&tasklist_lock);
1086 1087 1088 1089 1090 1091

	/*
	 * Now that we've dropped the tasklist spinlock, we can
	 * rebind the vma mempolicies of each mm in mmarray[] to their
	 * new cpuset, and release that mm.  The mpol_rebind_mm()
	 * call takes mmap_sem, which we couldn't take while holding
1092
	 * tasklist_lock.  Forks can happen again now - the mpol_dup()
1093 1094
	 * cpuset_being_rebound check will catch such forks, and rebind
	 * their vma mempolicies too.  Because we still hold the global
1095
	 * cgroup_mutex, we know that no other rebind effort will
1096 1097
	 * be contending for the global variable cpuset_being_rebound.
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1098
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1099
	 */
1100
	migrate = is_memory_migrate(cs);
1101 1102 1103 1104
	for (i = 0; i < n; i++) {
		struct mm_struct *mm = mmarray[i];

		mpol_rebind_mm(mm, &cs->mems_allowed);
1105
		if (migrate)
1106
			cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1107 1108 1109
		mmput(mm);
	}

1110
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1111
	kfree(mmarray);
1112
	cpuset_being_rebound = NULL;
1113
	retval = 0;
1114
done:
L
Linus Torvalds 已提交
1115 1116 1117
	return retval;
}

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
 * cpusets mems_allowed and mems_generation, and for each
 * task in the cpuset, rebind any vma mempolicies and if
 * the cpuset is marked 'memory_migrate', migrate the tasks
 * pages to the new memory.
 *
 * Call with cgroup_mutex held.  May take callback_mutex during call.
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1131 1132
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
{
	nodemask_t oldmem;
	int retval;

	/*
	 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
	 * it's read-only
	 */
	if (cs == &top_cpuset)
		return -EACCES;

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1151
		nodes_clear(trialcs->mems_allowed);
1152
	} else {
1153
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1154 1155 1156
		if (retval < 0)
			goto done;

1157
		if (!nodes_subset(trialcs->mems_allowed,
1158 1159 1160 1161
				node_states[N_HIGH_MEMORY]))
			return -EINVAL;
	}
	oldmem = cs->mems_allowed;
1162
	if (nodes_equal(oldmem, trialcs->mems_allowed)) {
1163 1164 1165
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1166
	retval = validate_change(cs, trialcs);
1167 1168 1169 1170
	if (retval < 0)
		goto done;

	mutex_lock(&callback_mutex);
1171
	cs->mems_allowed = trialcs->mems_allowed;
1172 1173 1174 1175 1176 1177 1178 1179
	cs->mems_generation = cpuset_mems_generation++;
	mutex_unlock(&callback_mutex);

	retval = update_tasks_nodemask(cs, &oldmem);
done:
	return retval;
}

1180 1181 1182 1183 1184
int current_cpuset_is_being_rebound(void)
{
	return task_cs(current) == cpuset_being_rebound;
}

1185
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1186
{
1187 1188
	if (val < -1 || val >= SD_LV_MAX)
		return -EINVAL;
1189 1190 1191

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1192 1193
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1194
			async_rebuild_sched_domains();
1195 1196 1197 1198 1199
	}

	return 0;
}

L
Linus Torvalds 已提交
1200 1201
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1202 1203 1204
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1205
 *
1206
 * Call with cgroup_mutex held.
L
Linus Torvalds 已提交
1207 1208
 */

1209 1210
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1211
{
1212
	struct cpuset *trialcs;
1213
	int err;
R
Rakib Mullick 已提交
1214
	int balance_flag_changed;
L
Linus Torvalds 已提交
1215

1216 1217 1218 1219
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

L
Linus Torvalds 已提交
1220
	if (turning_on)
1221
		set_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1222
	else
1223
		clear_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1224

1225
	err = validate_change(cs, trialcs);
1226
	if (err < 0)
1227
		goto out;
P
Paul Jackson 已提交
1228 1229

	balance_flag_changed = (is_sched_load_balance(cs) !=
1230
				is_sched_load_balance(trialcs));
P
Paul Jackson 已提交
1231

1232
	mutex_lock(&callback_mutex);
1233
	cs->flags = trialcs->flags;
1234
	mutex_unlock(&callback_mutex);
1235

1236
	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1237
		async_rebuild_sched_domains();
P
Paul Jackson 已提交
1238

1239 1240 1241
out:
	free_trial_cpuset(trialcs);
	return err;
L
Linus Torvalds 已提交
1242 1243
}

1244
/*
A
Adrian Bunk 已提交
1245
 * Frequency meter - How fast is some event occurring?
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
	time_t now = get_seconds();
	time_t ticks = now - fmp->time;

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1342 1343 1344
/* Protected by cgroup_lock */
static cpumask_var_t cpus_attach;

