memcontrol.c 146.1 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
K
KAMEZAWA Hiroyuki 已提交
65
#include "internal.h"
G
Glauber Costa 已提交
66
#include <net/sock.h>
M
Michal Hocko 已提交
67
#include <net/ip.h>
G
Glauber Costa 已提交
68
#include <net/tcp_memcontrol.h>
69
#include "slab.h"
B
Balbir Singh 已提交
70

71 72
#include <asm/uaccess.h>

73 74
#include <trace/events/vmscan.h>

75 76
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
77

78
#define MEM_CGROUP_RECLAIM_RETRIES	5
79
static struct mem_cgroup *root_mem_cgroup __read_mostly;
T
Tejun Heo 已提交
80
struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
B
Balbir Singh 已提交
81

82
/* Whether the swap controller is active */
A
Andrew Morton 已提交
83
#ifdef CONFIG_MEMCG_SWAP
84 85
int do_swap_account __read_mostly;
#else
86
#define do_swap_account		0
87 88
#endif

89 90 91
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
92
	"rss_huge",
93
	"mapped_file",
94
	"dirty",
95
	"writeback",
96 97 98 99 100 101 102 103 104 105
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

106 107 108 109 110 111 112 113
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

114 115 116
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
138 139 140 141 142
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
143

144 145 146
/*
 * cgroup_event represents events which userspace want to receive.
 */
147
struct mem_cgroup_event {
148
	/*
149
	 * memcg which the event belongs to.
150
	 */
151
	struct mem_cgroup *memcg;
152 153 154 155 156 157 158 159
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
160 161 162 163 164
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
165
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
166
			      struct eventfd_ctx *eventfd, const char *args);
167 168 169 170 171
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
172
	void (*unregister_event)(struct mem_cgroup *memcg,
173
				 struct eventfd_ctx *eventfd);
174 175 176 177 178 179 180 181 182 183
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

184 185
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
186

187 188
/* Stuffs for move charges at task migration. */
/*
189
 * Types of charges to be moved.
190
 */
191 192 193
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
194

195 196
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
197
	spinlock_t	  lock; /* for from, to */
198 199
	struct mem_cgroup *from;
	struct mem_cgroup *to;
200
	unsigned long flags;
201
	unsigned long precharge;
202
	unsigned long moved_charge;
203
	unsigned long moved_swap;
204 205 206
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
207
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
208 209
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
210

211 212 213 214
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
215
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
216
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
217

218 219
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
220
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
221
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
222
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
223 224 225
	NR_CHARGE_TYPE,
};

226
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
227 228 229 230
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
231
	_KMEM,
G
Glauber Costa 已提交
232 233
};

234 235
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
236
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
237 238
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
239

240 241 242 243 244 245 246
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

247 248 249 250 251 252 253 254 255 256 257 258 259
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

260 261 262 263 264
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

265 266 267 268 269 270
/*
 * We restrict the id in the range of [1, 65535], so it can fit into
 * an unsigned short.
 */
#define MEM_CGROUP_ID_MAX	USHRT_MAX

L
Li Zefan 已提交
271 272
static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
{
273
	return memcg->css.id;
L
Li Zefan 已提交
274 275
}

276 277 278 279 280 281
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock().  The caller is responsible for calling
 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
 * refcnt from swap can be called against removed memcg.)
 */
L
Li Zefan 已提交
282 283 284 285
static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	struct cgroup_subsys_state *css;

286
	css = css_from_id(id, &memory_cgrp_subsys);
L
Li Zefan 已提交
287 288 289
	return mem_cgroup_from_css(css);
}

G
Glauber Costa 已提交
290
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
291
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
292 293 294

void sock_update_memcg(struct sock *sk)
{
295
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
296
		struct mem_cgroup *memcg;
297
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
298 299 300

		BUG_ON(!sk->sk_prot->proto_cgroup);

301 302 303 304 305 306 307 308 309 310
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
311
			css_get(&sk->sk_cgrp->memcg->css);
312 313 314
			return;
		}

G
Glauber Costa 已提交
315 316
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
317
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
318
		if (!mem_cgroup_is_root(memcg) &&
319 320
		    memcg_proto_active(cg_proto) &&
		    css_tryget_online(&memcg->css)) {
321
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
322 323 324 325 326 327 328 329
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
330
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
331 332 333
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
334
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
335 336
	}
}
G
Glauber Costa 已提交
337 338 339 340 341 342

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

343
	return &memcg->tcp_mem;
G
Glauber Costa 已提交
344 345
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
346

347 348
#endif

349
#ifdef CONFIG_MEMCG_KMEM
350
/*
351
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
352 353 354 355 356
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
357
 *
358 359
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
360
 */
361 362
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
363

364 365 366 367 368 369 370 371 372 373 374 375 376
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

377 378 379 380 381 382
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
383
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384 385
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
386
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
387 388 389
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
390
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391

392 393 394 395 396 397
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
398
struct static_key memcg_kmem_enabled_key;
399
EXPORT_SYMBOL(memcg_kmem_enabled_key);
400 401 402

#endif /* CONFIG_MEMCG_KMEM */

403
static struct mem_cgroup_per_zone *
404
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
405
{
406 407 408
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

409
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
410 411
}

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 *
 * XXX: The above description of behavior on the default hierarchy isn't
 * strictly true yet as replace_page_cache_page() can modify the
 * association before @page is released even on the default hierarchy;
 * however, the current and planned usages don't mix the the two functions
 * and replace_page_cache_page() will soon be updated to make the invariant
 * actually true.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	rcu_read_lock();

	memcg = page->mem_cgroup;

	if (!memcg || !cgroup_on_dfl(memcg->css.cgroup))
		memcg = root_mem_cgroup;

	rcu_read_unlock();
	return &memcg->css;
}

445
static struct mem_cgroup_per_zone *
446
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
447
{
448 449
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
450

451
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
452 453
}

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

469 470
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
471
					 unsigned long new_usage_in_excess)
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

501 502
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
503 504 505 506 507 508 509
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

510 511
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
512
{
513 514 515
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
516
	__mem_cgroup_remove_exceeded(mz, mctz);
517
	spin_unlock_irqrestore(&mctz->lock, flags);
518 519
}

520 521 522
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
523
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
524 525 526 527 528 529 530
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
531 532 533

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
534
	unsigned long excess;
535 536 537
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

538
	mctz = soft_limit_tree_from_page(page);
539 540 541 542 543
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
544
		mz = mem_cgroup_page_zoneinfo(memcg, page);
545
		excess = soft_limit_excess(memcg);
546 547 548 549 550
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
551 552 553
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
554 555
			/* if on-tree, remove it */
			if (mz->on_tree)
556
				__mem_cgroup_remove_exceeded(mz, mctz);
557 558 559 560
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
561
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
562
			spin_unlock_irqrestore(&mctz->lock, flags);
563 564 565 566 567 568 569
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
570 571
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
572

573 574 575 576
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
577
			mem_cgroup_remove_exceeded(mz, mctz);
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
600
	__mem_cgroup_remove_exceeded(mz, mctz);
601
	if (!soft_limit_excess(mz->memcg) ||
602
	    !css_tryget_online(&mz->memcg->css))
603 604 605 606 607 608 609 610 611 612
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

613
	spin_lock_irq(&mctz->lock);
614
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
615
	spin_unlock_irq(&mctz->lock);
616 617 618
	return mz;
}

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
638
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
639
				 enum mem_cgroup_stat_index idx)
640
{
641
	long val = 0;
642 643
	int cpu;

644
	for_each_possible_cpu(cpu)
645
		val += per_cpu(memcg->stat->count[idx], cpu);
646 647 648
	return val;
}

649
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
650 651 652 653 654
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

655
	for_each_possible_cpu(cpu)
656
		val += per_cpu(memcg->stat->events[idx], cpu);
657 658 659
	return val;
}

660
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
661
					 struct page *page,
662
					 int nr_pages)
663
{
664 665 666 667
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
668
	if (PageAnon(page))
669
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
670
				nr_pages);
671
	else
672
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
673
				nr_pages);
674

675 676 677 678
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

679 680
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
681
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
682
	else {
683
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
684 685
		nr_pages = -nr_pages; /* for event */
	}
686

687
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
688 689
}

690 691 692
static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
						  int nid,
						  unsigned int lru_mask)
693
{
694
	unsigned long nr = 0;
695 696
	int zid;

697
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
698

699 700 701 702 703 704 705 706 707 708 709 710
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
711
}
712

713
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
714
			unsigned int lru_mask)
715
{
716
	unsigned long nr = 0;
717
	int nid;
718

719
	for_each_node_state(nid, N_MEMORY)
720 721
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
722 723
}

724 725
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
726 727 728
{
	unsigned long val, next;

729
	val = __this_cpu_read(memcg->stat->nr_page_events);
730
	next = __this_cpu_read(memcg->stat->targets[target]);
731
	/* from time_after() in jiffies.h */
732 733 734 735 736
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
737 738 739
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
740 741 742 743 744 745 746 747
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
748
	}
749
	return false;
750 751 752 753 754 755
}

/*
 * Check events in order.
 *
 */
756
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
757 758
{
	/* threshold event is triggered in finer grain than soft limit */
759 760
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
761
		bool do_softlimit;
762
		bool do_numainfo __maybe_unused;
763

764 765
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
766 767 768 769
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
770
		mem_cgroup_threshold(memcg);
771 772
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
773
#if MAX_NUMNODES > 1
774
		if (unlikely(do_numainfo))
775
			atomic_inc(&memcg->numainfo_events);
776
#endif
777
	}
778 779
}

780
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
781
{
782 783 784 785 786 787 788 789
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

790
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
791
}
M
Michal Hocko 已提交
792
EXPORT_SYMBOL(mem_cgroup_from_task);
793

794
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
795
{
796
	struct mem_cgroup *memcg = NULL;
797

798 799
	rcu_read_lock();
	do {
800 801 802 803 804 805
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
806
			memcg = root_mem_cgroup;
807 808 809 810 811
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
812
	} while (!css_tryget_online(&memcg->css));
813
	rcu_read_unlock();
814
	return memcg;
815 816
}

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
834
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
835
				   struct mem_cgroup *prev,
836
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
837
{
M
Michal Hocko 已提交
838
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
839
	struct cgroup_subsys_state *css = NULL;
840
	struct mem_cgroup *memcg = NULL;
841
	struct mem_cgroup *pos = NULL;
842

843 844
	if (mem_cgroup_disabled())
		return NULL;
845

846 847
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
848

849
	if (prev && !reclaim)
850
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
851

852 853
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
854
			goto out;
855
		return root;
856
	}
K
KAMEZAWA Hiroyuki 已提交
857

