migrate.c 52.2 KB
Newer Older
C
Christoph Lameter 已提交
1
/*
2
 * Memory Migration functionality - linux/mm/migrate.c
C
Christoph Lameter 已提交
3 4 5 6 7 8 9 10 11
 *
 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
 *
 * Page migration was first developed in the context of the memory hotplug
 * project. The main authors of the migration code are:
 *
 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
 * Hirokazu Takahashi <taka@valinux.co.jp>
 * Dave Hansen <haveblue@us.ibm.com>
C
Christoph Lameter 已提交
12
 * Christoph Lameter
C
Christoph Lameter 已提交
13 14 15
 */

#include <linux/migrate.h>
16
#include <linux/export.h>
C
Christoph Lameter 已提交
17
#include <linux/swap.h>
18
#include <linux/swapops.h>
C
Christoph Lameter 已提交
19
#include <linux/pagemap.h>
20
#include <linux/buffer_head.h>
C
Christoph Lameter 已提交
21
#include <linux/mm_inline.h>
22
#include <linux/nsproxy.h>
C
Christoph Lameter 已提交
23
#include <linux/pagevec.h>
24
#include <linux/ksm.h>
C
Christoph Lameter 已提交
25 26 27 28
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
29
#include <linux/writeback.h>
30 31
#include <linux/mempolicy.h>
#include <linux/vmalloc.h>
32
#include <linux/security.h>
33
#include <linux/backing-dev.h>
34
#include <linux/compaction.h>
35
#include <linux/syscalls.h>
N
Naoya Horiguchi 已提交
36
#include <linux/hugetlb.h>
37
#include <linux/hugetlb_cgroup.h>
38
#include <linux/gfp.h>
39
#include <linux/balloon_compaction.h>
40
#include <linux/mmu_notifier.h>
41
#include <linux/page_idle.h>
42
#include <linux/page_owner.h>
43
#include <linux/sched/mm.h>
C
Christoph Lameter 已提交
44

45 46
#include <asm/tlbflush.h>

47 48 49
#define CREATE_TRACE_POINTS
#include <trace/events/migrate.h>

C
Christoph Lameter 已提交
50 51 52
#include "internal.h"

/*
53
 * migrate_prep() needs to be called before we start compiling a list of pages
54 55
 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
 * undesirable, use migrate_prep_local()
C
Christoph Lameter 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69
 */
int migrate_prep(void)
{
	/*
	 * Clear the LRU lists so pages can be isolated.
	 * Note that pages may be moved off the LRU after we have
	 * drained them. Those pages will fail to migrate like other
	 * pages that may be busy.
	 */
	lru_add_drain_all();

	return 0;
}

70 71 72 73 74 75 76 77
/* Do the necessary work of migrate_prep but not if it involves other CPUs */
int migrate_prep_local(void)
{
	lru_add_drain();

	return 0;
}

78
int isolate_movable_page(struct page *page, isolate_mode_t mode)
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
{
	struct address_space *mapping;

	/*
	 * Avoid burning cycles with pages that are yet under __free_pages(),
	 * or just got freed under us.
	 *
	 * In case we 'win' a race for a movable page being freed under us and
	 * raise its refcount preventing __free_pages() from doing its job
	 * the put_page() at the end of this block will take care of
	 * release this page, thus avoiding a nasty leakage.
	 */
	if (unlikely(!get_page_unless_zero(page)))
		goto out;

	/*
	 * Check PageMovable before holding a PG_lock because page's owner
	 * assumes anybody doesn't touch PG_lock of newly allocated page
	 * so unconditionally grapping the lock ruins page's owner side.
	 */
	if (unlikely(!__PageMovable(page)))
		goto out_putpage;
	/*
	 * As movable pages are not isolated from LRU lists, concurrent
	 * compaction threads can race against page migration functions
	 * as well as race against the releasing a page.
	 *
	 * In order to avoid having an already isolated movable page
	 * being (wrongly) re-isolated while it is under migration,
	 * or to avoid attempting to isolate pages being released,
	 * lets be sure we have the page lock
	 * before proceeding with the movable page isolation steps.
	 */
	if (unlikely(!trylock_page(page)))
		goto out_putpage;

	if (!PageMovable(page) || PageIsolated(page))
		goto out_no_isolated;

	mapping = page_mapping(page);
	VM_BUG_ON_PAGE(!mapping, page);

	if (!mapping->a_ops->isolate_page(page, mode))
		goto out_no_isolated;

	/* Driver shouldn't use PG_isolated bit of page->flags */
	WARN_ON_ONCE(PageIsolated(page));
	__SetPageIsolated(page);
	unlock_page(page);

129
	return 0;
130 131 132 133 134 135

out_no_isolated:
	unlock_page(page);
out_putpage:
	put_page(page);
out:
136
	return -EBUSY;
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
}

/* It should be called on page which is PG_movable */
void putback_movable_page(struct page *page)
{
	struct address_space *mapping;

	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageMovable(page), page);
	VM_BUG_ON_PAGE(!PageIsolated(page), page);

	mapping = page_mapping(page);
	mapping->a_ops->putback_page(page);
	__ClearPageIsolated(page);
}

153 154 155 156
/*
 * Put previously isolated pages back onto the appropriate lists
 * from where they were once taken off for compaction/migration.
 *
157 158 159
 * This function shall be used whenever the isolated pageset has been
 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 * and isolate_huge_page().
160 161 162 163 164 165
 */
void putback_movable_pages(struct list_head *l)
{
	struct page *page;
	struct page *page2;

C
Christoph Lameter 已提交
166
	list_for_each_entry_safe(page, page2, l, lru) {
167 168 169 170
		if (unlikely(PageHuge(page))) {
			putback_active_hugepage(page);
			continue;
		}
171
		list_del(&page->lru);
172 173 174 175 176
		/*
		 * We isolated non-lru movable page so here we can use
		 * __PageMovable because LRU page's mapping cannot have
		 * PAGE_MAPPING_MOVABLE.
		 */
177
		if (unlikely(__PageMovable(page))) {
178 179 180 181 182 183 184 185 186
			VM_BUG_ON_PAGE(!PageIsolated(page), page);
			lock_page(page);
			if (PageMovable(page))
				putback_movable_page(page);
			else
				__ClearPageIsolated(page);
			unlock_page(page);
			put_page(page);
		} else {
187 188
			dec_node_page_state(page, NR_ISOLATED_ANON +
					page_is_file_cache(page));
189
			putback_lru_page(page);
190
		}
C
Christoph Lameter 已提交
191 192 193
	}
}

194 195 196
/*
 * Restore a potential migration pte to a working pte entry
 */
M
Minchan Kim 已提交
197
static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
198
				 unsigned long addr, void *old)
199
{
200 201 202 203 204 205 206 207
	struct page_vma_mapped_walk pvmw = {
		.page = old,
		.vma = vma,
		.address = addr,
		.flags = PVMW_SYNC | PVMW_MIGRATION,
	};
	struct page *new;
	pte_t pte;
208 209
	swp_entry_t entry;

210 211
	VM_BUG_ON_PAGE(PageTail(page), page);
	while (page_vma_mapped_walk(&pvmw)) {
212 213 214 215 216
		if (PageKsm(page))
			new = page;
		else
			new = page - pvmw.page->index +
				linear_page_index(vma, pvmw.address);
217

218 219 220 221
		get_page(new);
		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
		if (pte_swp_soft_dirty(*pvmw.pte))
			pte = pte_mksoft_dirty(pte);
222

223 224 225 226 227 228
		/*
		 * Recheck VMA as permissions can change since migration started
		 */
		entry = pte_to_swp_entry(*pvmw.pte);
		if (is_write_migration_entry(entry))
			pte = maybe_mkwrite(pte, vma);
229

A
Andi Kleen 已提交
230
#ifdef CONFIG_HUGETLB_PAGE
231 232 233 234
		if (PageHuge(new)) {
			pte = pte_mkhuge(pte);
			pte = arch_make_huge_pte(pte, vma, new, 0);
		}
A
Andi Kleen 已提交
235
#endif
236 237
		flush_dcache_page(new);
		set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
238

239 240 241 242 243 244 245
		if (PageHuge(new)) {
			if (PageAnon(new))
				hugepage_add_anon_rmap(new, vma, pvmw.address);
			else
				page_dup_rmap(new, true);
		} else if (PageAnon(new))
			page_add_anon_rmap(new, vma, pvmw.address, false);
N
Naoya Horiguchi 已提交
246
		else
247
			page_add_file_rmap(new, false);
248