1345
/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1346 1347
static int cpuset_can_attach(struct cgroup_subsys *ss,
			     struct cgroup *cont, struct task_struct *tsk)
L
Linus Torvalds 已提交
1348
{
1349
	struct cpuset *cs = cgroup_cs(cont);
1350
	int ret = 0;
L
Linus Torvalds 已提交
1351

1352
	if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
L
Linus Torvalds 已提交
1353
		return -ENOSPC;
1354

1355
	if (tsk->flags & PF_THREAD_BOUND) {
1356
		mutex_lock(&callback_mutex);
1357
		if (!cpumask_equal(&tsk->cpus_allowed, cs->cpus_allowed))
1358
			ret = -EINVAL;
1359 1360
		mutex_unlock(&callback_mutex);
	}
L
Linus Torvalds 已提交
1361

1362
	return ret < 0 ? ret : security_task_setscheduler(tsk, 0, NULL);
1363
}
L
Linus Torvalds 已提交
1364

1365 1366 1367 1368 1369 1370 1371 1372
static void cpuset_attach(struct cgroup_subsys *ss,
			  struct cgroup *cont, struct cgroup *oldcont,
			  struct task_struct *tsk)
{
	nodemask_t from, to;
	struct mm_struct *mm;
	struct cpuset *cs = cgroup_cs(cont);
	struct cpuset *oldcs = cgroup_cs(oldcont);
1373
	int err;
1374

1375
	if (cs == &top_cpuset) {
1376
		cpumask_copy(cpus_attach, cpu_possible_mask);
1377 1378
	} else {
		mutex_lock(&callback_mutex);
1379
		guarantee_online_cpus(cs, cpus_attach);
1380 1381
		mutex_unlock(&callback_mutex);
	}
1382
	err = set_cpus_allowed_ptr(tsk, cpus_attach);
1383 1384
	if (err)
		return;
L
Linus Torvalds 已提交
1385

1386 1387
	from = oldcs->mems_allowed;
	to = cs->mems_allowed;
1388 1389 1390
	mm = get_task_mm(tsk);
	if (mm) {
		mpol_rebind_mm(mm, &to);
1391
		if (is_memory_migrate(cs))
1392
			cpuset_migrate_mm(mm, &from, &to);
1393 1394
		mmput(mm);
	}
L
Linus Torvalds 已提交
1395 1396 1397 1398 1399
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1400
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1401 1402 1403 1404
	FILE_CPULIST,
	FILE_MEMLIST,
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1405
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
1406
	FILE_SCHED_LOAD_BALANCE,
1407
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1408 1409
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1410 1411
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1412 1413
} cpuset_filetype_t;

1414 1415 1416 1417 1418 1419
static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
{
	int retval = 0;
	struct cpuset *cs = cgroup_cs(cgrp);
	cpuset_filetype_t type = cft->private;

1420
	if (!cgroup_lock_live_group(cgrp))
1421 1422 1423
		return -ENODEV;

	switch (type) {
L
Linus Torvalds 已提交
1424
	case FILE_CPU_EXCLUSIVE:
1425
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1426 1427
		break;
	case FILE_MEM_EXCLUSIVE:
1428
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1429
		break;
1430 1431 1432
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
1433
	case FILE_SCHED_LOAD_BALANCE:
1434
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1435
		break;
1436
	case FILE_MEMORY_MIGRATE:
1437
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1438
		break;
1439
	case FILE_MEMORY_PRESSURE_ENABLED:
1440
		cpuset_memory_pressure_enabled = !!val;
1441 1442 1443 1444
		break;
	case FILE_MEMORY_PRESSURE:
		retval = -EACCES;
		break;
1445
	case FILE_SPREAD_PAGE:
1446
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1447
		cs->mems_generation = cpuset_mems_generation++;
1448 1449
		break;
	case FILE_SPREAD_SLAB:
1450
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1451
		cs->mems_generation = cpuset_mems_generation++;
1452
		break;
L
Linus Torvalds 已提交
1453 1454
	default:
		retval = -EINVAL;
1455
		break;
L
Linus Torvalds 已提交
1456
	}
1457
	cgroup_unlock();
L
Linus Torvalds 已提交
1458 1459 1460
	return retval;
}

1461 1462 1463 1464 1465 1466
static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
{
	int retval = 0;
	struct cpuset *cs = cgroup_cs(cgrp);
	cpuset_filetype_t type = cft->private;

1467
	if (!cgroup_lock_live_group(cgrp))
1468
		return -ENODEV;
1469

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
	cgroup_unlock();
	return retval;
}

1482 1483 1484 1485 1486 1487 1488
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
				const char *buf)
{
	int retval = 0;
1489 1490
	struct cpuset *cs = cgroup_cs(cgrp);
	struct cpuset *trialcs;
1491 1492 1493 1494