858
	rcu_read_lock();
M
Michal Hocko 已提交
859

860 861 862 863 864 865 866 867 868 869
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

		do {
870
			pos = READ_ONCE(iter->position);
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
			/*
			 * A racing update may change the position and
			 * put the last reference, hence css_tryget(),
			 * or retry to see the updated position.
			 */
		} while (pos && !css_tryget(&pos->css));
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
894
		}
K
KAMEZAWA Hiroyuki 已提交
895

896 897 898 899 900 901
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
902

903 904
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
905

906
		if (css_tryget(css)) {
907 908 909 910 911 912 913
			/*
			 * Make sure the memcg is initialized:
			 * mem_cgroup_css_online() orders the the
			 * initialization against setting the flag.
			 */
			if (smp_load_acquire(&memcg->initialized))
				break;
914

915
			css_put(css);
916
		}
917

918
		memcg = NULL;
919
	}
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939

	if (reclaim) {
		if (cmpxchg(&iter->position, pos, memcg) == pos) {
			if (memcg)
				css_get(&memcg->css);
			if (pos)
				css_put(&pos->css);
		}

		/*
		 * pairs with css_tryget when dereferencing iter->position
		 * above.
		 */
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
940
	}
941

942 943
out_unlock:
	rcu_read_unlock();
944
out:
945 946 947
	if (prev && prev != root)
		css_put(&prev->css);

948
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
949
}
K
KAMEZAWA Hiroyuki 已提交
950

951 952 953 954 955 956 957
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
958 959 960 961 962 963
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
964

965 966 967 968 969 970
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
971
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
972
	     iter != NULL;				\
973
	     iter = mem_cgroup_iter(root, iter, NULL))
974

975
#define for_each_mem_cgroup(iter)			\
976
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
977
	     iter != NULL;				\
978
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
979

980 981 982
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
983
 * @memcg: memcg of the wanted lruvec
984 985 986 987 988 989 990 991 992
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
993
	struct lruvec *lruvec;
994

995 996 997 998
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
999

1000
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1011 1012 1013
}

/**
1014
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1015
 * @page: the page
1016
 * @zone: zone of the page
1017 1018 1019 1020
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1021
 */
1022
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1023 1024
{
	struct mem_cgroup_per_zone *mz;
1025
	struct mem_cgroup *memcg;
1026
	struct lruvec *lruvec;
1027

1028 1029 1030 1031
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1032

1033
	memcg = page->mem_cgroup;
1034
	/*
1035
	 * Swapcache readahead pages are added to the LRU - and
1036
	 * possibly migrated - before they are charged.
1037
	 */
1038 1039
	if (!memcg)
		memcg = root_mem_cgroup;
1040

1041
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1052
}
1053

1054
/**
1055 1056 1057 1058
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1059
 *
1060 1061
 * This function must be called when a page is added to or removed from an
 * lru list.
1062
 */
1063 1064
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1065 1066
{
	struct mem_cgroup_per_zone *mz;
1067
	unsigned long *lru_size;
1068 1069 1070 1071

	if (mem_cgroup_disabled())
		return;

1072 1073 1074 1075
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1076
}
1077

1078
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1079
{
1080
	struct mem_cgroup *task_memcg;
1081
	struct task_struct *p;
1082
	bool ret;
1083

1084
	p = find_lock_task_mm(task);
1085
	if (p) {
1086
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1087 1088 1089 1090 1091 1092 1093
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1094
		rcu_read_lock();
1095 1096
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1097
		rcu_read_unlock();
1098
	}
1099 1100
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1101 1102 1103
	return ret;
}

1104
#define mem_cgroup_from_counter(counter, member)	\
1105 1106
	container_of(counter, struct mem_cgroup, member)

1107
/**
1108
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1109
 * @memcg: the memory cgroup
1110
 *
1111
 * Returns the maximum amount of memory @mem can be charged with, in
1112
 * pages.
1113
 */
1114
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1115
{
1116 1117 1118
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1119

1120
	count = page_counter_read(&memcg->memory);
1121
	limit = READ_ONCE(memcg->memory.limit);
1122 1123 1124 1125 1126
	if (count < limit)
		margin = limit - count;

	if (do_swap_account) {
		count = page_counter_read(&memcg->memsw);
1127
		limit = READ_ONCE(memcg->memsw.limit);
1128 1129 1130 1131 1132
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1133 1134
}

1135
/*
Q
Qiang Huang 已提交
1136
 * A routine for checking "mem" is under move_account() or not.
1137
 *
Q
Qiang Huang 已提交
1138 1139 1140
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1141
 */
1142
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1143
{
1144 1145
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1146
	bool ret = false;
1147 1148 1149 1150 1151 1152 1153 1154 1155
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1156

1157 1158
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1159 1160
unlock:
	spin_unlock(&mc.lock);
1161 1162 1163
	return ret;
}

1164
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1165 1166
{
	if (mc.moving_task && current != mc.moving_task) {
1167
		if (mem_cgroup_under_move(memcg)) {
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1180
#define K(x) ((x) << (PAGE_SHIFT-10))
1181
/**
1182
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1183 1184 1185 1186 1187 1188 1189 1190
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
T
Tejun Heo 已提交
1191
	/* oom_info_lock ensures that parallel ooms do not interleave */
1192
	static DEFINE_MUTEX(oom_info_lock);
1193 1194
	struct mem_cgroup *iter;
	unsigned int i;
1195

1196
	mutex_lock(&oom_info_lock);
1197 1198
	rcu_read_lock();

1199 1200 1201 1202 1203 1204 1205 1206
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1207
	pr_cont_cgroup_path(memcg->css.cgroup);
1208
	pr_cont("\n");
1209 1210 1211

	rcu_read_unlock();

1212 1213 1214 1215 1216 1217 1218 1219 1220
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1221 1222

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1223 1224
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1240
	mutex_unlock(&oom_info_lock);
1241 1242
}

1243 1244 1245 1246
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1247
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1248 1249
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1250 1251
	struct mem_cgroup *iter;

1252
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1253
		num++;
1254 1255 1256
	return num;
}

D
David Rientjes 已提交
1257 1258 1259
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1260
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1261
{
1262
	unsigned long limit;
1263

1264
	limit = memcg->memory.limit;
1265
	if (mem_cgroup_swappiness(memcg)) {
1266
		unsigned long memsw_limit;
1267

1268 1269
		memsw_limit = memcg->memsw.limit;
		limit = min(limit + total_swap_pages, memsw_limit);
1270 1271
	}
	return limit;
D
David Rientjes 已提交
1272 1273
}

1274 1275
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1276
{
1277 1278 1279 1280 1281 1282
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
		.gfp_mask = gfp_mask,
		.order = order,
	};
1283 1284 1285 1286 1287 1288
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1289 1290
	mutex_lock(&oom_lock);

1291
	/*
1292 1293 1294
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1295
	 */
1296
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1297
		mark_oom_victim(current);
1298
		goto unlock;
1299 1300
	}

1301
	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1302
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1303
	for_each_mem_cgroup_tree(iter, memcg) {
1304
		struct css_task_iter it;
1305 1306
		struct task_struct *task;

1307 1308
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1309
			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1320
				css_task_iter_end(&it);
1321 1322 1323
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
1324
				goto unlock;
1325 1326 1327 1328
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1341
		}
1342
		css_task_iter_end(&it);
1343 1344
	}

1345 1346
	if (chosen) {
		points = chosen_points * 1000 / totalpages;
1347 1348
		oom_kill_process(&oc, chosen, points, totalpages, memcg,
				 "Memory cgroup out of memory");
1349 1350 1351
	}
unlock:
	mutex_unlock(&oom_lock);
1352 1353
}

1354 1355
#if MAX_NUMNODES > 1

1356 1357
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1358
 * @memcg: the target memcg
1359 1360 1361 1362 1363 1364 1365
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1366
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1367 1368
		int nid, bool noswap)
{
1369
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1370 1371 1372
		return true;
	if (noswap || !total_swap_pages)
		return false;
1373
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1374 1375 1376 1377
		return true;
	return false;

}
1378 1379 1380 1381 1382 1383 1384

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1385
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1386 1387
{
	int nid;
1388 1389 1390 1391
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1392
	if (!atomic_read(&memcg->numainfo_events))
1393
		return;
1394
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1395 1396 1397
		return;

	/* make a nodemask where this memcg uses memory from */
1398
	memcg->scan_nodes = node_states[N_MEMORY];
1399

1400
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1401

1402 1403
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1404
	}
1405

1406 1407
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1422
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1423 1424 1425
{
	int node;

1426 1427
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1428

1429
	node = next_node(node, memcg->scan_nodes);
1430
	if (node == MAX_NUMNODES)
1431
		node = first_node(memcg->scan_nodes);
1432 1433 1434 1435 1436 1437 1438 1439 1440
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1441
	memcg->last_scanned_node = node;
1442 1443 1444
	return node;
}
#else
1445
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1446 1447 1448 1449 1450
{
	return 0;
}
#endif

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1466
	excess = soft_limit_excess(root_memcg);
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1495
		if (!soft_limit_excess(root_memcg))
1496
			break;
1497
	}
1498 1499
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1500 1501
}

1502 1503 1504 1505 1506 1507
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1508 1509
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1510 1511 1512 1513
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1514
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1515
{
1516
	struct mem_cgroup *iter, *failed = NULL;
1517

1518 1519
	spin_lock(&memcg_oom_lock);

1520
	for_each_mem_cgroup_tree(iter, memcg) {
1521
		if (iter->oom_lock) {
1522 1523 1524 1525 1526
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1527 1528
			mem_cgroup_iter_break(memcg, iter);
			break;
1529 1530
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1531
	}
K
KAMEZAWA Hiroyuki 已提交
1532

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1544
		}
1545 1546
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1547 1548 1549 1550

	spin_unlock(&memcg_oom_lock);

	return !failed;
1551
}
1552

1553
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1554
{
K
KAMEZAWA Hiroyuki 已提交
1555 1556
	struct mem_cgroup *iter;

1557
	spin_lock(&memcg_oom_lock);
1558
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1559
	for_each_mem_cgroup_tree(iter, memcg)
1560
		iter->oom_lock = false;
1561
	spin_unlock(&memcg_oom_lock);
1562 1563
}

1564
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1565 1566 1567
{
	struct mem_cgroup *iter;

1568
	spin_lock(&memcg_oom_lock);
1569
	for_each_mem_cgroup_tree(iter, memcg)
1570 1571
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1572 1573
}

1574
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1575 1576 1577
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1578 1579
	/*
	 * When a new child is created while the hierarchy is under oom,
1580
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1581
	 */
1582
	spin_lock(&memcg_oom_lock);
1583
	for_each_mem_cgroup_tree(iter, memcg)
1584 1585 1586
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1587 1588
}