249 250 251 252 253 254
		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
			mlock_vma_page(new);

		/* No need to invalidate - it was non-present before */
		update_mmu_cache(vma, pvmw.address, pvmw.pte);
	}
255

M
Minchan Kim 已提交
256
	return true;
257 258
}

259 260 261 262
/*
 * Get rid of all migration entries and replace them by
 * references to the indicated page.
 */
263
void remove_migration_ptes(struct page *old, struct page *new, bool locked)
264
{
265 266 267 268 269
	struct rmap_walk_control rwc = {
		.rmap_one = remove_migration_pte,
		.arg = old,
	};

270 271 272 273
	if (locked)
		rmap_walk_locked(new, &rwc);
	else
		rmap_walk(new, &rwc);
274 275
}

276 277 278 279 280
/*
 * Something used the pte of a page under migration. We need to
 * get to the page and wait until migration is finished.
 * When we return from this function the fault will be retried.
 */
281
void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
282
				spinlock_t *ptl)
283
{
284
	pte_t pte;
285 286 287
	swp_entry_t entry;
	struct page *page;

288
	spin_lock(ptl);
289 290 291 292 293 294 295 296 297 298
	pte = *ptep;
	if (!is_swap_pte(pte))
		goto out;

	entry = pte_to_swp_entry(pte);
	if (!is_migration_entry(entry))
		goto out;

	page = migration_entry_to_page(entry);

N
Nick Piggin 已提交
299 300 301 302 303 304 305 306 307
	/*
	 * Once radix-tree replacement of page migration started, page_count
	 * *must* be zero. And, we don't want to call wait_on_page_locked()
	 * against a page without get_page().
	 * So, we use get_page_unless_zero(), here. Even failed, page fault
	 * will occur again.
	 */
	if (!get_page_unless_zero(page))
		goto out;
308 309 310 311 312 313 314 315
	pte_unmap_unlock(ptep, ptl);
	wait_on_page_locked(page);
	put_page(page);
	return;
out:
	pte_unmap_unlock(ptep, ptl);
}

316 317 318 319 320 321 322 323
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
				unsigned long address)
{
	spinlock_t *ptl = pte_lockptr(mm, pmd);
	pte_t *ptep = pte_offset_map(pmd, address);
	__migration_entry_wait(mm, ptep, ptl);
}

324 325
void migration_entry_wait_huge(struct vm_area_struct *vma,
		struct mm_struct *mm, pte_t *pte)
326
{
327
	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
328 329 330
	__migration_entry_wait(mm, pte, ptl);
}

331 332
#ifdef CONFIG_BLOCK
/* Returns true if all buffers are successfully locked */
333 334
static bool buffer_migrate_lock_buffers(struct buffer_head *head,
							enum migrate_mode mode)
335 336 337 338
{
	struct buffer_head *bh = head;

	/* Simple case, sync compaction */
339
	if (mode != MIGRATE_ASYNC) {
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
		do {
			get_bh(bh);
			lock_buffer(bh);
			bh = bh->b_this_page;

		} while (bh != head);

		return true;
	}

	/* async case, we cannot block on lock_buffer so use trylock_buffer */
	do {
		get_bh(bh);
		if (!trylock_buffer(bh)) {
			/*
			 * We failed to lock the buffer and cannot stall in
			 * async migration. Release the taken locks
			 */
			struct buffer_head *failed_bh = bh;
			put_bh(failed_bh);
			bh = head;
			while (bh != failed_bh) {
				unlock_buffer(bh);
				put_bh(bh);
				bh = bh->b_this_page;
			}
			return false;
		}

		bh = bh->b_this_page;
	} while (bh != head);
	return true;
}
#else
static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
375
							enum migrate_mode mode)
376 377 378 379 380
{
	return true;
}
#endif /* CONFIG_BLOCK */

C
Christoph Lameter 已提交
381
/*
382
 * Replace the page in the mapping.
383 384 385 386
 *
 * The number of remaining references must be:
 * 1 for anonymous pages without a mapping
 * 2 for pages with a mapping
387
 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
C
Christoph Lameter 已提交
388
 */
389
int migrate_page_move_mapping(struct address_space *mapping,
390
		struct page *newpage, struct page *page,
391 392
		struct buffer_head *head, enum migrate_mode mode,
		int extra_count)
C
Christoph Lameter 已提交
393
{
394 395
	struct zone *oldzone, *newzone;
	int dirty;
396
	int expected_count = 1 + extra_count;
397
	void **pslot;
C
Christoph Lameter 已提交
398

399
	if (!mapping) {
400
		/* Anonymous page without mapping */
401
		if (page_count(page) != expected_count)
402
			return -EAGAIN;
403 404 405 406 407

		/* No turning back from here */
		newpage->index = page->index;
		newpage->mapping = page->mapping;
		if (PageSwapBacked(page))
408
			__SetPageSwapBacked(newpage);
409

410
		return MIGRATEPAGE_SUCCESS;
411 412
	}

413 414 415
	oldzone = page_zone(page);
	newzone = page_zone(newpage);

N
Nick Piggin 已提交
416
	spin_lock_irq(&mapping->tree_lock);
C
Christoph Lameter 已提交
417

418 419
	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 					page_index(page));
C
Christoph Lameter 已提交
420

421
	expected_count += 1 + page_has_private(page);
N
Nick Piggin 已提交
422
	if (page_count(page) != expected_count ||
423
		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
N
Nick Piggin 已提交
424
		spin_unlock_irq(&mapping->tree_lock);
425
		return -EAGAIN;
C
Christoph Lameter 已提交
426 427
	}

428
	if (!page_ref_freeze(page, expected_count)) {
N
Nick Piggin 已提交
429
		spin_unlock_irq(&mapping->tree_lock);
N
Nick Piggin 已提交
430 431 432
		return -EAGAIN;
	}

433 434 435 436 437 438 439
	/*
	 * In the async migration case of moving a page with buffers, lock the
	 * buffers using trylock before the mapping is moved. If the mapping
	 * was moved, we later failed to lock the buffers and could not move
	 * the mapping back due to an elevated page count, we would have to
	 * block waiting on other references to be dropped.
	 */
440 441
	if (mode == MIGRATE_ASYNC && head &&
			!buffer_migrate_lock_buffers(head, mode)) {
442
		page_ref_unfreeze(page, expected_count);
443 444 445 446
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

C
Christoph Lameter 已提交
447
	/*
448 449
	 * Now we know that no one else is looking at the page:
	 * no turning back from here.
C
Christoph Lameter 已提交
450
	 */
451 452
	newpage->index = page->index;
	newpage->mapping = page->mapping;
453
	get_page(newpage);	/* add cache reference */
454 455 456 457 458 459 460 461
	if (PageSwapBacked(page)) {
		__SetPageSwapBacked(newpage);
		if (PageSwapCache(page)) {
			SetPageSwapCache(newpage);
			set_page_private(newpage, page_private(page));
		}
	} else {
		VM_BUG_ON_PAGE(PageSwapCache(page), page);
C
Christoph Lameter 已提交
462 463
	}

464 465 466 467 468 469 470
	/* Move dirty while page refs frozen and newpage not yet exposed */
	dirty = PageDirty(page);
	if (dirty) {
		ClearPageDirty(page);
		SetPageDirty(newpage);
	}

471
	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
472 473

	/*
474 475
	 * Drop cache reference from old page by unfreezing
	 * to one less reference.
476 477
	 * We know this isn't the last reference.
	 */
478
	page_ref_unfreeze(page, expected_count - 1);
479

480 481 482
	spin_unlock(&mapping->tree_lock);
	/* Leave irq disabled to prevent preemption while updating stats */

483 484 485 486 487 488 489
	/*
	 * If moved to a different zone then also account
	 * the page for that zone. Other VM counters will be
	 * taken care of when we establish references to the
	 * new page and drop references to the old page.
	 *
	 * Note that anonymous pages are accounted for
490
	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
491 492
	 * are mapped to swap space.
	 */
493
	if (newzone != oldzone) {
494 495
		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
496
		if (PageSwapBacked(page) && !PageSwapCache(page)) {
497 498
			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
499 500
		}
		if (dirty && mapping_cap_account_dirty(mapping)) {
501
			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
502
			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
503
			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
504
			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
505
		}
506
	}
507
	local_irq_enable();
C
Christoph Lameter 已提交
508