	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;

1495 1496 1497 1498
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

1499 1500
	switch (cft->private) {
	case FILE_CPULIST:
1501
		retval = update_cpumask(cs, trialcs, buf);
1502 1503
		break;
	case FILE_MEMLIST:
1504
		retval = update_nodemask(cs, trialcs, buf);
1505 1506 1507 1508 1509
		break;
	default:
		retval = -EINVAL;
		break;
	}
1510 1511

	free_trial_cpuset(trialcs);
1512 1513 1514 1515
	cgroup_unlock();
	return retval;
}

L
Linus Torvalds 已提交
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 * A single large read to a buffer that crosses a page boundary is
 * ok, because the result being copied to user land is not recomputed
 * across a page fault.
 */

static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
{
1530
	int ret;
L
Linus Torvalds 已提交
1531

1532
	mutex_lock(&callback_mutex);
1533
	ret = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1534
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1535

1536
	return ret;
L
Linus Torvalds 已提交
1537 1538 1539 1540 1541 1542
}

static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
{
	nodemask_t mask;

1543
	mutex_lock(&callback_mutex);
L
Linus Torvalds 已提交
1544
	mask = cs->mems_allowed;
1545
	mutex_unlock(&callback_mutex);
L
Linus Torvalds 已提交
1546 1547 1548 1549

	return nodelist_scnprintf(page, PAGE_SIZE, mask);
}

1550 1551 1552 1553 1554
static ssize_t cpuset_common_file_read(struct cgroup *cont,
				       struct cftype *cft,
				       struct file *file,
				       char __user *buf,
				       size_t nbytes, loff_t *ppos)
L
Linus Torvalds 已提交
1555
{
1556
	struct cpuset *cs = cgroup_cs(cont);
L
Linus Torvalds 已提交
1557 1558 1559 1560 1561
	cpuset_filetype_t type = cft->private;
	char *page;
	ssize_t retval = 0;
	char *s;

1562
	if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
L
Linus Torvalds 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
		return -ENOMEM;

	s = page;

	switch (type) {
	case FILE_CPULIST:
		s += cpuset_sprintf_cpulist(s, cs);
		break;
	case FILE_MEMLIST:
		s += cpuset_sprintf_memlist(s, cs);
		break;
	default:
		retval = -EINVAL;
		goto out;
	}
	*s++ = '\n';

A
Al Viro 已提交
1580
	retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
L
Linus Torvalds 已提交
1581 1582 1583 1584 1585
out:
	free_page((unsigned long)page);
	return retval;
}

1586 1587 1588 1589 1590 1591 1592 1593 1594
static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
{
	struct cpuset *cs = cgroup_cs(cont);
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
1595 1596
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
1612 1613 1614

	/* Unreachable but makes gcc happy */
	return 0;
1615
}
L
Linus Torvalds 已提交
1616

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
{
	struct cpuset *cs = cgroup_cs(cont);
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
1627 1628 1629

	/* Unrechable but makes gcc happy */
	return 0;
1630 1631
}

L
Linus Torvalds 已提交
1632 1633 1634 1635 1636

/*
 * for the common functions, 'private' gives the type of file
 */

1637 1638 1639 1640
static struct cftype files[] = {
	{
		.name = "cpus",
		.read = cpuset_common_file_read,
1641 1642
		.write_string = cpuset_write_resmask,
		.max_write_len = (100U + 6 * NR_CPUS),
1643 1644 1645 1646 1647 1648
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
		.read = cpuset_common_file_read,
1649 1650
		.write_string = cpuset_write_resmask,
		.max_write_len = (100U + 6 * MAX_NUMNODES),
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
		.private = FILE_MEMLIST,
	},

	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

1668 1669 1670 1671 1672 1673 1674
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

1675 1676 1677 1678 1679 1680 1681 1682 1683
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
1684 1685
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE,
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
1716 1717
};

1718 1719
static struct cftype cft_memory_pressure_enabled = {
	.name = "memory_pressure_enabled",
1720 1721
	.read_u64 = cpuset_read_u64,
	.write_u64 = cpuset_write_u64,
1722 1723 1724
	.private = FILE_MEMORY_PRESSURE_ENABLED,
};

1725
static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
L
Linus Torvalds 已提交
1726 1727 1728
{
	int err;

1729 1730
	err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
	if (err)
L
Linus Torvalds 已提交
1731
		return err;
1732
	/* memory_pressure_enabled is in root cpuset only */
1733
	if (!cont->parent)
1734
		err = cgroup_add_file(cont, ss,
1735 1736
				      &cft_memory_pressure_enabled);
	return err;
L
Linus Torvalds 已提交
1737 1738
}