K
KAMEZAWA Hiroyuki 已提交
1589 1590
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1591
struct oom_wait_info {
1592
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1593 1594 1595 1596 1597 1598
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1599 1600
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1601 1602 1603
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1604
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1605

1606 1607
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1608 1609 1610 1611
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1612
static void memcg_oom_recover(struct mem_cgroup *memcg)
1613
{
1614 1615 1616 1617 1618 1619 1620 1621 1622
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1623
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1624 1625
}

1626
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1627
{
1628 1629
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
1630
	/*
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1643
	 */
1644 1645 1646 1647
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
1648 1649 1650 1651
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1652
 * @handle: actually kill/wait or just clean up the OOM state
1653
 *
1654 1655
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1656
 *
1657
 * Memcg supports userspace OOM handling where failed allocations must
1658 1659 1660 1661
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1662
 * the end of the page fault to complete the OOM handling.
1663 1664
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1665
 * completed, %false otherwise.
1666
 */
1667
bool mem_cgroup_oom_synchronize(bool handle)
1668
{
1669
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
1670
	struct oom_wait_info owait;
1671
	bool locked;
1672 1673 1674

	/* OOM is global, do not handle */
	if (!memcg)
1675
		return false;
1676

1677
	if (!handle || oom_killer_disabled)
1678
		goto cleanup;
1679 1680 1681 1682 1683 1684

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1685

1686
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
1700
		schedule();
1701 1702 1703 1704 1705
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1706 1707 1708 1709 1710 1711 1712 1713
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1714 1715
cleanup:
	current->memcg_oom.memcg = NULL;
1716
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1717
	return true;
1718 1719
}

1720 1721 1722
/**
 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
 * @page: page that is going to change accounted state
1723
 *
1724 1725 1726
 * This function must mark the beginning of an accounted page state
 * change to prevent double accounting when the page is concurrently
 * being moved to another memcg:
1727
 *
1728
 *   memcg = mem_cgroup_begin_page_stat(page);
1729 1730
 *   if (TestClearPageState(page))
 *     mem_cgroup_update_page_stat(memcg, state, -1);
1731
 *   mem_cgroup_end_page_stat(memcg);
1732
 */
1733
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1734 1735
{
	struct mem_cgroup *memcg;
1736
	unsigned long flags;
1737

1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page from being uncharged.
	 * E.g. end-writeback clearing PageWriteback(), which allows
	 * migration to go ahead and uncharge the page before the
	 * account transaction might be complete.
	 */
1750 1751 1752 1753
	rcu_read_lock();

	if (mem_cgroup_disabled())
		return NULL;
1754
again:
1755
	memcg = page->mem_cgroup;
1756
	if (unlikely(!memcg))
1757 1758
		return NULL;

Q
Qiang Huang 已提交
1759
	if (atomic_read(&memcg->moving_account) <= 0)
1760
		return memcg;
1761

1762
	spin_lock_irqsave(&memcg->move_lock, flags);
1763
	if (memcg != page->mem_cgroup) {
1764
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1765 1766
		goto again;
	}
1767 1768 1769 1770 1771 1772 1773 1774

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
	 * the task who has the lock for mem_cgroup_end_page_stat().
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1775 1776

	return memcg;
1777
}
1778
EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1779

1780 1781 1782 1783
/**
 * mem_cgroup_end_page_stat - finish a page state statistics transaction
 * @memcg: the memcg that was accounted against
 */
1784
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1785
{
1786 1787 1788 1789 1790 1791 1792 1793
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1794

1795
	rcu_read_unlock();
1796
}
1797
EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1798

1799 1800 1801 1802
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1803
#define CHARGE_BATCH	32U
1804 1805
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1806
	unsigned int nr_pages;
1807
	struct work_struct work;
1808
	unsigned long flags;
1809
#define FLUSHING_CACHED_CHARGE	0
1810 1811
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1812
static DEFINE_MUTEX(percpu_charge_mutex);
1813

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1824
 */
1825
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1826 1827
{
	struct memcg_stock_pcp *stock;
1828
	bool ret = false;
1829

1830
	if (nr_pages > CHARGE_BATCH)
1831
		return ret;
1832

1833
	stock = &get_cpu_var(memcg_stock);
1834
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1835
		stock->nr_pages -= nr_pages;
1836 1837
		ret = true;
	}
1838 1839 1840 1841 1842
	put_cpu_var(memcg_stock);
	return ret;
}

/*
1843
 * Returns stocks cached in percpu and reset cached information.
1844 1845 1846 1847 1848
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1849
	if (stock->nr_pages) {
1850
		page_counter_uncharge(&old->memory, stock->nr_pages);
1851
		if (do_swap_account)
1852
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1853
		css_put_many(&old->css, stock->nr_pages);
1854
		stock->nr_pages = 0;
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
1865
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1866
	drain_stock(stock);
1867
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1868 1869 1870
}

/*
1871
 * Cache charges(val) to local per_cpu area.
1872
 * This will be consumed by consume_stock() function, later.
1873
 */
1874
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1875 1876 1877
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

1878
	if (stock->cached != memcg) { /* reset if necessary */
1879
		drain_stock(stock);
1880
		stock->cached = memcg;
1881
	}
1882
	stock->nr_pages += nr_pages;
1883 1884 1885 1886
	put_cpu_var(memcg_stock);
}

/*
1887
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1888
 * of the hierarchy under it.
1889
 */
1890
static void drain_all_stock(struct mem_cgroup *root_memcg)
1891
{
1892
	int cpu, curcpu;
1893

1894 1895 1896
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1897 1898
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1899
	curcpu = get_cpu();
1900 1901
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1902
		struct mem_cgroup *memcg;
1903

1904 1905
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1906
			continue;
1907
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1908
			continue;
1909 1910 1911 1912 1913 1914
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1915
	}
1916
	put_cpu();
A
Andrew Morton 已提交
1917
	put_online_cpus();
1918
	mutex_unlock(&percpu_charge_mutex);
1919 1920
}

1921
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1922 1923 1924 1925 1926 1927
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

1928
	if (action == CPU_ONLINE)
1929 1930
		return NOTIFY_OK;

1931
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1932
		return NOTIFY_OK;
1933

1934 1935 1936 1937 1938
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1939 1940
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1941
{
1942
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1943
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1944
	struct mem_cgroup *mem_over_limit;
1945
	struct page_counter *counter;
1946
	unsigned long nr_reclaimed;
1947 1948
	bool may_swap = true;
	bool drained = false;
1949
	int ret = 0;
1950

1951 1952
	if (mem_cgroup_is_root(memcg))
		goto done;
1953
retry:
1954 1955
	if (consume_stock(memcg, nr_pages))
		goto done;
1956

1957
	if (!do_swap_account ||
1958 1959
	    !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (!page_counter_try_charge(&memcg->memory, batch, &counter))
1960
			goto done_restock;
1961
		if (do_swap_account)
1962 1963
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1964
	} else {
1965
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1966
		may_swap = false;
1967
	}
1968

1969 1970 1971 1972
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
1973

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
		goto bypass;

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

1988 1989
	if (!(gfp_mask & __GFP_WAIT))
		goto nomem;
1990

1991 1992
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

1993 1994
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
1995

1996
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1997
		goto retry;
1998

1999
	if (!drained) {
2000
		drain_all_stock(mem_over_limit);
2001 2002 2003 2004
		drained = true;
		goto retry;
	}

2005 2006
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2007 2008 2009 2010 2011 2012 2013 2014 2015
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2016
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2017 2018 2019 2020 2021 2022 2023 2024
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2025 2026 2027
	if (nr_retries--)
		goto retry;

2028 2029 2030
	if (gfp_mask & __GFP_NOFAIL)
		goto bypass;

2031 2032 2033
	if (fatal_signal_pending(current))
		goto bypass;

2034 2035
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2036
	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2037
nomem:
2038
	if (!(gfp_mask & __GFP_NOFAIL))
2039
		return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2040
bypass:
2041
	return -EINTR;
2042 2043

done_restock:
2044
	css_get_many(&memcg->css, batch);
2045 2046
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2047 2048
	if (!(gfp_mask & __GFP_WAIT))
		goto done;
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	/*
	 * If the hierarchy is above the normal consumption range,
	 * make the charging task trim their excess contribution.
	 */
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
2059
done:
2060
	return ret;
2061
}
2062

2063
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2064
{
2065 2066 2067
	if (mem_cgroup_is_root(memcg))
		return;

2068
	page_counter_uncharge(&memcg->memory, nr_pages);
2069
	if (do_swap_account)
2070
		page_counter_uncharge(&memcg->memsw, nr_pages);
2071

2072
	css_put_many(&memcg->css, nr_pages);
2073 2074
}

2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
/*
 * try_get_mem_cgroup_from_page - look up page's memcg association
 * @page: the page
 *
 * Look up, get a css reference, and return the memcg that owns @page.
 *
 * The page must be locked to prevent racing with swap-in and page
 * cache charges.  If coming from an unlocked page table, the caller
 * must ensure the page is on the LRU or this can race with charging.
 */
2085
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2086
{
2087
	struct mem_cgroup *memcg;
2088
	unsigned short id;
2089 2090
	swp_entry_t ent;

2091
	VM_BUG_ON_PAGE(!PageLocked(page), page);
2092

2093
	memcg = page->mem_cgroup;
2094 2095
	if (memcg) {
		if (!css_tryget_online(&memcg->css))
2096
			memcg = NULL;
2097
	} else if (PageSwapCache(page)) {
2098
		ent.val = page_private(page);
2099
		id = lookup_swap_cgroup_id(ent);
2100
		rcu_read_lock();
2101
		memcg = mem_cgroup_from_id(id);
2102
		if (memcg && !css_tryget_online(&memcg->css))
2103
			memcg = NULL;
2104
		rcu_read_unlock();
2105
	}
2106
	return memcg;
2107 2108
}

2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2140
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2141
			  bool lrucare)
2142
{
2143
	int isolated;
2144

2145
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2146 2147 2148 2149 2150

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2151 2152
	if (lrucare)
		lock_page_lru(page, &isolated);
2153

2154 2155
	/*
	 * Nobody should be changing or seriously looking at
2156
	 * page->mem_cgroup at this point:
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2168
	page->mem_cgroup = memcg;
2169

2170 2171
	if (lrucare)
		unlock_page_lru(page, isolated);
2172
}
2173

2174
#ifdef CONFIG_MEMCG_KMEM
2175 2176
int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
		      unsigned long nr_pages)
2177
{
2178
	struct page_counter *counter;
2179 2180
	int ret = 0;

2181 2182
	ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
	if (ret < 0)
2183 2184
		return ret;