509
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
510
}
511
EXPORT_SYMBOL(migrate_page_move_mapping);
C
Christoph Lameter 已提交
512

N
Naoya Horiguchi 已提交
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
/*
 * The expected number of remaining references is the same as that
 * of migrate_page_move_mapping().
 */
int migrate_huge_page_move_mapping(struct address_space *mapping,
				   struct page *newpage, struct page *page)
{
	int expected_count;
	void **pslot;

	spin_lock_irq(&mapping->tree_lock);

	pslot = radix_tree_lookup_slot(&mapping->page_tree,
					page_index(page));

	expected_count = 2 + page_has_private(page);
	if (page_count(page) != expected_count ||
530
		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
N
Naoya Horiguchi 已提交
531 532 533 534
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

535
	if (!page_ref_freeze(page, expected_count)) {
N
Naoya Horiguchi 已提交
536 537 538 539
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

540 541
	newpage->index = page->index;
	newpage->mapping = page->mapping;
542

N
Naoya Horiguchi 已提交
543 544
	get_page(newpage);

545
	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
N
Naoya Horiguchi 已提交
546

547
	page_ref_unfreeze(page, expected_count - 1);
N
Naoya Horiguchi 已提交
548 549

	spin_unlock_irq(&mapping->tree_lock);
550

551
	return MIGRATEPAGE_SUCCESS;
N
Naoya Horiguchi 已提交
552 553
}

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
/*
 * Gigantic pages are so large that we do not guarantee that page++ pointer
 * arithmetic will work across the entire page.  We need something more
 * specialized.
 */
static void __copy_gigantic_page(struct page *dst, struct page *src,
				int nr_pages)
{
	int i;
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < nr_pages; ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

static void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	int nr_pages;

	if (PageHuge(src)) {
		/* hugetlbfs page */
		struct hstate *h = page_hstate(src);
		nr_pages = pages_per_huge_page(h);

		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
			__copy_gigantic_page(dst, src, nr_pages);
			return;
		}
	} else {
		/* thp page */
		BUG_ON(!PageTransHuge(src));
		nr_pages = hpage_nr_pages(src);
	}

	for (i = 0; i < nr_pages; i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

C
Christoph Lameter 已提交
602 603 604
/*
 * Copy the page to its new location
 */
N
Naoya Horiguchi 已提交
605
void migrate_page_copy(struct page *newpage, struct page *page)
C
Christoph Lameter 已提交
606
{
607 608
	int cpupid;

609
	if (PageHuge(page) || PageTransHuge(page))
N
Naoya Horiguchi 已提交
610 611 612
		copy_huge_page(newpage, page);
	else
		copy_highpage(newpage, page);
C
Christoph Lameter 已提交
613 614 615 616 617 618 619

	if (PageError(page))
		SetPageError(newpage);
	if (PageReferenced(page))
		SetPageReferenced(newpage);
	if (PageUptodate(page))
		SetPageUptodate(newpage);
L
Lee Schermerhorn 已提交
620
	if (TestClearPageActive(page)) {
621
		VM_BUG_ON_PAGE(PageUnevictable(page), page);
C
Christoph Lameter 已提交
622
		SetPageActive(newpage);
623 624
	} else if (TestClearPageUnevictable(page))
		SetPageUnevictable(newpage);
C
Christoph Lameter 已提交
625 626 627 628 629
	if (PageChecked(page))
		SetPageChecked(newpage);
	if (PageMappedToDisk(page))
		SetPageMappedToDisk(newpage);

630 631 632
	/* Move dirty on pages not done by migrate_page_move_mapping() */
	if (PageDirty(page))
		SetPageDirty(newpage);
C
Christoph Lameter 已提交
633

634 635 636 637 638
	if (page_is_young(page))
		set_page_young(newpage);
	if (page_is_idle(page))
		set_page_idle(newpage);

639 640 641 642 643 644 645
	/*
	 * Copy NUMA information to the new page, to prevent over-eager
	 * future migrations of this same page.
	 */
	cpupid = page_cpupid_xchg_last(page, -1);
	page_cpupid_xchg_last(newpage, cpupid);

646
	ksm_migrate_page(newpage, page);
647 648 649 650
	/*
	 * Please do not reorder this without considering how mm/ksm.c's
	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
	 */
651 652
	if (PageSwapCache(page))
		ClearPageSwapCache(page);
C
Christoph Lameter 已提交
653 654 655 656 657 658 659 660 661
	ClearPagePrivate(page);
	set_page_private(page, 0);

	/*
	 * If any waiters have accumulated on the new page then
	 * wake them up.
	 */
	if (PageWriteback(newpage))
		end_page_writeback(newpage);
662 663

	copy_page_owner(page, newpage);
664 665

	mem_cgroup_migrate(page, newpage);
C
Christoph Lameter 已提交
666
}
667
EXPORT_SYMBOL(migrate_page_copy);
C
Christoph Lameter 已提交
668

669 670 671 672
/************************************************************
 *                    Migration functions
 ***********************************************************/

C
Christoph Lameter 已提交
673
/*
674
 * Common logic to directly migrate a single LRU page suitable for
675
 * pages that do not use PagePrivate/PagePrivate2.
C
Christoph Lameter 已提交
676 677 678
 *
 * Pages are locked upon entry and exit.
 */
679
int migrate_page(struct address_space *mapping,
680 681
		struct page *newpage, struct page *page,
		enum migrate_mode mode)
C
Christoph Lameter 已提交
682 683 684 685 686
{
	int rc;

	BUG_ON(PageWriteback(page));	/* Writeback must be complete */

687
	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
C
Christoph Lameter 已提交
688

689
	if (rc != MIGRATEPAGE_SUCCESS)
C
Christoph Lameter 已提交
690 691 692
		return rc;

	migrate_page_copy(newpage, page);
693
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
694 695 696
}
EXPORT_SYMBOL(migrate_page);

697
#ifdef CONFIG_BLOCK
698 699 700 701 702
/*
 * Migration function for pages with buffers. This function can only be used
 * if the underlying filesystem guarantees that no other references to "page"
 * exist.
 */
703
int buffer_migrate_page(struct address_space *mapping,
704
		struct page *newpage, struct page *page, enum migrate_mode mode)
705 706 707 708 709
{
	struct buffer_head *bh, *head;
	int rc;

	if (!page_has_buffers(page))
710
		return migrate_page(mapping, newpage, page, mode);
711 712 713

	head = page_buffers(page);

714
	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
715

716
	if (rc != MIGRATEPAGE_SUCCESS)
717 718
		return rc;

719 720 721 722 723
	/*
	 * In the async case, migrate_page_move_mapping locked the buffers
	 * with an IRQ-safe spinlock held. In the sync case, the buffers
	 * need to be locked now
	 */
724 725
	if (mode != MIGRATE_ASYNC)
		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751

	ClearPagePrivate(page);
	set_page_private(newpage, page_private(page));
	set_page_private(page, 0);
	put_page(page);
	get_page(newpage);

	bh = head;
	do {
		set_bh_page(bh, newpage, bh_offset(bh));
		bh = bh->b_this_page;

	} while (bh != head);

	SetPagePrivate(newpage);

	migrate_page_copy(newpage, page);

	bh = head;
	do {
		unlock_buffer(bh);
 		put_bh(bh);
		bh = bh->b_this_page;

	} while (bh != head);

752
	return MIGRATEPAGE_SUCCESS;
753 754
}
EXPORT_SYMBOL(buffer_migrate_page);
755
#endif
756

757 758 759 760
/*
 * Writeback a page to clean the dirty state
 */
static int writeout(struct address_space *mapping, struct page *page)
761
{
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_NONE,
		.nr_to_write = 1,
		.range_start = 0,
		.range_end = LLONG_MAX,
		.for_reclaim = 1
	};
	int rc;

	if (!mapping->a_ops->writepage)
		/* No write method for the address space */
		return -EINVAL;

	if (!clear_page_dirty_for_io(page))
		/* Someone else already triggered a write */
		return -EAGAIN;