1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
/*
 * post_clone() is called at the end of cgroup_clone().
 * 'cgroup' was just created automatically as a result of
 * a cgroup_clone(), and the current task is about to
 * be moved into 'cgroup'.
 *
 * Currently we refuse to set up the cgroup - thereby
 * refusing the task to be entered, and as a result refusing
 * the sys_unshare() or clone() which initiated it - if any
 * sibling cpusets have exclusive cpus or mem.
 *
 * If this becomes a problem for some users who wish to
 * allow that scenario, then cpuset_post_clone() could be
 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1753 1754
 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
 * held.
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
 */
static void cpuset_post_clone(struct cgroup_subsys *ss,
			      struct cgroup *cgroup)
{
	struct cgroup *parent, *child;
	struct cpuset *cs, *parent_cs;

	parent = cgroup->parent;
	list_for_each_entry(child, &parent->children, sibling) {
		cs = cgroup_cs(child);
		if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
			return;
	}
	cs = cgroup_cs(cgroup);
	parent_cs = cgroup_cs(parent);

	cs->mems_allowed = parent_cs->mems_allowed;
1772
	cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
1773 1774 1775
	return;
}

L
Linus Torvalds 已提交
1776 1777
/*
 *	cpuset_create - create a cpuset
1778 1779
 *	ss:	cpuset cgroup subsystem
 *	cont:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1780 1781
 */

1782 1783 1784
static struct cgroup_subsys_state *cpuset_create(
	struct cgroup_subsys *ss,
	struct cgroup *cont)
L
Linus Torvalds 已提交
1785 1786
{
	struct cpuset *cs;
1787
	struct cpuset *parent;
L
Linus Torvalds 已提交
1788

1789 1790 1791 1792 1793 1794
	if (!cont->parent) {
		/* This is early initialization for the top cgroup */
		top_cpuset.mems_generation = cpuset_mems_generation++;
		return &top_cpuset.css;
	}
	parent = cgroup_cs(cont->parent);
L
Linus Torvalds 已提交
1795 1796
	cs = kmalloc(sizeof(*cs), GFP_KERNEL);
	if (!cs)
1797
		return ERR_PTR(-ENOMEM);
1798 1799 1800 1801
	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
		kfree(cs);
		return ERR_PTR(-ENOMEM);
	}
L
Linus Torvalds 已提交
1802

1803
	cpuset_update_task_memory_state();
L
Linus Torvalds 已提交
1804
	cs->flags = 0;
1805 1806 1807 1808
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
P
Paul Jackson 已提交
1809
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1810
	cpumask_clear(cs->cpus_allowed);
1811
	nodes_clear(cs->mems_allowed);
1812
	cs->mems_generation = cpuset_mems_generation++;
1813
	fmeter_init(&cs->fmeter);
1814
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
1815 1816

	cs->parent = parent;
1817
	number_of_cpusets++;
1818
	return &cs->css ;
L
Linus Torvalds 已提交
1819 1820
}

P
Paul Jackson 已提交
1821 1822 1823
/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
1824
 * will call async_rebuild_sched_domains().
P
Paul Jackson 已提交
1825 1826
 */

1827
static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
L
Linus Torvalds 已提交
1828
{
1829
	struct cpuset *cs = cgroup_cs(cont);
L
Linus Torvalds 已提交
1830

1831
	cpuset_update_task_memory_state();
P
Paul Jackson 已提交
1832 1833

	if (is_sched_load_balance(cs))
1834
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
P
Paul Jackson 已提交
1835

1836
	number_of_cpusets--;
1837
	free_cpumask_var(cs->cpus_allowed);
1838
	kfree(cs);
L
Linus Torvalds 已提交
1839 1840
}

1841 1842 1843
struct cgroup_subsys cpuset_subsys = {
	.name = "cpuset",
	.create = cpuset_create,
1844
	.destroy = cpuset_destroy,
1845 1846 1847 1848 1849 1850 1851 1852
	.can_attach = cpuset_can_attach,
	.attach = cpuset_attach,
	.populate = cpuset_populate,
	.post_clone = cpuset_post_clone,
	.subsys_id = cpuset_subsys_id,
	.early_init = 1,
};

1853 1854 1855 1856 1857 1858 1859 1860
/*
 * cpuset_init_early - just enough so that the calls to
 * cpuset_update_task_memory_state() in early init code
 * are harmless.
 */

int __init cpuset_init_early(void)
{
1861 1862
	alloc_bootmem_cpumask_var(&top_cpuset.cpus_allowed);

1863
	top_cpuset.mems_generation = cpuset_mems_generation++;
1864 1865 1866
	return 0;
}

1867

L
Linus Torvalds 已提交
1868 1869 1870 1871 1872 1873 1874 1875
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
1876
	int err = 0;
L
Linus Torvalds 已提交
1877