2185
	ret = try_charge(memcg, gfp, nr_pages);
2186 2187
	if (ret == -EINTR)  {
		/*
2188 2189 2190 2191 2192 2193
		 * try_charge() chose to bypass to root due to OOM kill or
		 * fatal signal.  Since our only options are to either fail
		 * the allocation or charge it to this cgroup, do it as a
		 * temporary condition. But we can't fail. From a kmem/slab
		 * perspective, the cache has already been selected, by
		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2194 2195 2196
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
2197 2198 2199
		 * memcg_charge_kmem in a sane state, but was OOM-killed
		 * during try_charge() above. Tasks that were already dying
		 * when the allocation triggers should have been already
2200 2201
		 * directed to the root cgroup in memcontrol.h
		 */
2202
		page_counter_charge(&memcg->memory, nr_pages);
2203
		if (do_swap_account)
2204
			page_counter_charge(&memcg->memsw, nr_pages);
2205
		css_get_many(&memcg->css, nr_pages);
2206 2207
		ret = 0;
	} else if (ret)
2208
		page_counter_uncharge(&memcg->kmem, nr_pages);
2209 2210 2211 2212

	return ret;
}

2213
void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2214
{
2215
	page_counter_uncharge(&memcg->memory, nr_pages);
2216
	if (do_swap_account)
2217
		page_counter_uncharge(&memcg->memsw, nr_pages);
2218

2219
	page_counter_uncharge(&memcg->kmem, nr_pages);
2220

2221
	css_put_many(&memcg->css, nr_pages);
2222 2223
}

2224
static int memcg_alloc_cache_id(void)
2225
{
2226 2227 2228
	int id, size;
	int err;

2229
	id = ida_simple_get(&memcg_cache_ida,
2230 2231 2232
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2233

2234
	if (id < memcg_nr_cache_ids)
2235 2236 2237 2238 2239 2240
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2241
	down_write(&memcg_cache_ids_sem);
2242 2243

	size = 2 * (id + 1);
2244 2245 2246 2247 2248
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2249
	err = memcg_update_all_caches(size);
2250 2251
	if (!err)
		err = memcg_update_all_list_lrus(size);
2252 2253 2254 2255 2256
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2257
	if (err) {
2258
		ida_simple_remove(&memcg_cache_ida, id);
2259 2260 2261 2262 2263 2264 2265
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2266
	ida_simple_remove(&memcg_cache_ida, id);
2267 2268
}

2269
struct memcg_kmem_cache_create_work {
2270 2271 2272 2273 2274
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2275
static void memcg_kmem_cache_create_func(struct work_struct *w)
2276
{
2277 2278
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2279 2280
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2281

2282
	memcg_create_kmem_cache(memcg, cachep);
2283

2284
	css_put(&memcg->css);
2285 2286 2287 2288 2289 2290
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2291 2292
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2293
{
2294
	struct memcg_kmem_cache_create_work *cw;
2295

2296
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2297
	if (!cw)
2298
		return;
2299 2300

	css_get(&memcg->css);
2301 2302 2303

	cw->memcg = memcg;
	cw->cachep = cachep;
2304
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2305 2306 2307 2308

	schedule_work(&cw->work);
}

2309 2310
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2311 2312 2313 2314
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2315
	 * in __memcg_schedule_kmem_cache_create will recurse.
2316 2317 2318 2319 2320 2321 2322
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2323
	current->memcg_kmem_skip_account = 1;
2324
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2325
	current->memcg_kmem_skip_account = 0;
2326
}
2327

2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
2341
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2342 2343
{
	struct mem_cgroup *memcg;
2344
	struct kmem_cache *memcg_cachep;
2345
	int kmemcg_id;
2346

2347
	VM_BUG_ON(!is_root_cache(cachep));
2348

2349
	if (current->memcg_kmem_skip_account)
2350 2351
		return cachep;

2352
	memcg = get_mem_cgroup_from_mm(current->mm);
2353
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2354
	if (kmemcg_id < 0)
2355
		goto out;
2356

2357
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2358 2359
	if (likely(memcg_cachep))
		return memcg_cachep;
2360 2361 2362 2363 2364 2365 2366 2367 2368

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2369 2370 2371
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2372
	 */
2373
	memcg_schedule_kmem_cache_create(memcg, cachep);
2374
out:
2375
	css_put(&memcg->css);
2376
	return cachep;
2377 2378
}

2379 2380 2381
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
2382
		css_put(&cachep->memcg_params.memcg->css);
2383 2384
}

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
2406

2407
	memcg = get_mem_cgroup_from_mm(current->mm);
2408

2409
	if (!memcg_kmem_is_active(memcg)) {
2410 2411 2412 2413
		css_put(&memcg->css);
		return true;
	}

2414
	ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
2429
		memcg_uncharge_kmem(memcg, 1 << order);
2430 2431
		return;
	}
2432
	page->mem_cgroup = memcg;
2433 2434 2435 2436
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
2437
	struct mem_cgroup *memcg = page->mem_cgroup;
2438 2439 2440 2441

	if (!memcg)
		return;

2442
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2443

2444
	memcg_uncharge_kmem(memcg, 1 << order);
2445
	page->mem_cgroup = NULL;
2446
}
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457

struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
{
	struct mem_cgroup *memcg = NULL;
	struct kmem_cache *cachep;
	struct page *page;

	page = virt_to_head_page(ptr);
	if (PageSlab(page)) {
		cachep = page->slab_cache;
		if (!is_root_cache(cachep))
2458
			memcg = cachep->memcg_params.memcg;
2459 2460 2461 2462 2463 2464
	} else
		/* page allocated by alloc_kmem_pages */
		memcg = page->mem_cgroup;

	return memcg;
}
2465 2466
#endif /* CONFIG_MEMCG_KMEM */

2467 2468 2469 2470
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2471 2472 2473
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
2474
 */
2475
void mem_cgroup_split_huge_fixup(struct page *head)
2476
{
2477
	int i;
2478

2479 2480
	if (mem_cgroup_disabled())
		return;
2481

2482
	for (i = 1; i < HPAGE_PMD_NR; i++)
2483
		head[i].mem_cgroup = head->mem_cgroup;
2484

2485
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2486
		       HPAGE_PMD_NR);
2487
}
2488
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2489

A
Andrew Morton 已提交
2490
#ifdef CONFIG_MEMCG_SWAP
2491 2492
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2493
{
2494 2495
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2496
}
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2509
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2510 2511 2512
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2513
				struct mem_cgroup *from, struct mem_cgroup *to)
2514 2515 2516
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2517 2518
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2519 2520 2521

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2522
		mem_cgroup_swap_statistics(to, true);
2523 2524 2525 2526 2527 2528
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2529
				struct mem_cgroup *from, struct mem_cgroup *to)
2530 2531 2532
{
	return -EINVAL;
}
2533
#endif
K
KAMEZAWA Hiroyuki 已提交
2534

2535
static DEFINE_MUTEX(memcg_limit_mutex);
2536

2537
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2538
				   unsigned long limit)
2539
{
2540 2541 2542
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2543
	int retry_count;
2544
	int ret;
2545 2546 2547 2548 2549 2550

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2551 2552
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2553

2554
	oldusage = page_counter_read(&memcg->memory);
2555

2556
	do {
2557 2558 2559 2560
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2561 2562 2563 2564

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2565
			ret = -EINVAL;
2566 2567
			break;
		}
2568 2569 2570 2571
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2572 2573 2574 2575

		if (!ret)
			break;

2576 2577
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2578
		curusage = page_counter_read(&memcg->memory);
2579
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2580
		if (curusage >= oldusage)
2581 2582 2583
			retry_count--;
		else
			oldusage = curusage;
2584 2585
	} while (retry_count);

2586 2587
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2588

2589 2590 2591
	return ret;
}

L
Li Zefan 已提交
2592
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2593
					 unsigned long limit)
2594
{
2595 2596 2597
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2598
	int retry_count;
2599
	int ret;
2600

2601
	/* see mem_cgroup_resize_res_limit */
2602 2603 2604 2605 2606 2607
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2608 2609 2610 2611
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2612 2613 2614 2615

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2616 2617 2618
			ret = -EINVAL;
			break;
		}
2619 2620 2621 2622
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2623 2624 2625 2626

		if (!ret)
			break;

2627 2628
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2629
		curusage = page_counter_read(&memcg->memsw);
2630
		/* Usage is reduced ? */
2631
		if (curusage >= oldusage)
2632
			retry_count--;
2633 2634
		else
			oldusage = curusage;
2635 2636
	} while (retry_count);

2637 2638
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2639

2640 2641 2642
	return ret;
}

2643 2644 2645 2646 2647 2648 2649 2650 2651
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2652
	unsigned long excess;
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2677
		spin_lock_irq(&mctz->lock);
2678
		__mem_cgroup_remove_exceeded(mz, mctz);
2679 2680 2681 2682 2683 2684

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2685 2686 2687
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2688
		excess = soft_limit_excess(mz->memcg);
2689 2690 2691 2692 2693 2694 2695 2696 2697
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2698
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2699
		spin_unlock_irq(&mctz->lock);
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2717 2718 2719 2720 2721 2722
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2723 2724
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2725 2726
	bool ret;

2727
	/*
2728 2729 2730 2731
	 * The lock does not prevent addition or deletion of children, but
	 * it prevents a new child from being initialized based on this
	 * parent in css_online(), so it's enough to decide whether
	 * hierarchically inherited attributes can still be changed or not.
2732
	 */
2733 2734 2735 2736 2737 2738
	lockdep_assert_held(&memcg_create_mutex);

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2739 2740
}

2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2751 2752
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2753
	/* try to free all pages in this cgroup */
2754
	while (nr_retries && page_counter_read(&memcg->memory)) {
2755
		int progress;
2756

2757 2758 2759
		if (signal_pending(current))
			return -EINTR;

2760 2761
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2762
		if (!progress) {
2763
			nr_retries--;
2764
			/* maybe some writeback is necessary */
2765
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2766
		}
2767 2768

	}
2769 2770

	return 0;
2771 2772
}

2773 2774 2775
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2776
{
2777
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2778

2779 2780
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2781
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2782 2783
}

2784 2785
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2786
{
2787
	return mem_cgroup_from_css(css)->use_hierarchy;
2788 2789
}

2790 2791
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2792 2793
{
	int retval = 0;
2794
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2795
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2796

2797
	mutex_lock(&memcg_create_mutex);
2798 2799 2800 2801

	if (memcg->use_hierarchy == val)
		goto out;

2802
	/*
2803
	 * If parent's use_hierarchy is set, we can't make any modifications
2804 2805 2806 2807 2808 2809
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2810
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2811
				(val == 1 || val == 0)) {
2812
		if (!memcg_has_children(memcg))
2813
			memcg->use_hierarchy = val;
2814 2815 2816 2817
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2818 2819

out:
2820
	mutex_unlock(&memcg_create_mutex);
2821 2822 2823 2824

	return retval;
}

2825 2826
static unsigned long tree_stat(struct mem_cgroup *memcg,
			       enum mem_cgroup_stat_index idx)
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
{
	struct mem_cgroup *iter;
	long val = 0;