779
	/*
780 781 782 783 784 785
	 * A dirty page may imply that the underlying filesystem has
	 * the page on some queue. So the page must be clean for
	 * migration. Writeout may mean we loose the lock and the
	 * page state is no longer what we checked for earlier.
	 * At this point we know that the migration attempt cannot
	 * be successful.
786
	 */
787
	remove_migration_ptes(page, page, false);
788

789
	rc = mapping->a_ops->writepage(page, &wbc);
790

791 792 793 794
	if (rc != AOP_WRITEPAGE_ACTIVATE)
		/* unlocked. Relock */
		lock_page(page);

H
Hugh Dickins 已提交
795
	return (rc < 0) ? -EIO : -EAGAIN;
796 797 798 799 800 801
}

/*
 * Default handling if a filesystem does not provide a migration function.
 */
static int fallback_migrate_page(struct address_space *mapping,
802
	struct page *newpage, struct page *page, enum migrate_mode mode)
803
{
804
	if (PageDirty(page)) {
805 806
		/* Only writeback pages in full synchronous migration */
		if (mode != MIGRATE_SYNC)
807
			return -EBUSY;
808
		return writeout(mapping, page);
809
	}
810 811 812 813 814

	/*
	 * Buffers may be managed in a filesystem specific way.
	 * We must have no buffers or drop them.
	 */
815
	if (page_has_private(page) &&
816 817 818
	    !try_to_release_page(page, GFP_KERNEL))
		return -EAGAIN;

819
	return migrate_page(mapping, newpage, page, mode);
820 821
}

822 823 824 825 826 827
/*
 * Move a page to a newly allocated page
 * The page is locked and all ptes have been successfully removed.
 *
 * The new page will have replaced the old page if this function
 * is successful.
L
Lee Schermerhorn 已提交
828 829 830
 *
 * Return value:
 *   < 0 - error code
831
 *  MIGRATEPAGE_SUCCESS - success
832
 */
833
static int move_to_new_page(struct page *newpage, struct page *page,
834
				enum migrate_mode mode)
835 836
{
	struct address_space *mapping;
837 838
	int rc = -EAGAIN;
	bool is_lru = !__PageMovable(page);
839

840 841
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
842 843

	mapping = page_mapping(page);
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861

	if (likely(is_lru)) {
		if (!mapping)
			rc = migrate_page(mapping, newpage, page, mode);
		else if (mapping->a_ops->migratepage)
			/*
			 * Most pages have a mapping and most filesystems
			 * provide a migratepage callback. Anonymous pages
			 * are part of swap space which also has its own
			 * migratepage callback. This is the most common path
			 * for page migration.
			 */
			rc = mapping->a_ops->migratepage(mapping, newpage,
							page, mode);
		else
			rc = fallback_migrate_page(mapping, newpage,
							page, mode);
	} else {
862
		/*
863 864
		 * In case of non-lru page, it could be released after
		 * isolation step. In that case, we shouldn't try migration.
865
		 */
866 867 868 869 870 871 872 873 874 875 876 877
		VM_BUG_ON_PAGE(!PageIsolated(page), page);
		if (!PageMovable(page)) {
			rc = MIGRATEPAGE_SUCCESS;
			__ClearPageIsolated(page);
			goto out;
		}

		rc = mapping->a_ops->migratepage(mapping, newpage,
						page, mode);
		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
			!PageIsolated(page));
	}
878

879 880 881 882 883
	/*
	 * When successful, old pagecache page->mapping must be cleared before
	 * page is freed; but stats require that PageAnon be left as PageAnon.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
		if (__PageMovable(page)) {
			VM_BUG_ON_PAGE(!PageIsolated(page), page);

			/*
			 * We clear PG_movable under page_lock so any compactor
			 * cannot try to migrate this page.
			 */
			__ClearPageIsolated(page);
		}

		/*
		 * Anonymous and movable page->mapping will be cleard by
		 * free_pages_prepare so don't reset it here for keeping
		 * the type to work PageAnon, for example.
		 */
		if (!PageMappingFlags(page))
900
			page->mapping = NULL;
901
	}
902
out:
903 904 905
	return rc;
}

906
static int __unmap_and_move(struct page *page, struct page *newpage,
907
				int force, enum migrate_mode mode)
908
{
909
	int rc = -EAGAIN;
910
	int page_was_mapped = 0;
911
	struct anon_vma *anon_vma = NULL;
912
	bool is_lru = !__PageMovable(page);
913

N
Nick Piggin 已提交
914
	if (!trylock_page(page)) {
915
		if (!force || mode == MIGRATE_ASYNC)
916
			goto out;
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931

		/*
		 * It's not safe for direct compaction to call lock_page.
		 * For example, during page readahead pages are added locked
		 * to the LRU. Later, when the IO completes the pages are
		 * marked uptodate and unlocked. However, the queueing
		 * could be merging multiple pages for one bio (e.g.
		 * mpage_readpages). If an allocation happens for the
		 * second or third page, the process can end up locking
		 * the same page twice and deadlocking. Rather than
		 * trying to be clever about what pages can be locked,
		 * avoid the use of lock_page for direct compaction
		 * altogether.
		 */
		if (current->flags & PF_MEMALLOC)
932
			goto out;
933

934 935 936 937
		lock_page(page);
	}

	if (PageWriteback(page)) {
938
		/*
939
		 * Only in the case of a full synchronous migration is it
940 941 942
		 * necessary to wait for PageWriteback. In the async case,
		 * the retry loop is too short and in the sync-light case,
		 * the overhead of stalling is too much
943
		 */
944
		if (mode != MIGRATE_SYNC) {
945
			rc = -EBUSY;
946
			goto out_unlock;
947 948
		}
		if (!force)
949
			goto out_unlock;
950 951
		wait_on_page_writeback(page);
	}
952

953
	/*
954 955
	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
	 * we cannot notice that anon_vma is freed while we migrates a page.
956
	 * This get_anon_vma() delays freeing anon_vma pointer until the end
957
	 * of migration. File cache pages are no problem because of page_lock()
958 959
	 * File Caches may use write_page() or lock_page() in migration, then,
	 * just care Anon page here.
960 961 962 963 964 965
	 *
	 * Only page_get_anon_vma() understands the subtleties of
	 * getting a hold on an anon_vma from outside one of its mms.
	 * But if we cannot get anon_vma, then we won't need it anyway,
	 * because that implies that the anon page is no longer mapped
	 * (and cannot be remapped so long as we hold the page lock).
966
	 */
967
	if (PageAnon(page) && !PageKsm(page))
968
		anon_vma = page_get_anon_vma(page);
969

970 971 972 973 974 975 976 977 978 979 980
	/*
	 * Block others from accessing the new page when we get around to
	 * establishing additional references. We are usually the only one
	 * holding a reference to newpage at this point. We used to have a BUG
	 * here if trylock_page(newpage) fails, but would like to allow for
	 * cases where there might be a race with the previous use of newpage.
	 * This is much like races on refcount of oldpage: just don't BUG().
	 */
	if (unlikely(!trylock_page(newpage)))
		goto out_unlock;

981 982 983 984 985
	if (unlikely(!is_lru)) {
		rc = move_to_new_page(newpage, page, mode);
		goto out_unlock_both;
	}

986
	/*
987 988 989 990 991 992 993 994 995 996
	 * Corner case handling:
	 * 1. When a new swap-cache page is read into, it is added to the LRU
	 * and treated as swapcache but it has no rmap yet.
	 * Calling try_to_unmap() against a page->mapping==NULL page will
	 * trigger a BUG.  So handle it here.
	 * 2. An orphaned page (see truncate_complete_page) might have
	 * fs-private metadata. The page can be picked up due to memory
	 * offlining.  Everywhere else except page reclaim, the page is
	 * invisible to the vm, so the page can not be migrated.  So try to
	 * free the metadata, so the page can be freed.
997
	 */
998
	if (!page->mapping) {
999
		VM_BUG_ON_PAGE(PageAnon(page), page);
1000
		if (page_has_private(page)) {
1001
			try_to_free_buffers(page);
1002
			goto out_unlock_both;
1003
		}
1004 1005
	} else if (page_mapped(page)) {
		/* Establish migration ptes */
1006 1007
		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
				page);
1008
		try_to_unmap(page,
1009
			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1010 1011
		page_was_mapped = 1;
	}
1012

1013
	if (!page_mapped(page))
1014
		rc = move_to_new_page(newpage, page, mode);
1015