1878
	cpumask_setall(top_cpuset.cpus_allowed);
1879
	nodes_setall(top_cpuset.mems_allowed);
L
Linus Torvalds 已提交
1880

1881
	fmeter_init(&top_cpuset.fmeter);
1882
	top_cpuset.mems_generation = cpuset_mems_generation++;
P
Paul Jackson 已提交
1883
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1884
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
1885 1886 1887

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
1888 1889
		return err;

1890 1891 1892
	if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
		BUG();

1893
	number_of_cpusets = 1;
1894
	return 0;
L
Linus Torvalds 已提交
1895 1896
}

1897 1898 1899 1900 1901 1902 1903 1904
/**
 * cpuset_do_move_task - move a given task to another cpuset
 * @tsk: pointer to task_struct the task to move
 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
 *
 * Called by cgroup_scan_tasks() for each task in a cgroup.
 * Return nonzero to stop the walk through the tasks.
 */
1905 1906
static void cpuset_do_move_task(struct task_struct *tsk,
				struct cgroup_scanner *scan)
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
{
	struct cpuset_hotplug_scanner *chsp;

	chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
	cgroup_attach_task(chsp->to, tsk);
}

/**
 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
 * @from: cpuset in which the tasks currently reside
 * @to: cpuset to which the tasks will be moved
 *
1919 1920
 * Called with cgroup_mutex held
 * callback_mutex must not be held, as cpuset_attach() will take it.
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
 *
 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
 * calling callback functions for each.
 */
static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
{
	struct cpuset_hotplug_scanner scan;

	scan.scan.cg = from->css.cgroup;
	scan.scan.test_task = NULL; /* select all tasks in cgroup */
	scan.scan.process_task = cpuset_do_move_task;
	scan.scan.heap = NULL;
	scan.to = to->css.cgroup;

L
Lai Jiangshan 已提交
1935
	if (cgroup_scan_tasks(&scan.scan))
1936 1937 1938 1939
		printk(KERN_ERR "move_member_tasks_to_cpuset: "
				"cgroup_scan_tasks failed\n");
}

1940
/*
1941
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
1942 1943
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
1944 1945
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
1946
 *
1947 1948
 * Called with cgroup_mutex held
 * callback_mutex must not be held, as cpuset_attach() will take it.
1949
 */
1950 1951 1952 1953
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

1954 1955 1956 1957 1958
	/*
	 * The cgroup's css_sets list is in use if there are tasks
	 * in the cpuset; the list is empty if there are none;
	 * the cs->css.refcnt seems always 0.
	 */
1959 1960
	if (list_empty(&cs->css.cgroup->css_sets))
		return;
1961

1962 1963 1964 1965 1966
	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
	parent = cs->parent;
1967
	while (cpumask_empty(parent->cpus_allowed) ||
1968
			nodes_empty(parent->mems_allowed))
1969 1970 1971 1972 1973 1974 1975 1976 1977
		parent = parent->parent;

	move_member_tasks_to_cpuset(cs, parent);
}

/*
 * Walk the specified cpuset subtree and look for empty cpusets.
 * The tasks of such cpuset must be moved to a parent cpuset.
 *
1978
 * Called with cgroup_mutex held.  We take callback_mutex to modify
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
 * cpus_allowed and mems_allowed.
 *
 * This walk processes the tree from top to bottom, completing one layer
 * before dropping down to the next.  It always processes a node before
 * any of its children.
 *
 * For now, since we lack memory hot unplug, we'll never see a cpuset
 * that has tasks along with an empty 'mems'.  But if we did see such
 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
 */
1989
static void scan_for_empty_cpusets(struct cpuset *root)
1990
{
1991
	LIST_HEAD(queue);
1992 1993
	struct cpuset *cp;	/* scans cpusets being updated */
	struct cpuset *child;	/* scans child cpusets of cp */
1994
	struct cgroup *cont;
1995
	nodemask_t oldmems;
1996

1997 1998 1999
	list_add_tail((struct list_head *)&root->stack_list, &queue);

	while (!list_empty(&queue)) {
2000
		cp = list_first_entry(&queue, struct cpuset, stack_list);
2001 2002 2003 2004 2005
		list_del(queue.next);
		list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
			child = cgroup_cs(cont);
			list_add_tail(&child->stack_list, &queue);
		}
2006 2007

		/* Continue past cpusets with all cpus, mems online */
2008
		if (cpumask_subset(cp->cpus_allowed, cpu_online_mask) &&
2009 2010 2011
		    nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
			continue;

2012 2013
		oldmems = cp->mems_allowed;

2014
		/* Remove offline cpus and mems from this cpuset. */
2015
		mutex_lock(&callback_mutex);
2016 2017
		cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
			    cpu_online_mask);
2018 2019
		nodes_and(cp->mems_allowed, cp->mems_allowed,
						node_states[N_HIGH_MEMORY]);
2020 2021 2022
		mutex_unlock(&callback_mutex);