	/* Per-cpu values can be negative, use a signed accumulator */
	for_each_mem_cgroup_tree(iter, memcg)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
}

static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
{
	u64 val;

2844 2845 2846 2847 2848 2849
	if (mem_cgroup_is_root(memcg)) {
		val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
		val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
		if (swap)
			val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
	} else {
2850
		if (!swap)
2851
			val = page_counter_read(&memcg->memory);
2852
		else
2853
			val = page_counter_read(&memcg->memsw);
2854 2855 2856 2857
	}
	return val << PAGE_SHIFT;
}

2858 2859 2860 2861 2862 2863 2864
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2865

2866
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2867
			       struct cftype *cft)
B
Balbir Singh 已提交
2868
{
2869
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2870
	struct page_counter *counter;
2871

2872
	switch (MEMFILE_TYPE(cft->private)) {
2873
	case _MEM:
2874 2875
		counter = &memcg->memory;
		break;
2876
	case _MEMSWAP:
2877 2878
		counter = &memcg->memsw;
		break;
2879
	case _KMEM:
2880
		counter = &memcg->kmem;
2881
		break;
2882 2883 2884
	default:
		BUG();
	}
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
			return mem_cgroup_usage(memcg, false);
		if (counter == &memcg->memsw)
			return mem_cgroup_usage(memcg, true);
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2904
}
2905 2906

#ifdef CONFIG_MEMCG_KMEM
2907 2908
static int memcg_activate_kmem(struct mem_cgroup *memcg,
			       unsigned long nr_pages)
2909 2910 2911 2912
{
	int err = 0;
	int memcg_id;

2913
	BUG_ON(memcg->kmemcg_id >= 0);
2914
	BUG_ON(memcg->kmem_acct_activated);
2915
	BUG_ON(memcg->kmem_acct_active);
2916

2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
2929
	mutex_lock(&memcg_create_mutex);
2930 2931
	if (cgroup_has_tasks(memcg->css.cgroup) ||
	    (memcg->use_hierarchy && memcg_has_children(memcg)))
2932 2933 2934 2935
		err = -EBUSY;
	mutex_unlock(&memcg_create_mutex);
	if (err)
		goto out;
2936

2937
	memcg_id = memcg_alloc_cache_id();
2938 2939 2940 2941 2942 2943
	if (memcg_id < 0) {
		err = memcg_id;
		goto out;
	}

	/*
V
Vladimir Davydov 已提交
2944 2945
	 * We couldn't have accounted to this cgroup, because it hasn't got
	 * activated yet, so this should succeed.
2946
	 */
2947
	err = page_counter_limit(&memcg->kmem, nr_pages);
2948 2949 2950 2951
	VM_BUG_ON(err);

	static_key_slow_inc(&memcg_kmem_enabled_key);
	/*
V
Vladimir Davydov 已提交
2952 2953
	 * A memory cgroup is considered kmem-active as soon as it gets
	 * kmemcg_id. Setting the id after enabling static branching will
2954 2955 2956
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2957
	memcg->kmemcg_id = memcg_id;
2958
	memcg->kmem_acct_activated = true;
2959
	memcg->kmem_acct_active = true;
2960
out:
2961 2962 2963 2964
	return err;
}

static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2965
				   unsigned long limit)
2966 2967 2968
{
	int ret;

2969
	mutex_lock(&memcg_limit_mutex);
2970
	if (!memcg_kmem_is_active(memcg))
2971
		ret = memcg_activate_kmem(memcg, limit);
2972
	else
2973 2974
		ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
2975 2976 2977
	return ret;
}

2978
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2979
{
2980
	int ret = 0;
2981
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2982

2983 2984
	if (!parent)
		return 0;
2985

2986
	mutex_lock(&memcg_limit_mutex);
2987
	/*
2988 2989
	 * If the parent cgroup is not kmem-active now, it cannot be activated
	 * after this point, because it has at least one child already.
2990
	 */
2991
	if (memcg_kmem_is_active(parent))
2992 2993
		ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
	mutex_unlock(&memcg_limit_mutex);
2994
	return ret;
2995
}
2996 2997
#else
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2998
				   unsigned long limit)
2999 3000 3001
{
	return -EINVAL;
}
3002
#endif /* CONFIG_MEMCG_KMEM */
3003

3004 3005 3006 3007
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3008 3009
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3010
{
3011
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3012
	unsigned long nr_pages;
3013 3014
	int ret;

3015
	buf = strstrip(buf);
3016
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3017 3018
	if (ret)
		return ret;
3019

3020
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3021
	case RES_LIMIT:
3022 3023 3024 3025
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3026 3027 3028
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3029
			break;
3030 3031
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3032
			break;
3033 3034 3035 3036
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
		}
3037
		break;
3038 3039 3040
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3041 3042
		break;
	}
3043
	return ret ?: nbytes;
B
Balbir Singh 已提交
3044 3045
}

3046 3047
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3048
{
3049
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3050
	struct page_counter *counter;
3051

3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
	default:
		BUG();
	}
3065

3066
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3067
	case RES_MAX_USAGE:
3068
		page_counter_reset_watermark(counter);
3069 3070
		break;
	case RES_FAILCNT:
3071
		counter->failcnt = 0;
3072
		break;
3073 3074
	default:
		BUG();
3075
	}
3076

3077
	return nbytes;
3078 3079
}

3080
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3081 3082
					struct cftype *cft)
{
3083
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3084 3085
}

3086
#ifdef CONFIG_MMU
3087
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3088 3089
					struct cftype *cft, u64 val)
{
3090
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3091

3092
	if (val & ~MOVE_MASK)
3093
		return -EINVAL;
3094

3095
	/*
3096 3097 3098 3099
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3100
	 */
3101
	memcg->move_charge_at_immigrate = val;
3102 3103
	return 0;
}
3104
#else
3105
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3106 3107 3108 3109 3110
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3111

3112
#ifdef CONFIG_NUMA
3113
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3114
{
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3127
	int nid;
3128
	unsigned long nr;
3129
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3130

3131 3132 3133 3134 3135 3136 3137 3138 3139
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3140 3141
	}

3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3157 3158 3159 3160 3161 3162
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3163
static int memcg_stat_show(struct seq_file *m, void *v)
3164
{
3165
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3166
	unsigned long memory, memsw;
3167 3168
	struct mem_cgroup *mi;
	unsigned int i;
3169

3170 3171 3172 3173
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3174 3175
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3176
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3177
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3178
			continue;
3179 3180
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3181
	}
L
Lee Schermerhorn 已提交
3182

3183 3184 3185 3186 3187 3188 3189 3190
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3191
	/* Hierarchical information */
3192 3193 3194 3195
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3196
	}
3197 3198 3199 3200 3201
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
	if (do_swap_account)
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3202

3203 3204 3205
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

3206
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3207
			continue;
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3228
	}
K
KAMEZAWA Hiroyuki 已提交
3229

K
KOSAKI Motohiro 已提交
3230 3231 3232 3233
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3234
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3235 3236 3237 3238 3239
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3240
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3241
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3242

3243 3244 3245 3246
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3247
			}
3248 3249 3250 3251
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3252 3253 3254
	}
#endif

3255 3256 3257
	return 0;
}

3258 3259
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3260
{
3261
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3262

3263
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3264 3265
}

3266 3267
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3268
{
3269
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3270

3271
	if (val > 100)
K
KOSAKI Motohiro 已提交
3272 3273
		return -EINVAL;

3274
	if (css->parent)
3275 3276 3277
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3278

K
KOSAKI Motohiro 已提交
3279 3280 3281
	return 0;
}

3282 3283 3284
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3285
	unsigned long usage;
3286 3287 3288 3289
	int i;

	rcu_read_lock();
	if (!swap)
3290
		t = rcu_dereference(memcg->thresholds.primary);
3291
	else
3292
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3293 3294 3295 3296

	if (!t)
		goto unlock;

3297
	usage = mem_cgroup_usage(memcg, swap);
3298 3299

	/*
3300
	 * current_threshold points to threshold just below or equal to usage.
3301 3302 3303
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3304
	i = t->current_threshold;
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3328
	t->current_threshold = i - 1;
3329 3330 3331 3332 3333 3334
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3335 3336 3337 3338 3339 3340 3341
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3342 3343 3344 3345 3346 3347 3348
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3349 3350 3351 3352 3353 3354 3355
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3356 3357
}

3358
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3359 3360 3361
{
	struct mem_cgroup_eventfd_list *ev;

3362 3363
	spin_lock(&memcg_oom_lock);

3364
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3365
		eventfd_signal(ev->eventfd, 1);
3366 3367

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3368 3369 3370
	return 0;
}

3371
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3372
{
K
KAMEZAWA Hiroyuki 已提交
3373 3374
	struct mem_cgroup *iter;

3375
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3376
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3377 3378
}

3379
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3380
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3381
{
3382 3383
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3384 3385
	unsigned long threshold;
	unsigned long usage;
3386
	int i, size, ret;
3387

3388
	ret = page_counter_memparse(args, "-1", &threshold);
3389 3390 3391 3392
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3393

3394
	if (type == _MEM) {
3395
		thresholds = &memcg->thresholds;
3396
		usage = mem_cgroup_usage(memcg, false);
3397
	} else if (type == _MEMSWAP) {
3398
		thresholds = &memcg->memsw_thresholds;
3399
		usage = mem_cgroup_usage(memcg, true);
3400
	} else
3401 3402 3403
		BUG();

	/* Check if a threshold crossed before adding a new one */
3404
	if (thresholds->primary)
3405 3406
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3407
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3408 3409

	/* Allocate memory for new array of thresholds */
3410
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3411
			GFP_KERNEL);
3412
	if (!new) {
3413 3414 3415
		ret = -ENOMEM;
		goto unlock;
	}
3416
	new->size = size;
3417 3418

	/* Copy thresholds (if any) to new array */
3419 3420
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3421
				sizeof(struct mem_cgroup_threshold));
3422 3423
	}

3424
	/* Add new threshold */
3425 3426
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3427 3428

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3429
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3430 3431 3432
			compare_thresholds, NULL);

	/* Find current threshold */
3433
	new->current_threshold = -1;
3434
	for (i = 0; i < size; i++) {
3435
		if (new->entries[i].threshold <= usage) {
3436
			/*
3437 3438
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3439 3440
			 * it here.
			 */
3441
			++new->current_threshold;
3442 3443
		} else
			break;
3444 3445
	}

3446 3447 3448 3449 3450
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3451