1016 1017
	if (page_was_mapped)
		remove_migration_ptes(page,
1018
			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1019

1020 1021 1022
out_unlock_both:
	unlock_page(newpage);
out_unlock:
1023
	/* Drop an anon_vma reference if we took one */
1024
	if (anon_vma)
1025
		put_anon_vma(anon_vma);
1026
	unlock_page(page);
1027
out:
1028 1029 1030 1031 1032 1033 1034
	/*
	 * If migration is successful, decrease refcount of the newpage
	 * which will not free the page because new page owner increased
	 * refcounter. As well, if it is LRU page, add the page to LRU
	 * list in here.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
1035
		if (unlikely(__PageMovable(newpage)))
1036 1037 1038 1039 1040
			put_page(newpage);
		else
			putback_lru_page(newpage);
	}

1041 1042
	return rc;
}
1043

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
/*
 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
 * around it.
 */
#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
#define ICE_noinline noinline
#else
#define ICE_noinline
#endif

1054 1055 1056 1057
/*
 * Obtain the lock on page, remove all ptes and migrate the page
 * to the newly allocated page in newpage.
 */
1058 1059 1060
static ICE_noinline int unmap_and_move(new_page_t get_new_page,
				   free_page_t put_new_page,
				   unsigned long private, struct page *page,
1061 1062
				   int force, enum migrate_mode mode,
				   enum migrate_reason reason)
1063
{
1064
	int rc = MIGRATEPAGE_SUCCESS;
1065
	int *result = NULL;
1066
	struct page *newpage;
1067

1068
	newpage = get_new_page(page, private, &result);
1069 1070 1071 1072 1073
	if (!newpage)
		return -ENOMEM;

	if (page_count(page) == 1) {
		/* page was freed from under us. So we are done. */
1074 1075
		ClearPageActive(page);
		ClearPageUnevictable(page);
1076 1077 1078 1079 1080 1081
		if (unlikely(__PageMovable(page))) {
			lock_page(page);
			if (!PageMovable(page))
				__ClearPageIsolated(page);
			unlock_page(page);
		}
1082 1083 1084 1085
		if (put_new_page)
			put_new_page(newpage, private);
		else
			put_page(newpage);
1086 1087 1088
		goto out;
	}

1089 1090 1091 1092 1093
	if (unlikely(PageTransHuge(page))) {
		lock_page(page);
		rc = split_huge_page(page);
		unlock_page(page);
		if (rc)
1094
			goto out;
1095
	}
1096

1097
	rc = __unmap_and_move(page, newpage, force, mode);
1098
	if (rc == MIGRATEPAGE_SUCCESS)
1099
		set_page_owner_migrate_reason(newpage, reason);
1100

1101
out:
1102
	if (rc != -EAGAIN) {
1103 1104 1105 1106 1107 1108 1109
		/*
		 * A page that has been migrated has all references
		 * removed and will be freed. A page that has not been
		 * migrated will have kepts its references and be
		 * restored.
		 */
		list_del(&page->lru);
1110 1111 1112 1113 1114 1115 1116 1117 1118

		/*
		 * Compaction can migrate also non-LRU pages which are
		 * not accounted to NR_ISOLATED_*. They can be recognized
		 * as __PageMovable
		 */
		if (likely(!__PageMovable(page)))
			dec_node_page_state(page, NR_ISOLATED_ANON +
					page_is_file_cache(page));
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
	}

	/*
	 * If migration is successful, releases reference grabbed during
	 * isolation. Otherwise, restore the page to right list unless
	 * we want to retry.
	 */
	if (rc == MIGRATEPAGE_SUCCESS) {
		put_page(page);
		if (reason == MR_MEMORY_FAILURE) {
1129
			/*
1130 1131 1132
			 * Set PG_HWPoison on just freed page
			 * intentionally. Although it's rather weird,
			 * it's how HWPoison flag works at the moment.
1133
			 */
1134 1135
			if (!test_set_page_hwpoison(page))
				num_poisoned_pages_inc();
1136 1137
		}
	} else {
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
		if (rc != -EAGAIN) {
			if (likely(!__PageMovable(page))) {
				putback_lru_page(page);
				goto put_new;
			}

			lock_page(page);
			if (PageMovable(page))
				putback_movable_page(page);
			else
				__ClearPageIsolated(page);
			unlock_page(page);
			put_page(page);
		}
put_new:
1153 1154 1155 1156
		if (put_new_page)
			put_new_page(newpage, private);
		else
			put_page(newpage);
1157
	}
1158

1159 1160 1161 1162 1163 1164
	if (result) {
		if (rc)
			*result = rc;
		else
			*result = page_to_nid(newpage);
	}
1165 1166 1167
	return rc;
}

N
Naoya Horiguchi 已提交
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
/*
 * Counterpart of unmap_and_move_page() for hugepage migration.
 *
 * This function doesn't wait the completion of hugepage I/O
 * because there is no race between I/O and migration for hugepage.
 * Note that currently hugepage I/O occurs only in direct I/O
 * where no lock is held and PG_writeback is irrelevant,
 * and writeback status of all subpages are counted in the reference
 * count of the head page (i.e. if all subpages of a 2MB hugepage are
 * under direct I/O, the reference of the head page is 512 and a bit more.)
 * This means that when we try to migrate hugepage whose subpages are
 * doing direct I/O, some references remain after try_to_unmap() and
 * hugepage migration fails without data corruption.
 *
 * There is also no race when direct I/O is issued on the page under migration,
 * because then pte is replaced with migration swap entry and direct I/O code
 * will wait in the page fault for migration to complete.
 */
static int unmap_and_move_huge_page(new_page_t get_new_page,
1187 1188
				free_page_t put_new_page, unsigned long private,
				struct page *hpage, int force,
1189
				enum migrate_mode mode, int reason)
N
Naoya Horiguchi 已提交
1190
{
1191
	int rc = -EAGAIN;
N
Naoya Horiguchi 已提交
1192
	int *result = NULL;
1193
	int page_was_mapped = 0;
1194
	struct page *new_hpage;
N
Naoya Horiguchi 已提交
1195 1196
	struct anon_vma *anon_vma = NULL;

1197 1198 1199 1200 1201 1202 1203
	/*
	 * Movability of hugepages depends on architectures and hugepage size.
	 * This check is necessary because some callers of hugepage migration
	 * like soft offline and memory hotremove don't walk through page
	 * tables or check whether the hugepage is pmd-based or not before
	 * kicking migration.
	 */
1204
	if (!hugepage_migration_supported(page_hstate(hpage))) {
1205
		putback_active_hugepage(hpage);
1206
		return -ENOSYS;
1207
	}
1208

1209
	new_hpage = get_new_page(hpage, private, &result);
N
Naoya Horiguchi 已提交
1210 1211 1212 1213
	if (!new_hpage)
		return -ENOMEM;

	if (!trylock_page(hpage)) {
1214
		if (!force || mode != MIGRATE_SYNC)
N
Naoya Horiguchi 已提交
1215 1216 1217 1218
			goto out;
		lock_page(hpage);
	}

1219 1220
	if (PageAnon(hpage))
		anon_vma = page_get_anon_vma(hpage);
N
Naoya Horiguchi 已提交
1221

1222 1223 1224
	if (unlikely(!trylock_page(new_hpage)))
		goto put_anon;

1225 1226 1227 1228 1229
	if (page_mapped(hpage)) {
		try_to_unmap(hpage,
			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
		page_was_mapped = 1;
	}
N
Naoya Horiguchi 已提交
1230 1231

	if (!page_mapped(hpage))
1232
		rc = move_to_new_page(new_hpage, hpage, mode);
N
Naoya Horiguchi 已提交
1233

1234 1235
	if (page_was_mapped)
		remove_migration_ptes(hpage,
1236
			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
N
Naoya Horiguchi 已提交
1237

1238 1239 1240
	unlock_page(new_hpage);

put_anon:
H
Hugh Dickins 已提交
1241
	if (anon_vma)
1242
		put_anon_vma(anon_vma);
1243

1244
	if (rc == MIGRATEPAGE_SUCCESS) {
1245
		hugetlb_cgroup_migrate(hpage, new_hpage);
1246
		put_new_page = NULL;
1247
		set_page_owner_migrate_reason(new_hpage, reason);
1248
	}
1249