		/* Move tasks from the empty cpuset to a parent */
2023
		if (cpumask_empty(cp->cpus_allowed) ||
2024
		     nodes_empty(cp->mems_allowed))
2025
			remove_tasks_in_empty_cpuset(cp);
2026
		else {
2027
			update_tasks_cpumask(cp, NULL);
2028 2029
			update_tasks_nodemask(cp, &oldmems);
		}
2030 2031 2032
	}
}

2033 2034 2035 2036 2037 2038
/*
 * The top_cpuset tracks what CPUs and Memory Nodes are online,
 * period.  This is necessary in order to make cpusets transparent
 * (of no affect) on systems that are actively using CPU hotplug
 * but making no active use of cpusets.
 *
2039 2040
 * This routine ensures that top_cpuset.cpus_allowed tracks
 * cpu_online_map on each CPU hotplug (cpuhp) event.
2041 2042 2043
 *
 * Called within get_online_cpus().  Needs to call cgroup_lock()
 * before calling generate_sched_domains().
2044
 */
2045
static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
P
Paul Jackson 已提交
2046
				unsigned long phase, void *unused_cpu)
2047
{
2048
	struct sched_domain_attr *attr;
2049
	struct cpumask *doms;
2050 2051
	int ndoms;

2052 2053 2054 2055 2056 2057
	switch (phase) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		break;
2058

2059
	default:
2060
		return NOTIFY_DONE;
2061
	}
2062

2063
	cgroup_lock();
2064
	cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
2065 2066 2067 2068 2069 2070 2071
	scan_for_empty_cpusets(&top_cpuset);
	ndoms = generate_sched_domains(&doms, &attr);
	cgroup_unlock();

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);

2072
	return NOTIFY_OK;
2073 2074
}

2075
#ifdef CONFIG_MEMORY_HOTPLUG
2076
/*
2077
 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
2078 2079
 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
 * See also the previous routine cpuset_track_online_cpus().
2080
 */
2081 2082
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
2083
{
2084
	cgroup_lock();
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
	switch (action) {
	case MEM_ONLINE:
		top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
		break;
	case MEM_OFFLINE:
		top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
		scan_for_empty_cpusets(&top_cpuset);
		break;
	default:
		break;
	}
2096
	cgroup_unlock();
2097
	return NOTIFY_OK;
2098 2099 2100
}
#endif

L
Linus Torvalds 已提交
2101 2102 2103 2104 2105 2106 2107 2108
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
 **/

void __init cpuset_init_smp(void)
{
2109
	cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
2110
	top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2111

2112
	hotcpu_notifier(cpuset_track_online_cpus, 0);
2113
	hotplug_memory_notifier(cpuset_track_online_nodes, 10);
L
Linus Torvalds 已提交
2114 2115 2116 2117 2118
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2119
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
2120
 *
2121
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
L
Linus Torvalds 已提交
2122 2123 2124 2125 2126
 * attached to the specified @tsk.  Guaranteed to return some non-empty
 * subset of cpu_online_map, even if this means going outside the
 * tasks cpuset.
 **/

2127
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
L
Linus Torvalds 已提交
2128
{
2129
	mutex_lock(&callback_mutex);
2130
	cpuset_cpus_allowed_locked(tsk, pmask);
2131 2132 2133 2134 2135
	mutex_unlock(&callback_mutex);
}

/**
 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
2136
 * Must be called with callback_mutex held.
2137
 **/
2138
void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
2139
{
2140
	task_lock(tsk);
2141
	guarantee_online_cpus(task_cs(tsk), pmask);
2142
	task_unlock(tsk);
L
Linus Torvalds 已提交
2143 2144 2145 2146
}

void cpuset_init_current_mems_allowed(void)
{
2147
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
2148 2149
}

2150 2151 2152 2153 2154 2155
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2156
 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
2157 2158 2159 2160 2161 2162 2163
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
	nodemask_t mask;

2164
	mutex_lock(&callback_mutex);
2165
	task_lock(tsk);
2166
	guarantee_online_mems(task_cs(tsk), &mask);
2167
	task_unlock(tsk);
2168
	mutex_unlock(&callback_mutex);
2169 2170 2171 2172

	return mask;
}

2173
/**
2174 2175
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
2176
 *
2177
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
2178
 */
2179
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
2180
{
2181
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
2182 2183
}

2184
/*
2185 2186 2187 2188
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
 * callback_mutex.  If no ancestor is mem_exclusive or mem_hardwall
 * (an unusual configuration), then returns the root cpuset.
2189
 */
2190
static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2191
{
2192
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
2193 2194 2195 2196
		cs = cs->parent;
	return cs;
}