3452
	/* To be sure that nobody uses thresholds */
3453 3454 3455 3456 3457 3458 3459 3460
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3461
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3462 3463
	struct eventfd_ctx *eventfd, const char *args)
{
3464
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3465 3466
}

3467
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3468 3469
	struct eventfd_ctx *eventfd, const char *args)
{
3470
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3471 3472
}

3473
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3474
	struct eventfd_ctx *eventfd, enum res_type type)
3475
{
3476 3477
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3478
	unsigned long usage;
3479
	int i, j, size;
3480 3481

	mutex_lock(&memcg->thresholds_lock);
3482 3483

	if (type == _MEM) {
3484
		thresholds = &memcg->thresholds;
3485
		usage = mem_cgroup_usage(memcg, false);
3486
	} else if (type == _MEMSWAP) {
3487
		thresholds = &memcg->memsw_thresholds;
3488
		usage = mem_cgroup_usage(memcg, true);
3489
	} else
3490 3491
		BUG();

3492 3493 3494
	if (!thresholds->primary)
		goto unlock;

3495 3496 3497 3498
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3499 3500 3501
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3502 3503 3504
			size++;
	}

3505
	new = thresholds->spare;
3506

3507 3508
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3509 3510
		kfree(new);
		new = NULL;
3511
		goto swap_buffers;
3512 3513
	}

3514
	new->size = size;
3515 3516

	/* Copy thresholds and find current threshold */
3517 3518 3519
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3520 3521
			continue;

3522
		new->entries[j] = thresholds->primary->entries[i];
3523
		if (new->entries[j].threshold <= usage) {
3524
			/*
3525
			 * new->current_threshold will not be used
3526 3527 3528
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3529
			++new->current_threshold;
3530 3531 3532 3533
		}
		j++;
	}

3534
swap_buffers:
3535 3536
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3537 3538 3539 3540 3541 3542
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

3543
	rcu_assign_pointer(thresholds->primary, new);
3544

3545
	/* To be sure that nobody uses thresholds */
3546
	synchronize_rcu();
3547
unlock:
3548 3549
	mutex_unlock(&memcg->thresholds_lock);
}
3550

3551
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3552 3553
	struct eventfd_ctx *eventfd)
{
3554
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3555 3556
}

3557
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3558 3559
	struct eventfd_ctx *eventfd)
{
3560
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3561 3562
}

3563
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3564
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3565 3566 3567 3568 3569 3570 3571
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3572
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3573 3574 3575 3576 3577

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3578
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3579
		eventfd_signal(eventfd, 1);
3580
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3581 3582 3583 3584

	return 0;
}

3585
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3586
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3587 3588 3589
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3590
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3591

3592
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3593 3594 3595 3596 3597 3598
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3599
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3600 3601
}

3602
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3603
{
3604
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3605

3606
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3607
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3608 3609 3610
	return 0;
}

3611
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3612 3613
	struct cftype *cft, u64 val)
{
3614
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3615 3616

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3617
	if (!css->parent || !((val == 0) || (val == 1)))
3618 3619
		return -EINVAL;

3620
	memcg->oom_kill_disable = val;
3621
	if (!val)
3622
		memcg_oom_recover(memcg);
3623

3624 3625 3626
	return 0;
}

A
Andrew Morton 已提交
3627
#ifdef CONFIG_MEMCG_KMEM
3628
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3629
{
3630 3631 3632 3633 3634
	int ret;

	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
3635

3636
	return mem_cgroup_sockets_init(memcg, ss);
3637
}
3638

3639 3640
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
3641 3642 3643 3644
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
	if (!memcg->kmem_acct_active)
		return;

	/*
	 * Clear the 'active' flag before clearing memcg_caches arrays entries.
	 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
	 * guarantees no cache will be created for this cgroup after we are
	 * done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_acct_active = false;

	memcg_deactivate_kmem_caches(memcg);
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
3683 3684
}

3685
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
3686
{
3687 3688 3689 3690 3691
	if (memcg->kmem_acct_activated) {
		memcg_destroy_kmem_caches(memcg);
		static_key_slow_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
3692
	mem_cgroup_sockets_destroy(memcg);
3693
}
3694
#else
3695
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3696 3697 3698
{
	return 0;
}
G
Glauber Costa 已提交
3699

3700 3701 3702 3703
static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
{
}

3704 3705 3706
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}
3707 3708
#endif

3709 3710 3711 3712 3713 3714 3715
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3726 3727 3728 3729 3730
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
 * @pavail: out parameter for number of available pages
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
 * Determine the numbers of available, dirty, and writeback pages in @wb's
 * memcg.  Dirty and writeback are self-explanatory.  Available is a bit
 * more involved.
 *
 * A memcg's headroom is "min(max, high) - used".  The available memory is
 * calculated as the lowest headroom of itself and the ancestors plus the
 * number of pages already being used for file pages.  Note that this
 * doesn't consider the actual amount of available memory in the system.
 * The caller should further cap *@pavail accordingly.
 */
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pavail,
			 unsigned long *pdirty, unsigned long *pwriteback)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;
	unsigned long head_room = PAGE_COUNTER_MAX;
	unsigned long file_pages;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);

	file_pages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						    (1 << LRU_ACTIVE_FILE));
	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

		head_room = min(head_room, ceiling - min(ceiling, used));
		memcg = parent;
	}

	*pavail = file_pages + head_room;
}

T
Tejun Heo 已提交
3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3795 3796 3797 3798
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3799 3800
#endif	/* CONFIG_CGROUP_WRITEBACK */

3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3814 3815 3816 3817 3818
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3819
static void memcg_event_remove(struct work_struct *work)
3820
{
3821 3822
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3823
	struct mem_cgroup *memcg = event->memcg;
3824 3825 3826

	remove_wait_queue(event->wqh, &event->wait);

3827
	event->unregister_event(memcg, event->eventfd);
3828 3829 3830 3831 3832 3833

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3834
	css_put(&memcg->css);
3835 3836 3837 3838 3839 3840 3841
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3842 3843
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3844
{
3845 3846
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3847
	struct mem_cgroup *memcg = event->memcg;
3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3860
		spin_lock(&memcg->event_list_lock);
3861 3862 3863 3864 3865 3866 3867 3868
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3869
		spin_unlock(&memcg->event_list_lock);
3870 3871 3872 3873 3874
	}

	return 0;
}

3875
static void memcg_event_ptable_queue_proc(struct file *file,
3876 3877
		wait_queue_head_t *wqh, poll_table *pt)
{
3878 3879
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3880 3881 3882 3883 3884 3885

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3886 3887
 * DO NOT USE IN NEW FILES.
 *
3888 3889 3890 3891 3892
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3893 3894
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3895
{
3896
	struct cgroup_subsys_state *css = of_css(of);
3897
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3898
	struct mem_cgroup_event *event;
3899 3900 3901 3902
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3903
	const char *name;
3904 3905 3906
	char *endp;
	int ret;

3907 3908 3909
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3910 3911
	if (*endp != ' ')
		return -EINVAL;
3912
	buf = endp + 1;
3913

3914
	cfd = simple_strtoul(buf, &endp, 10);
3915 3916
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3917
	buf = endp + 1;
3918 3919 3920 3921 3922

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3923
	event->memcg = memcg;
3924
	INIT_LIST_HEAD(&event->list);
3925 3926 3927
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3953 3954 3955 3956 3957
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3958 3959
	 *
	 * DO NOT ADD NEW FILES.
3960
	 */
A
Al Viro 已提交
3961
	name = cfile.file->f_path.dentry->d_name.name;
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3973 3974
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3975 3976 3977 3978 3979
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3980
	/*
3981 3982 3983
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3984
	 */
A
Al Viro 已提交
3985
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3986
					       &memory_cgrp_subsys);
3987
	ret = -EINVAL;
3988
	if (IS_ERR(cfile_css))
3989
		goto out_put_cfile;
3990 3991
	if (cfile_css != css) {
		css_put(cfile_css);
3992
		goto out_put_cfile;
3993
	}
3994

3995
	ret = event->register_event(memcg, event->eventfd, buf);
3996 3997 3998 3999 4000
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

4001 4002 4003
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4004 4005 4006 4007

	fdput(cfile);
	fdput(efile);

4008
	return nbytes;
4009 4010

out_put_css:
4011
	css_put(css);
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4024
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4025
	{
4026
		.name = "usage_in_bytes",
4027
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4028
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4029
	},
4030 4031
	{
		.name = "max_usage_in_bytes",
4032
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4033
		.write = mem_cgroup_reset,
4034
		.read_u64 = mem_cgroup_read_u64,
4035
	},
B
Balbir Singh 已提交
4036
	{
4037
		.name = "limit_in_bytes",
4038
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4039
		.write = mem_cgroup_write,
4040
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4041
	},
4042 4043 4044
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4045
		.write = mem_cgroup_write,
4046
		.read_u64 = mem_cgroup_read_u64,
4047
	},
B
Balbir Singh 已提交
4048 4049
	{
		.name = "failcnt",
4050
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4051
		.write = mem_cgroup_reset,
4052
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4053
	},
4054 4055
	{
		.name = "stat",
4056
		.seq_show = memcg_stat_show,
4057
	},
4058 4059
	{
		.name = "force_empty",
4060
		.write = mem_cgroup_force_empty_write,
4061
	},
4062 4063 4064 4065 4066
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4067
	{
4068
		.name = "cgroup.event_control",		/* XXX: for compat */
4069
		.write = memcg_write_event_control,
4070 4071 4072
		.flags = CFTYPE_NO_PREFIX,
		.mode = S_IWUGO,
	},
K
KOSAKI Motohiro 已提交
4073 4074 4075 4076 4077
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4078 4079 4080 4081 4082
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4083 4084
	{
		.name = "oom_control",
4085
		.seq_show = mem_cgroup_oom_control_read,
4086
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4087 4088
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4089 4090 4091
	{
		.name = "pressure_level",
	},
4092 4093 4094
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4095
		.seq_show = memcg_numa_stat_show,
4096 4097
	},
#endif
4098 4099 4100 4101
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4102
		.write = mem_cgroup_write,
4103
		.read_u64 = mem_cgroup_read_u64,
4104 4105 4106 4107
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4108
		.read_u64 = mem_cgroup_read_u64,
4109 4110 4111 4112
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4113
		.write = mem_cgroup_reset,
4114
		.read_u64 = mem_cgroup_read_u64,
4115 4116 4117 4118
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4119
		.write = mem_cgroup_reset,
4120
		.read_u64 = mem_cgroup_read_u64,
4121
	},
4122 4123 4124
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4125 4126 4127 4128
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4129 4130
	},
#endif
4131
#endif
4132
	{ },	/* terminate */
4133
};
4134