N
Naoya Horiguchi 已提交
1250
	unlock_page(hpage);
1251
out:
1252 1253
	if (rc != -EAGAIN)
		putback_active_hugepage(hpage);
1254 1255 1256 1257 1258 1259

	/*
	 * If migration was not successful and there's a freeing callback, use
	 * it.  Otherwise, put_page() will drop the reference grabbed during
	 * isolation.
	 */
1260
	if (put_new_page)
1261 1262
		put_new_page(new_hpage, private);
	else
1263
		putback_active_hugepage(new_hpage);
1264

N
Naoya Horiguchi 已提交
1265 1266 1267 1268 1269 1270 1271 1272 1273
	if (result) {
		if (rc)
			*result = rc;
		else
			*result = page_to_nid(new_hpage);
	}
	return rc;
}

C
Christoph Lameter 已提交
1274
/*
1275 1276
 * migrate_pages - migrate the pages specified in a list, to the free pages
 *		   supplied as the target for the page migration
C
Christoph Lameter 已提交
1277
 *
1278 1279 1280
 * @from:		The list of pages to be migrated.
 * @get_new_page:	The function used to allocate free pages to be used
 *			as the target of the page migration.
1281 1282
 * @put_new_page:	The function used to free target pages if migration
 *			fails, or NULL if no special handling is necessary.
1283 1284 1285 1286
 * @private:		Private data to be passed on to get_new_page()
 * @mode:		The migration mode that specifies the constraints for
 *			page migration, if any.
 * @reason:		The reason for page migration.
C
Christoph Lameter 已提交
1287
 *
1288 1289
 * The function returns after 10 attempts or if no pages are movable any more
 * because the list has become empty or no retryable pages exist any more.
1290
 * The caller should call putback_movable_pages() to return pages to the LRU
1291
 * or free list only if ret != 0.
C
Christoph Lameter 已提交
1292
 *
1293
 * Returns the number of pages that were not migrated, or an error code.
C
Christoph Lameter 已提交
1294
 */
1295
int migrate_pages(struct list_head *from, new_page_t get_new_page,
1296 1297
		free_page_t put_new_page, unsigned long private,
		enum migrate_mode mode, int reason)
C
Christoph Lameter 已提交
1298
{
1299
	int retry = 1;
C
Christoph Lameter 已提交
1300
	int nr_failed = 0;
1301
	int nr_succeeded = 0;
C
Christoph Lameter 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310
	int pass = 0;
	struct page *page;
	struct page *page2;
	int swapwrite = current->flags & PF_SWAPWRITE;
	int rc;

	if (!swapwrite)
		current->flags |= PF_SWAPWRITE;

1311 1312
	for(pass = 0; pass < 10 && retry; pass++) {
		retry = 0;
C
Christoph Lameter 已提交
1313

1314 1315
		list_for_each_entry_safe(page, page2, from, lru) {
			cond_resched();
1316

1317 1318
			if (PageHuge(page))
				rc = unmap_and_move_huge_page(get_new_page,
1319
						put_new_page, private, page,
1320
						pass > 2, mode, reason);
1321
			else
1322
				rc = unmap_and_move(get_new_page, put_new_page,
1323 1324
						private, page, pass > 2, mode,
						reason);
1325

1326
			switch(rc) {
1327
			case -ENOMEM:
1328
				nr_failed++;
1329
				goto out;
1330
			case -EAGAIN:
1331
				retry++;
1332
				break;
1333
			case MIGRATEPAGE_SUCCESS:
1334
				nr_succeeded++;
1335 1336
				break;
			default:
1337 1338 1339 1340 1341 1342
				/*
				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
				 * unlike -EAGAIN case, the failed page is
				 * removed from migration page list and not
				 * retried in the next outer loop.
				 */
1343
				nr_failed++;
1344
				break;
1345
			}
C
Christoph Lameter 已提交
1346 1347
		}
	}
1348 1349
	nr_failed += retry;
	rc = nr_failed;
1350
out:
1351 1352 1353 1354
	if (nr_succeeded)
		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
	if (nr_failed)
		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1355 1356
	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);

C
Christoph Lameter 已提交
1357 1358 1359
	if (!swapwrite)
		current->flags &= ~PF_SWAPWRITE;

1360
	return rc;
C
Christoph Lameter 已提交
1361
}
1362

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
#ifdef CONFIG_NUMA
/*
 * Move a list of individual pages
 */
struct page_to_node {
	unsigned long addr;
	struct page *page;
	int node;
	int status;
};

static struct page *new_page_node(struct page *p, unsigned long private,
		int **result)
{
	struct page_to_node *pm = (struct page_to_node *)private;

	while (pm->node != MAX_NUMNODES && pm->page != p)
		pm++;

	if (pm->node == MAX_NUMNODES)
		return NULL;

	*result = &pm->status;

1387 1388 1389 1390
	if (PageHuge(p))
		return alloc_huge_page_node(page_hstate(compound_head(p)),
					pm->node);
	else
1391
		return __alloc_pages_node(pm->node,
1392
				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1393 1394 1395 1396 1397 1398
}

/*
 * Move a set of pages as indicated in the pm array. The addr
 * field must be set to the virtual address of the page to be moved
 * and the node number must contain a valid target node.
1399
 * The pm array ends with node = MAX_NUMNODES.
1400
 */
1401 1402 1403
static int do_move_page_to_node_array(struct mm_struct *mm,
				      struct page_to_node *pm,
				      int migrate_all)
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
{
	int err;
	struct page_to_node *pp;
	LIST_HEAD(pagelist);

	down_read(&mm->mmap_sem);

	/*
	 * Build a list of pages to migrate
	 */
	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
		struct vm_area_struct *vma;
		struct page *page;

		err = -EFAULT;
		vma = find_vma(mm, pp->addr);
1420
		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1421 1422
			goto set_status;

1423 1424 1425
		/* FOLL_DUMP to ignore special (like zero) pages */
		page = follow_page(vma, pp->addr,
				FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1426 1427 1428 1429 1430

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
		err = -ENOENT;
		if (!page)
			goto set_status;

		pp->page = page;
		err = page_to_nid(page);

		if (err == pp->node)
			/*
			 * Node already in the right place
			 */
			goto put_and_set;

		err = -EACCES;
		if (page_mapcount(page) > 1 &&
				!migrate_all)
			goto put_and_set;

1449
		if (PageHuge(page)) {
1450 1451
			if (PageHead(page))
				isolate_huge_page(page, &pagelist);
1452 1453 1454
			goto put_and_set;
		}

1455
		err = isolate_lru_page(page);
1456
		if (!err) {
1457
			list_add_tail(&page->lru, &pagelist);
M
Mel Gorman 已提交
1458
			inc_node_page_state(page, NR_ISOLATED_ANON +
1459 1460
					    page_is_file_cache(page));
		}
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
put_and_set:
		/*
		 * Either remove the duplicate refcount from
		 * isolate_lru_page() or drop the page ref if it was
		 * not isolated.
		 */
		put_page(page);
set_status:
		pp->status = err;
	}

1472
	err = 0;
1473
	if (!list_empty(&pagelist)) {
1474
		err = migrate_pages(&pagelist, new_page_node, NULL,
1475
				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1476
		if (err)
1477
			putback_movable_pages(&pagelist);
1478
	}
1479 1480 1481 1482 1483

	up_read(&mm->mmap_sem);
	return err;
}

1484 1485 1486 1487
/*
 * Migrate an array of page address onto an array of nodes and fill
 * the corresponding array of status.
 */
1488
static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1489 1490 1491 1492 1493
			 unsigned long nr_pages,
			 const void __user * __user *pages,
			 const int __user *nodes,
			 int __user *status, int flags)
{
1494 1495 1496 1497
	struct page_to_node *pm;
	unsigned long chunk_nr_pages;
	unsigned long chunk_start;
	int err;
1498

1499 1500 1501
	err = -ENOMEM;
	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
	if (!pm)
1502
		goto out;
1503 1504 1505

	migrate_prep();

1506
	/*
1507 1508
	 * Store a chunk of page_to_node array in a page,
	 * but keep the last one as a marker
1509
	 */
1510
	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1511

1512 1513 1514 1515
	for (chunk_start = 0;
	     chunk_start < nr_pages;
	     chunk_start += chunk_nr_pages) {
		int j;
1516