2197
/**
2198
 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
2199
 * @z: is this zone on an allowed node?
2200
 * @gfp_mask: memory allocation flags
2201
 *
2202 2203
 * If we're in interrupt, yes, we can always allocate.  If
 * __GFP_THISNODE is set, yes, we can always allocate.  If zone
2204 2205
 * z's node is in our tasks mems_allowed, yes.  If it's not a
 * __GFP_HARDWALL request and this zone's nodes is in the nearest
2206
 * hardwalled cpuset ancestor to this tasks cpuset, yes.
2207 2208
 * If the task has been OOM killed and has access to memory reserves
 * as specified by the TIF_MEMDIE flag, yes.
2209 2210
 * Otherwise, no.
 *
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
 * reduces to cpuset_zone_allowed_hardwall().  Otherwise,
 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
 * from an enclosing cpuset.
 *
 * cpuset_zone_allowed_hardwall() only handles the simpler case of
 * hardwall cpusets, and never sleeps.
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
2225
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2226 2227
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2228
 * GFP_KERNEL allocations are not so marked, so can escape to the
2229
 * nearest enclosing hardwalled ancestor cpuset.
2230
 *
2231 2232 2233 2234 2235 2236 2237
 * Scanning up parent cpusets requires callback_mutex.  The
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
 * cpuset are short of memory, might require taking the callback_mutex
 * mutex.
2238
 *
2239
 * The first call here from mm/page_alloc:get_page_from_freelist()
2240 2241 2242
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2243 2244 2245 2246 2247 2248
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2249 2250
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2251
 *	TIF_MEMDIE   - any node ok
2252
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2253
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2254 2255
 *
 * Rule:
2256
 *    Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
2257 2258
 *    pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
 *    the code that might scan up ancestor cpusets and sleep.
2259
 */
2260

2261
int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2262
{
2263 2264
	int node;			/* node that zone z is on */
	const struct cpuset *cs;	/* current cpuset ancestors */
2265
	int allowed;			/* is allocation in zone z allowed? */
2266

2267
	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2268
		return 1;
2269
	node = zone_to_nid(z);
2270
	might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2271 2272
	if (node_isset(node, current->mems_allowed))
		return 1;
2273 2274 2275 2276 2277 2278
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2279 2280 2281
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
		return 0;

2282 2283 2284
	if (current->flags & PF_EXITING) /* Let dying task have memory */
		return 1;

2285
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2286
	mutex_lock(&callback_mutex);
2287 2288

	task_lock(current);
2289
	cs = nearest_hardwall_ancestor(task_cs(current));
2290 2291
	task_unlock(current);

2292
	allowed = node_isset(node, cs->mems_allowed);
2293
	mutex_unlock(&callback_mutex);
2294
	return allowed;
L
Linus Torvalds 已提交
2295 2296
}

2297 2298 2299 2300 2301 2302 2303
/*
 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
 * @z: is this zone on an allowed node?
 * @gfp_mask: memory allocation flags
 *
 * If we're in interrupt, yes, we can always allocate.
 * If __GFP_THISNODE is set, yes, we can always allocate.  If zone
2304 2305 2306
 * z's node is in our tasks mems_allowed, yes.   If the task has been
 * OOM killed and has access to memory reserves as specified by the
 * TIF_MEMDIE flag, yes.  Otherwise, no.
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
 *
 * The __GFP_THISNODE placement logic is really handled elsewhere,
 * by forcibly using a zonelist starting at a specified node, and by
 * (in get_page_from_freelist()) refusing to consider the zones for
 * any node on the zonelist except the first.  By the time any such
 * calls get to this routine, we should just shut up and say 'yes'.
 *
 * Unlike the cpuset_zone_allowed_softwall() variant, above,
 * this variant requires that the zone be in the current tasks
 * mems_allowed or that we're in interrupt.  It does not scan up the
 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
 * It never sleeps.
 */

int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
{
	int node;			/* node that zone z is on */

	if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
		return 1;
	node = zone_to_nid(z);
	if (node_isset(node, current->mems_allowed))
		return 1;
D
Daniel Walker 已提交
2330 2331 2332 2333 2334 2335
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
		return 1;
2336 2337 2338
	return 0;
}

P
Paul Jackson 已提交
2339 2340 2341
/**
 * cpuset_lock - lock out any changes to cpuset structures
 *
2342
 * The out of memory (oom) code needs to mutex_lock cpusets
P
Paul Jackson 已提交
2343
 * from being changed while it scans the tasklist looking for a
2344
 * task in an overlapping cpuset.  Expose callback_mutex via this
P
Paul Jackson 已提交
2345 2346
 * cpuset_lock() routine, so the oom code can lock it, before
 * locking the task list.  The tasklist_lock is a spinlock, so
2347
 * must be taken inside callback_mutex.
P
Paul Jackson 已提交
2348 2349 2350 2351
 */

void cpuset_lock(void)
{
2352
	mutex_lock(&callback_mutex);
P
Paul Jackson 已提交
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
}