4135
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4136 4137
{
	struct mem_cgroup_per_node *pn;
4138
	struct mem_cgroup_per_zone *mz;
4139
	int zone, tmp = node;
4140 4141 4142 4143 4144 4145 4146 4147
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4148 4149
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4150
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4151 4152
	if (!pn)
		return 1;
4153 4154 4155

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4156
		lruvec_init(&mz->lruvec);
4157 4158
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4159
		mz->memcg = memcg;
4160
	}
4161
	memcg->nodeinfo[node] = pn;
4162 4163 4164
	return 0;
}

4165
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4166
{
4167
	kfree(memcg->nodeinfo[node]);
4168 4169
}

4170 4171
static struct mem_cgroup *mem_cgroup_alloc(void)
{
4172
	struct mem_cgroup *memcg;
4173
	size_t size;
4174

4175 4176
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4177

4178
	memcg = kzalloc(size, GFP_KERNEL);
4179
	if (!memcg)
4180 4181
		return NULL;

4182 4183
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
4184
		goto out_free;
T
Tejun Heo 已提交
4185 4186 4187 4188

	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto out_free_stat;

4189 4190
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
4191

T
Tejun Heo 已提交
4192 4193
out_free_stat:
	free_percpu(memcg->stat);
4194
out_free:
4195
	kfree(memcg);
4196
	return NULL;
4197 4198
}

4199
/*
4200 4201 4202 4203 4204 4205 4206 4207
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
4208
 */
4209 4210

static void __mem_cgroup_free(struct mem_cgroup *memcg)
4211
{
4212
	int node;
4213

4214
	mem_cgroup_remove_from_trees(memcg);
4215 4216 4217 4218 4219

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);
T
Tejun Heo 已提交
4220
	memcg_wb_domain_exit(memcg);
4221
	kfree(memcg);
4222
}
4223

4224 4225 4226
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
4227
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4228
{
4229
	if (!memcg->memory.parent)
4230
		return NULL;
4231
	return mem_cgroup_from_counter(memcg->memory.parent, memory);
4232
}
G
Glauber Costa 已提交
4233
EXPORT_SYMBOL(parent_mem_cgroup);
4234

L
Li Zefan 已提交
4235
static struct cgroup_subsys_state * __ref
4236
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
4237
{
4238
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4239
	long error = -ENOMEM;
4240
	int node;
B
Balbir Singh 已提交
4241

4242 4243
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
4244
		return ERR_PTR(error);
4245

B
Bob Liu 已提交
4246
	for_each_node(node)
4247
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4248
			goto free_out;
4249

4250
	/* root ? */
4251
	if (parent_css == NULL) {
4252
		root_mem_cgroup = memcg;
T
Tejun Heo 已提交
4253
		mem_cgroup_root_css = &memcg->css;
4254
		page_counter_init(&memcg->memory, NULL);
4255
		memcg->high = PAGE_COUNTER_MAX;
4256
		memcg->soft_limit = PAGE_COUNTER_MAX;
4257 4258
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4259
	}
4260

4261 4262 4263 4264 4265
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4266
	vmpressure_init(&memcg->vmpressure);
4267 4268
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
V
Vladimir Davydov 已提交
4269 4270 4271
#ifdef CONFIG_MEMCG_KMEM
	memcg->kmemcg_id = -1;
#endif
4272 4273 4274
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4275 4276 4277 4278 4279 4280 4281 4282
	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
4283
mem_cgroup_css_online(struct cgroup_subsys_state *css)
4284
{
4285
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
4286
	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4287
	int ret;
4288

4289
	if (css->id > MEM_CGROUP_ID_MAX)
4290 4291
		return -ENOSPC;

T
Tejun Heo 已提交
4292
	if (!parent)
4293 4294
		return 0;

4295
	mutex_lock(&memcg_create_mutex);
4296 4297 4298 4299 4300 4301

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
4302
		page_counter_init(&memcg->memory, &parent->memory);
4303
		memcg->high = PAGE_COUNTER_MAX;
4304
		memcg->soft_limit = PAGE_COUNTER_MAX;
4305 4306
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4307

4308
		/*
4309 4310
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
4311
		 */
4312
	} else {
4313
		page_counter_init(&memcg->memory, NULL);
4314
		memcg->high = PAGE_COUNTER_MAX;
4315
		memcg->soft_limit = PAGE_COUNTER_MAX;
4316 4317
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4318 4319 4320 4321 4322
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4323
		if (parent != root_mem_cgroup)
4324
			memory_cgrp_subsys.broken_hierarchy = true;
4325
	}
4326
	mutex_unlock(&memcg_create_mutex);
4327

4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339
	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
	if (ret)
		return ret;

	/*
	 * Make sure the memcg is initialized: mem_cgroup_iter()
	 * orders reading memcg->initialized against its callers
	 * reading the memcg members.
	 */
	smp_store_release(&memcg->initialized, 1);

	return 0;
B
Balbir Singh 已提交
4340 4341
}

4342
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4343
{
4344
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4345
	struct mem_cgroup_event *event, *tmp;
4346 4347 4348 4349 4350 4351

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4352 4353
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4354 4355 4356
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4357
	spin_unlock(&memcg->event_list_lock);
4358

4359
	vmpressure_cleanup(&memcg->vmpressure);
4360 4361

	memcg_deactivate_kmem(memcg);
4362 4363

	wb_memcg_offline(memcg);
4364 4365
}

4366
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4367
{
4368
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4369

4370
	memcg_destroy_kmem(memcg);
4371
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4372 4373
}

4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4391 4392 4393
	mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
	mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
	memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4394 4395
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4396
	memcg->soft_limit = PAGE_COUNTER_MAX;
4397
	memcg_wb_domain_size_changed(memcg);
4398 4399
}

4400
#ifdef CONFIG_MMU
4401
/* Handlers for move charge at task migration. */
4402
static int mem_cgroup_do_precharge(unsigned long count)
4403
{
4404
	int ret;
4405 4406

	/* Try a single bulk charge without reclaim first */
4407
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4408
	if (!ret) {
4409 4410 4411
		mc.precharge += count;
		return ret;
	}
4412
	if (ret == -EINTR) {
4413
		cancel_charge(root_mem_cgroup, count);
4414 4415
		return ret;
	}
4416 4417

	/* Try charges one by one with reclaim */
4418
	while (count--) {
4419
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4420 4421 4422
		/*
		 * In case of failure, any residual charges against
		 * mc.to will be dropped by mem_cgroup_clear_mc()
4423 4424
		 * later on.  However, cancel any charges that are
		 * bypassed to root right away or they'll be lost.
4425
		 */
4426
		if (ret == -EINTR)
4427
			cancel_charge(root_mem_cgroup, 1);
4428 4429
		if (ret)
			return ret;
4430
		mc.precharge++;
4431
		cond_resched();
4432
	}
4433
	return 0;
4434 4435 4436
}

/**
4437
 * get_mctgt_type - get target type of moving charge
4438 4439 4440
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4441
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4442 4443 4444 4445 4446 4447
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4448 4449 4450
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4451 4452 4453 4454 4455
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4456
	swp_entry_t	ent;
4457 4458 4459
};

enum mc_target_type {
4460
	MC_TARGET_NONE = 0,
4461
	MC_TARGET_PAGE,
4462
	MC_TARGET_SWAP,
4463 4464
};

D
Daisuke Nishimura 已提交
4465 4466
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4467
{
D
Daisuke Nishimura 已提交
4468
	struct page *page = vm_normal_page(vma, addr, ptent);
4469

D
Daisuke Nishimura 已提交
4470 4471 4472
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4473
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4474
			return NULL;
4475 4476 4477 4478
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4479 4480 4481 4482 4483 4484
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4485
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4486 4487 4488 4489 4490 4491
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4492
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4493
		return NULL;
4494 4495 4496 4497
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4498
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
4499 4500 4501 4502 4503
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
4504 4505 4506 4507 4508 4509 4510
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4511

4512 4513 4514 4515 4516 4517 4518 4519 4520
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4521
	if (!(mc.flags & MOVE_FILE))
4522 4523 4524
		return NULL;

	mapping = vma->vm_file->f_mapping;
4525
	pgoff = linear_page_index(vma, addr);
4526 4527

	/* page is moved even if it's not RSS of this task(page-faulted). */
4528 4529
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
			if (do_swap_account)
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4542
#endif
4543 4544 4545
	return page;
}

4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
 * @nr_pages: number of regular pages (>1 for huge pages)
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
 * - page is not on LRU (isolate_page() is useful.)
 * - compound_lock is held when nr_pages > 1
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
	int ret;
4567
	bool anon;
4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
	if (nr_pages > 1 && !PageTransHuge(page))
		goto out;

	/*
	 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
	 * of its source page while we change it: page migration takes
	 * both pages off the LRU, but page cache replacement doesn't.
	 */
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4593 4594
	anon = PageAnon(page);

4595 4596
	spin_lock_irqsave(&from->move_lock, flags);

4597
	if (!anon && page_mapped(page)) {
4598 4599 4600 4601 4602 4603
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
	mem_cgroup_charge_statistics(to, page, nr_pages);
	memcg_check_events(to, page);
	mem_cgroup_charge_statistics(from, page, -nr_pages);
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4651
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4652 4653 4654
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4655
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4656 4657 4658 4659 4660 4661
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4662
	else if (pte_none(ptent))
4663
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4664 4665

	if (!page && !ent.val)
4666
		return ret;
4667 4668
	if (page) {
		/*
4669
		 * Do only loose check w/o serialization.
4670
		 * mem_cgroup_move_account() checks the page is valid or
4671
		 * not under LRU exclusion.
4672
		 */
4673
		if (page->mem_cgroup == mc.from) {
4674 4675 4676 4677 4678 4679 4680
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4681 4682
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4683
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4684 4685 4686
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4687 4688 4689 4690
	}
	return ret;
}

4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4704
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4705
	if (!(mc.flags & MOVE_ANON))
4706
		return ret;
4707
	if (page->mem_cgroup == mc.from) {
4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4724 4725 4726 4727
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4728
	struct vm_area_struct *vma = walk->vma;
4729 4730 4731
	pte_t *pte;
	spinlock_t *ptl;

4732
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4733 4734
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4735
		spin_unlock(ptl);
4736
		return 0;
4737
	}
4738

4739 4740
	if (pmd_trans_unstable(pmd))
		return 0;
4741 4742
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4743
		if (get_mctgt_type(vma, addr, *pte, NULL))
4744 4745 4746 4747
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4748 4749 4750
	return 0;
}

4751 4752 4753 4754
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4755 4756 4757 4758
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4759
	down_read(&mm->mmap_sem);
4760
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4761
	up_read(&mm->mmap_sem);
4762 4763 4764 4765 4766 4767 4768 4769 4770