1517 1518 1519 1520 1521 1522
		if (chunk_start + chunk_nr_pages > nr_pages)
			chunk_nr_pages = nr_pages - chunk_start;

		/* fill the chunk pm with addrs and nodes from user-space */
		for (j = 0; j < chunk_nr_pages; j++) {
			const void __user *p;
1523 1524
			int node;

1525 1526 1527 1528 1529 1530
			err = -EFAULT;
			if (get_user(p, pages + j + chunk_start))
				goto out_pm;
			pm[j].addr = (unsigned long) p;

			if (get_user(node, nodes + j + chunk_start))
1531 1532 1533
				goto out_pm;

			err = -ENODEV;
1534 1535 1536
			if (node < 0 || node >= MAX_NUMNODES)
				goto out_pm;

1537
			if (!node_state(node, N_MEMORY))
1538 1539 1540 1541 1542 1543
				goto out_pm;

			err = -EACCES;
			if (!node_isset(node, task_nodes))
				goto out_pm;

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
			pm[j].node = node;
		}

		/* End marker for this chunk */
		pm[chunk_nr_pages].node = MAX_NUMNODES;

		/* Migrate this chunk */
		err = do_move_page_to_node_array(mm, pm,
						 flags & MPOL_MF_MOVE_ALL);
		if (err < 0)
			goto out_pm;
1555 1556

		/* Return status information */
1557 1558
		for (j = 0; j < chunk_nr_pages; j++)
			if (put_user(pm[j].status, status + j + chunk_start)) {
1559
				err = -EFAULT;
1560 1561 1562 1563
				goto out_pm;
			}
	}
	err = 0;
1564 1565

out_pm:
1566
	free_page((unsigned long)pm);
1567 1568 1569 1570
out:
	return err;
}

1571
/*
1572
 * Determine the nodes of an array of pages and store it in an array of status.
1573
 */
1574 1575
static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
				const void __user **pages, int *status)
1576
{
1577 1578
	unsigned long i;

1579 1580
	down_read(&mm->mmap_sem);

1581
	for (i = 0; i < nr_pages; i++) {
1582
		unsigned long addr = (unsigned long)(*pages);
1583 1584
		struct vm_area_struct *vma;
		struct page *page;
1585
		int err = -EFAULT;
1586 1587

		vma = find_vma(mm, addr);
1588
		if (!vma || addr < vma->vm_start)
1589 1590
			goto set_status;

1591 1592
		/* FOLL_DUMP to ignore special (like zero) pages */
		page = follow_page(vma, addr, FOLL_DUMP);
1593 1594 1595 1596 1597

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1598
		err = page ? page_to_nid(page) : -ENOENT;
1599
set_status:
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
		*status = err;

		pages++;
		status++;
	}

	up_read(&mm->mmap_sem);
}

/*
 * Determine the nodes of a user array of pages and store it in
 * a user array of status.
 */
static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
			 const void __user * __user *pages,
			 int __user *status)
{
#define DO_PAGES_STAT_CHUNK_NR 16
	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
	int chunk_status[DO_PAGES_STAT_CHUNK_NR];

1621 1622
	while (nr_pages) {
		unsigned long chunk_nr;
1623

1624 1625 1626 1627 1628 1629
		chunk_nr = nr_pages;
		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
			chunk_nr = DO_PAGES_STAT_CHUNK_NR;

		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
			break;
1630 1631 1632

		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);

1633 1634
		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
			break;
1635

1636 1637 1638 1639 1640
		pages += chunk_nr;
		status += chunk_nr;
		nr_pages -= chunk_nr;
	}
	return nr_pages ? -EFAULT : 0;
1641 1642 1643 1644 1645 1646
}

/*
 * Move a list of pages in the address space of the currently executing
 * process.
 */
1647 1648 1649 1650
SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
		const void __user * __user *, pages,
		const int __user *, nodes,
		int __user *, status, int, flags)
1651
{
1652
	const struct cred *cred = current_cred(), *tcred;
1653 1654
	struct task_struct *task;
	struct mm_struct *mm;
1655
	int err;
1656
	nodemask_t task_nodes;
1657 1658 1659 1660 1661 1662 1663 1664 1665

	/* Check flags */
	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
		return -EINVAL;

	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
		return -EPERM;

	/* Find the mm_struct */
1666
	rcu_read_lock();
1667
	task = pid ? find_task_by_vpid(pid) : current;
1668
	if (!task) {
1669
		rcu_read_unlock();
1670 1671
		return -ESRCH;
	}
1672
	get_task_struct(task);
1673 1674 1675 1676 1677 1678 1679

	/*
	 * Check if this process has the right to modify the specified
	 * process. The right exists if the process has administrative
	 * capabilities, superuser privileges or the same
	 * userid as the target process.
	 */
1680
	tcred = __task_cred(task);
1681 1682
	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1683
	    !capable(CAP_SYS_NICE)) {
1684
		rcu_read_unlock();
1685
		err = -EPERM;
1686
		goto out;
1687
	}
1688
	rcu_read_unlock();
1689

1690 1691
 	err = security_task_movememory(task);
 	if (err)
1692
		goto out;
1693

1694 1695 1696 1697
	task_nodes = cpuset_mems_allowed(task);
	mm = get_task_mm(task);
	put_task_struct(task);

1698 1699 1700 1701 1702 1703 1704 1705
	if (!mm)
		return -EINVAL;

	if (nodes)
		err = do_pages_move(mm, task_nodes, nr_pages, pages,
				    nodes, status, flags);
	else
		err = do_pages_stat(mm, nr_pages, pages, status);
1706 1707 1708

	mmput(mm);
	return err;
1709 1710 1711 1712

out:
	put_task_struct(task);
	return err;
1713 1714
}

1715 1716 1717 1718 1719 1720
#ifdef CONFIG_NUMA_BALANCING
/*
 * Returns true if this is a safe migration target node for misplaced NUMA
 * pages. Currently it only checks the watermarks which crude
 */
static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1721
				   unsigned long nr_migrate_pages)
1722 1723
{
	int z;
M
Mel Gorman 已提交
1724

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
		struct zone *zone = pgdat->node_zones + z;

		if (!populated_zone(zone))
			continue;

		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
		if (!zone_watermark_ok(zone, 0,
				       high_wmark_pages(zone) +
				       nr_migrate_pages,
				       0, 0))
			continue;
		return true;
	}
	return false;
}

static struct page *alloc_misplaced_dst_page(struct page *page,
					   unsigned long data,
					   int **result)
{
	int nid = (int) data;
	struct page *newpage;

1749
	newpage = __alloc_pages_node(nid,
1750 1751 1752
					 (GFP_HIGHUSER_MOVABLE |
					  __GFP_THISNODE | __GFP_NOMEMALLOC |
					  __GFP_NORETRY | __GFP_NOWARN) &
1753
					 ~__GFP_RECLAIM, 0);
1754

1755 1756 1757
	return newpage;
}

1758 1759 1760 1761 1762 1763 1764 1765
/*
 * page migration rate limiting control.
 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
 * window of time. Default here says do not migrate more than 1280M per second.
 */
static unsigned int migrate_interval_millisecs __read_mostly = 100;
static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);

1766
/* Returns true if the node is migrate rate-limited after the update */
1767 1768
static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
					unsigned long nr_pages)
1769
{
1770 1771 1772 1773 1774 1775
	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1776
		spin_lock(&pgdat->numabalancing_migrate_lock);
1777 1778 1779
		pgdat->numabalancing_migrate_nr_pages = 0;
		pgdat->numabalancing_migrate_next_window = jiffies +
			msecs_to_jiffies(migrate_interval_millisecs);
1780
		spin_unlock(&pgdat->numabalancing_migrate_lock);
1781
	}
1782 1783 1784
	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
								nr_pages);
1785
		return true;
1786
	}
1787 1788 1789 1790 1791 1792 1793 1794 1795

	/*
	 * This is an unlocked non-atomic update so errors are possible.
	 * The consequences are failing to migrate when we potentiall should
	 * have which is not severe enough to warrant locking. If it is ever
	 * a problem, it can be converted to a per-cpu counter.
	 */
	pgdat->numabalancing_migrate_nr_pages += nr_pages;
	return false;
1796 1797
}

1798
static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1799
{
1800
	int page_lru;
1801

1802
	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1803

1804
	/* Avoid migrating to a node that is nearly full */
1805 1806
	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
		return 0;
1807