/**
 * cpuset_unlock - release lock on cpuset changes
 *
 * Undo the lock taken in a previous cpuset_lock() call.
 */

void cpuset_unlock(void)
{
2363
	mutex_unlock(&callback_mutex);
P
Paul Jackson 已提交
2364 2365
}

2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
/**
 * cpuset_mem_spread_node() - On which node to begin search for a page
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

int cpuset_mem_spread_node(void)
{
	int node;

	node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
	if (node == MAX_NUMNODES)
		node = first_node(current->mems_allowed);
	current->cpuset_mem_spread_rotor = node;
	return node;
}
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2404
/**
2405 2406 2407 2408 2409 2410 2411 2412
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2413 2414
 **/

2415 2416
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2417
{
2418
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2419 2420
}

2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
/**
 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
 * @task: pointer to task_struct of some task.
 *
 * Description: Prints @task's name, cpuset name, and cached copy of its
 * mems_allowed to the kernel log.  Must hold task_lock(task) to allow
 * dereferencing task_cs(task).
 */
void cpuset_print_task_mems_allowed(struct task_struct *tsk)
{
	struct dentry *dentry;

	dentry = task_cs(tsk)->css.cgroup->dentry;
	spin_lock(&cpuset_buffer_lock);
	snprintf(cpuset_name, CPUSET_NAME_LEN,
		 dentry ? (const char *)dentry->d_name.name : "/");
	nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
			   tsk->mems_allowed);
	printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
	       tsk->comm, cpuset_name, cpuset_nodelist);
	spin_unlock(&cpuset_buffer_lock);
}

2444 2445 2446 2447 2448 2449
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2450
int cpuset_memory_pressure_enabled __read_mostly;
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
	task_lock(current);
2473
	fmeter_markevent(&task_cs(current)->fmeter);
2474 2475 2476
	task_unlock(current);
}

2477
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2478 2479 2480 2481
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2482 2483
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2484
 *    and we take cgroup_mutex, keeping cpuset_attach() from changing it
2485
 *    anyway.
L
Linus Torvalds 已提交
2486
 */
P
Paul Jackson 已提交
2487
static int proc_cpuset_show(struct seq_file *m, void *unused_v)
L
Linus Torvalds 已提交
2488
{
2489
	struct pid *pid;
L
Linus Torvalds 已提交
2490 2491
	struct task_struct *tsk;
	char *buf;
2492
	struct cgroup_subsys_state *css;
2493
	int retval;
L
Linus Torvalds 已提交
2494

2495
	retval = -ENOMEM;
L
Linus Torvalds 已提交
2496 2497
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
2498 2499 2500
		goto out;

	retval = -ESRCH;
2501 2502
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
2503 2504
	if (!tsk)
		goto out_free;
L
Linus Torvalds 已提交
2505

2506
	retval = -EINVAL;
2507 2508 2509
	cgroup_lock();
	css = task_subsys_state(tsk, cpuset_subsys_id);
	retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
L
Linus Torvalds 已提交
2510
	if (retval < 0)
2511
		goto out_unlock;
L
Linus Torvalds 已提交
2512 2513
	seq_puts(m, buf);
	seq_putc(m, '\n');
2514
out_unlock:
2515
	cgroup_unlock();
2516 2517
	put_task_struct(tsk);
out_free:
L
Linus Torvalds 已提交
2518
	kfree(buf);
2519
out:
L
Linus Torvalds 已提交
2520 2521 2522 2523 2524
	return retval;
}

static int cpuset_open(struct inode *inode, struct file *file)
{
2525 2526
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cpuset_show, pid);
L
Linus Torvalds 已提交
2527 2528
}

2529
const struct file_operations proc_cpuset_operations = {
L
Linus Torvalds 已提交
2530 2531 2532 2533 2534
	.open		= cpuset_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};
2535
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2536 2537

/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
2538 2539 2540
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
	seq_printf(m, "Cpus_allowed:\t");
2541
	seq_cpumask(m, &task->cpus_allowed);
2542
	seq_printf(m, "\n");
2543
	seq_printf(m, "Cpus_allowed_list:\t");
2544
	seq_cpumask_list(m, &task->cpus_allowed);
2545
	seq_printf(m, "\n");
2546
	seq_printf(m, "Mems_allowed:\t");
2547
	seq_nodemask(m, &task->mems_allowed);
2548
	seq_printf(m, "\n");
2549
	seq_printf(m, "Mems_allowed_list:\t");
2550
	seq_nodemask_list(m, &task->mems_allowed);
2551
	seq_printf(m, "\n");
L
Linus Torvalds 已提交
2552
}