1808 1809
	if (isolate_lru_page(page))
		return 0;
1810

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
	/*
	 * migrate_misplaced_transhuge_page() skips page migration's usual
	 * check on page_count(), so we must do it here, now that the page
	 * has been isolated: a GUP pin, or any other pin, prevents migration.
	 * The expected page count is 3: 1 for page's mapcount and 1 for the
	 * caller's pin and 1 for the reference taken by isolate_lru_page().
	 */
	if (PageTransHuge(page) && page_count(page) != 3) {
		putback_lru_page(page);
		return 0;
1821 1822
	}

1823
	page_lru = page_is_file_cache(page);
M
Mel Gorman 已提交
1824
	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1825 1826
				hpage_nr_pages(page));

1827
	/*
1828 1829 1830
	 * Isolating the page has taken another reference, so the
	 * caller's reference can be safely dropped without the page
	 * disappearing underneath us during migration.
1831 1832
	 */
	put_page(page);
1833
	return 1;
1834 1835
}

1836 1837 1838 1839 1840 1841
bool pmd_trans_migrating(pmd_t pmd)
{
	struct page *page = pmd_page(pmd);
	return PageLocked(page);
}

1842 1843 1844 1845 1846
/*
 * Attempt to migrate a misplaced page to the specified destination
 * node. Caller is expected to have an elevated reference count on
 * the page that will be dropped by this function before returning.
 */
1847 1848
int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
			   int node)
1849 1850
{
	pg_data_t *pgdat = NODE_DATA(node);
1851
	int isolated;
1852 1853 1854 1855
	int nr_remaining;
	LIST_HEAD(migratepages);

	/*
1856 1857
	 * Don't migrate file pages that are mapped in multiple processes
	 * with execute permissions as they are probably shared libraries.
1858
	 */
1859 1860
	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
	    (vma->vm_flags & VM_EXEC))
1861 1862 1863 1864 1865 1866 1867
		goto out;

	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
1868
	if (numamigrate_update_ratelimit(pgdat, 1))
1869 1870 1871 1872 1873 1874 1875
		goto out;

	isolated = numamigrate_isolate_page(pgdat, page);
	if (!isolated)
		goto out;

	list_add(&page->lru, &migratepages);
1876
	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1877 1878
				     NULL, node, MIGRATE_ASYNC,
				     MR_NUMA_MISPLACED);
1879
	if (nr_remaining) {
1880 1881
		if (!list_empty(&migratepages)) {
			list_del(&page->lru);
M
Mel Gorman 已提交
1882
			dec_node_page_state(page, NR_ISOLATED_ANON +
1883 1884 1885
					page_is_file_cache(page));
			putback_lru_page(page);
		}
1886 1887 1888
		isolated = 0;
	} else
		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1889 1890
	BUG_ON(!list_empty(&migratepages));
	return isolated;
1891 1892 1893 1894

out:
	put_page(page);
	return 0;
1895
}
1896
#endif /* CONFIG_NUMA_BALANCING */
1897

1898
#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1899 1900 1901 1902
/*
 * Migrates a THP to a given target node. page must be locked and is unlocked
 * before returning.
 */
1903 1904 1905 1906 1907 1908
int migrate_misplaced_transhuge_page(struct mm_struct *mm,
				struct vm_area_struct *vma,
				pmd_t *pmd, pmd_t entry,
				unsigned long address,
				struct page *page, int node)
{
1909
	spinlock_t *ptl;
1910 1911 1912 1913
	pg_data_t *pgdat = NODE_DATA(node);
	int isolated = 0;
	struct page *new_page = NULL;
	int page_lru = page_is_file_cache(page);
1914 1915
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1916
	pmd_t orig_entry;
1917 1918 1919 1920 1921 1922

	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
1923
	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1924 1925 1926
		goto out_dropref;

	new_page = alloc_pages_node(node,
1927
		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1928
		HPAGE_PMD_ORDER);
1929 1930
	if (!new_page)
		goto out_fail;
1931
	prep_transhuge_page(new_page);
1932

1933
	isolated = numamigrate_isolate_page(pgdat, page);
1934
	if (!isolated) {
1935
		put_page(new_page);
1936
		goto out_fail;
1937
	}
1938 1939 1940 1941
	/*
	 * We are not sure a pending tlb flush here is for a huge page
	 * mapping or not. Hence use the tlb range variant
	 */
1942 1943 1944
	if (mm_tlb_flush_pending(mm))
		flush_tlb_range(vma, mmun_start, mmun_end);

1945
	/* Prepare a page as a migration target */
1946
	__SetPageLocked(new_page);
1947 1948
	if (PageSwapBacked(page))
		__SetPageSwapBacked(new_page);
1949 1950 1951 1952 1953 1954 1955 1956

	/* anon mapping, we can simply copy page->mapping to the new page: */
	new_page->mapping = page->mapping;
	new_page->index = page->index;
	migrate_page_copy(new_page, page);
	WARN_ON(PageLRU(new_page));

	/* Recheck the target PMD */
1957
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1958
	ptl = pmd_lock(mm, pmd);
1959 1960
	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
fail_putback:
1961
		spin_unlock(ptl);
1962
		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972

		/* Reverse changes made by migrate_page_copy() */
		if (TestClearPageActive(new_page))
			SetPageActive(page);
		if (TestClearPageUnevictable(new_page))
			SetPageUnevictable(page);

		unlock_page(new_page);
		put_page(new_page);		/* Free it */

1973 1974
		/* Retake the callers reference and putback on LRU */
		get_page(page);
1975
		putback_lru_page(page);
M
Mel Gorman 已提交
1976
		mod_node_page_state(page_pgdat(page),
1977
			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1978 1979

		goto out_unlock;
1980 1981
	}

1982
	orig_entry = *pmd;
K
Kirill A. Shutemov 已提交
1983
	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1984
	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1985

1986 1987 1988 1989 1990 1991 1992
	/*
	 * Clear the old entry under pagetable lock and establish the new PTE.
	 * Any parallel GUP will either observe the old page blocking on the
	 * page lock, block on the page table lock or observe the new page.
	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
	 * guarantee the copy is visible before the pagetable update.
	 */
1993
	flush_cache_range(vma, mmun_start, mmun_end);
1994
	page_add_anon_rmap(new_page, vma, mmun_start, true);
1995
	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1996
	set_pmd_at(mm, mmun_start, pmd, entry);
1997
	update_mmu_cache_pmd(vma, address, &entry);
1998 1999

	if (page_count(page) != 2) {
2000
		set_pmd_at(mm, mmun_start, pmd, orig_entry);
2001
		flush_pmd_tlb_range(vma, mmun_start, mmun_end);
2002
		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2003
		update_mmu_cache_pmd(vma, address, &entry);
2004
		page_remove_rmap(new_page, true);
2005 2006 2007
		goto fail_putback;
	}

2008
	mlock_migrate_page(new_page, page);
2009
	page_remove_rmap(page, true);
2010
	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2011

2012
	spin_unlock(ptl);
2013
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2014

2015 2016 2017 2018
	/* Take an "isolate" reference and put new page on the LRU. */
	get_page(new_page);
	putback_lru_page(new_page);

2019 2020 2021 2022 2023 2024 2025 2026
	unlock_page(new_page);
	unlock_page(page);
	put_page(page);			/* Drop the rmap reference */
	put_page(page);			/* Drop the LRU isolation reference */

	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);

M
Mel Gorman 已提交
2027
	mod_node_page_state(page_pgdat(page),
2028 2029 2030 2031
			NR_ISOLATED_ANON + page_lru,
			-HPAGE_PMD_NR);
	return isolated;

2032 2033
out_fail:
	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2034
out_dropref:
2035 2036
	ptl = pmd_lock(mm, pmd);
	if (pmd_same(*pmd, entry)) {
2037
		entry = pmd_modify(entry, vma->vm_page_prot);
2038
		set_pmd_at(mm, mmun_start, pmd, entry);
2039 2040 2041
		update_mmu_cache_pmd(vma, address, &entry);
	}
	spin_unlock(ptl);
2042

2043
out_unlock:
2044
	unlock_page(page);
2045 2046 2047
	put_page(page);
	return 0;
}
2048 2049 2050
#endif /* CONFIG_NUMA_BALANCING */

#endif /* CONFIG_NUMA */