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4771 4772 4773 4774 4775
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4776 4777
}

4778 4779
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4780
{
4781 4782 4783
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4784
	/* we must uncharge all the leftover precharges from mc.to */
4785
	if (mc.precharge) {
4786
		cancel_charge(mc.to, mc.precharge);
4787 4788 4789 4790 4791 4792 4793
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4794
		cancel_charge(mc.from, mc.moved_charge);
4795
		mc.moved_charge = 0;
4796
	}
4797 4798 4799
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4800
		if (!mem_cgroup_is_root(mc.from))
4801
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4802

4803
		/*
4804 4805
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4806
		 */
4807
		if (!mem_cgroup_is_root(mc.to))
4808 4809
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4810
		css_put_many(&mc.from->css, mc.moved_swap);
4811

L
Li Zefan 已提交
4812
		/* we've already done css_get(mc.to) */
4813 4814
		mc.moved_swap = 0;
	}
4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4828
	spin_lock(&mc.lock);
4829 4830
	mc.from = NULL;
	mc.to = NULL;
4831
	spin_unlock(&mc.lock);
4832 4833
}

4834
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
4835
				 struct cgroup_taskset *tset)
4836
{
4837
	struct task_struct *p = cgroup_taskset_first(tset);
4838
	int ret = 0;
4839
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4840
	unsigned long move_flags;
4841

4842 4843 4844 4845 4846
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
4847
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4848
	if (move_flags) {
4849 4850 4851
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

4852
		VM_BUG_ON(from == memcg);
4853 4854 4855 4856 4857

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
4858 4859 4860 4861
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
4862
			VM_BUG_ON(mc.moved_charge);
4863
			VM_BUG_ON(mc.moved_swap);
4864

4865
			spin_lock(&mc.lock);
4866
			mc.from = from;
4867
			mc.to = memcg;
4868
			mc.flags = move_flags;
4869
			spin_unlock(&mc.lock);
4870
			/* We set mc.moving_task later */
4871 4872 4873 4874

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
4875 4876
		}
		mmput(mm);
4877 4878 4879 4880
	}
	return ret;
}

4881
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
4882
				     struct cgroup_taskset *tset)
4883
{
4884 4885
	if (mc.to)
		mem_cgroup_clear_mc();
4886 4887
}

4888 4889 4890
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4891
{
4892
	int ret = 0;
4893
	struct vm_area_struct *vma = walk->vma;
4894 4895
	pte_t *pte;
	spinlock_t *ptl;
4896 4897 4898
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4899

4900 4901 4902 4903 4904 4905 4906 4907 4908 4909
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
4910
	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4911
		if (mc.precharge < HPAGE_PMD_NR) {
4912
			spin_unlock(ptl);
4913 4914 4915 4916 4917 4918 4919
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
4920
							     mc.from, mc.to)) {
4921 4922 4923 4924 4925 4926 4927
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4928
		spin_unlock(ptl);
4929
		return 0;
4930 4931
	}

4932 4933
	if (pmd_trans_unstable(pmd))
		return 0;
4934 4935 4936 4937
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4938
		swp_entry_t ent;
4939 4940 4941 4942

		if (!mc.precharge)
			break;

4943
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4944 4945 4946 4947
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
4948
			if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4949
				mc.precharge--;
4950 4951
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4952 4953
			}
			putback_lru_page(page);
4954
put:			/* get_mctgt_type() gets the page */
4955 4956
			put_page(page);
			break;
4957 4958
		case MC_TARGET_SWAP:
			ent = target.ent;
4959
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4960
				mc.precharge--;
4961 4962 4963
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4964
			break;
4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4979
		ret = mem_cgroup_do_precharge(1);
4980 4981 4982 4983 4984 4985 4986 4987 4988
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
4989 4990 4991 4992
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
		.mm = mm,
	};
4993 4994

	lru_add_drain_all();
4995 4996 4997 4998 4999 5000 5001
	/*
	 * Signal mem_cgroup_begin_page_stat() to take the memcg's
	 * move_lock while we're moving its pages to another memcg.
	 * Then wait for already started RCU-only updates to finish.
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5015 5016 5017 5018 5019
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5020
	up_read(&mm->mmap_sem);
5021
	atomic_dec(&mc.from->moving_account);
5022 5023
}

5024
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5025
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
5026
{
5027
	struct task_struct *p = cgroup_taskset_first(tset);
5028
	struct mm_struct *mm = get_task_mm(p);
5029 5030

	if (mm) {
5031 5032
		if (mc.to)
			mem_cgroup_move_charge(mm);
5033 5034
		mmput(mm);
	}
5035 5036
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5037
}
5038
#else	/* !CONFIG_MMU */
5039
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5040
				 struct cgroup_taskset *tset)
5041 5042 5043
{
	return 0;
}
5044
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5045
				     struct cgroup_taskset *tset)
5046 5047
{
}
5048
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5049
				 struct cgroup_taskset *tset)
5050 5051 5052
{
}
#endif
B
Balbir Singh 已提交
5053

5054 5055
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5056 5057
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5058
 */
5059
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5060 5061
{
	/*
5062
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5063 5064 5065
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5066
	if (cgroup_on_dfl(root_css->cgroup))
5067 5068 5069
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5070 5071
}

5072 5073 5074 5075 5076 5077 5078 5079 5080
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
	return mem_cgroup_usage(mem_cgroup_from_css(css), false);
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5081
	unsigned long low = READ_ONCE(memcg->low);
5082 5083

	if (low == PAGE_COUNTER_MAX)
5084
		seq_puts(m, "max\n");
5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5099
	err = page_counter_memparse(buf, "max", &low);
5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5111
	unsigned long high = READ_ONCE(memcg->high);
5112 5113

	if (high == PAGE_COUNTER_MAX)
5114
		seq_puts(m, "max\n");
5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long high;
	int err;

	buf = strstrip(buf);
5129
	err = page_counter_memparse(buf, "max", &high);
5130 5131 5132 5133 5134
	if (err)
		return err;

	memcg->high = high;

5135
	memcg_wb_domain_size_changed(memcg);
5136 5137 5138 5139 5140 5141
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5142
	unsigned long max = READ_ONCE(memcg->memory.limit);
5143 5144

	if (max == PAGE_COUNTER_MAX)
5145
		seq_puts(m, "max\n");
5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
5160
	err = page_counter_memparse(buf, "max", &max);
5161 5162 5163 5164 5165 5166 5167
	if (err)
		return err;

	err = mem_cgroup_resize_limit(memcg, max);
	if (err)
		return err;

5168
	memcg_wb_domain_size_changed(memcg);
5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

static struct cftype memory_files[] = {
	{
		.name = "current",
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_events_show,
	},
	{ }	/* terminate */
};

5215
struct cgroup_subsys memory_cgrp_subsys = {
5216
	.css_alloc = mem_cgroup_css_alloc,
5217
	.css_online = mem_cgroup_css_online,
5218 5219
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
5220
	.css_reset = mem_cgroup_css_reset,
5221 5222
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5223
	.attach = mem_cgroup_move_task,
5224
	.bind = mem_cgroup_bind,
5225 5226
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5227
	.early_init = 0,
B
Balbir Singh 已提交
5228
};
5229

5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5252
	if (page_counter_read(&memcg->memory) >= memcg->low)
5253 5254 5255 5256 5257 5258 5259 5260
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5261
		if (page_counter_read(&memcg->memory) >= memcg->low)
5262 5263 5264 5265 5266
			return false;
	}
	return true;
}

5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	struct mem_cgroup *memcg = NULL;
	unsigned int nr_pages = 1;
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5302
		if (page->mem_cgroup)
5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362
			goto out;
	}

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	if (do_swap_account && PageSwapCache(page))
		memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);

	if (ret == -EINTR) {
		memcg = root_mem_cgroup;
		ret = 0;
	}
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      bool lrucare)
{
	unsigned int nr_pages = 1;

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5363 5364
	commit_charge(page, memcg, lrucare);

5365 5366 5367 5368 5369
	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

5370 5371 5372 5373
	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, page, nr_pages);
	memcg_check_events(memcg, page);
	local_irq_enable();
5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414

	if (do_swap_account && PageSwapCache(page)) {
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
{
	unsigned int nr_pages = 1;

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	if (PageTransHuge(page)) {
		nr_pages <<= compound_order(page);
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
	}

	cancel_charge(memcg, nr_pages);
}

5415 5416 5417 5418
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5419
	unsigned long nr_pages = nr_anon + nr_file;
5420 5421
	unsigned long flags;

5422
	if (!mem_cgroup_is_root(memcg)) {
5423 5424 5425
		page_counter_uncharge(&memcg->memory, nr_pages);
		if (do_swap_account)
			page_counter_uncharge(&memcg->memsw, nr_pages);
5426 5427
		memcg_oom_recover(memcg);
	}
5428 5429 5430 5431 5432 5433

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5434
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5435 5436
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5437 5438

	if (!mem_cgroup_is_root(memcg))
5439
		css_put_many(&memcg->css, nr_pages);
5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5462
		if (!page->mem_cgroup)
5463 5464 5465 5466
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5467
		 * page->mem_cgroup at this point, we have fully
5468
		 * exclusive access to the page.
5469 5470
		 */

5471
		if (memcg != page->mem_cgroup) {
5472
			if (memcg) {
5473 5474 5475
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5476
			}
5477
			memcg = page->mem_cgroup;
5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5491
		page->mem_cgroup = NULL;
5492 5493 5494 5495 5496

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5497 5498
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5499 5500
}

5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5513
	/* Don't touch page->lru of any random page, pre-check: */
5514
	if (!page->mem_cgroup)
5515 5516
		return;

5517 5518 5519
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5520

5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5532

5533 5534
	if (!list_empty(page_list))
		uncharge_list(page_list);
5535 5536 5537 5538 5539 5540
}

/**
 * mem_cgroup_migrate - migrate a charge to another page
 * @oldpage: currently charged page
 * @newpage: page to transfer the charge to
5541
 * @lrucare: either or both pages might be on the LRU already
5542 5543 5544 5545 5546 5547 5548 5549
 *
 * Migrate the charge from @oldpage to @newpage.
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
			bool lrucare)
{
5550
	struct mem_cgroup *memcg;
5551 5552 5553 5554 5555 5556 5557
	int isolated;

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5558 5559
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5560 5561 5562 5563 5564

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5565
	if (newpage->mem_cgroup)
5566 5567
		return;

5568 5569 5570 5571 5572 5573
	/*
	 * Swapcache readahead pages can get migrated before being
	 * charged, and migration from compaction can happen to an
	 * uncharged page when the PFN walker finds a page that
	 * reclaim just put back on the LRU but has not released yet.
	 */
5574
	memcg = oldpage->mem_cgroup;
5575
	if (!memcg)
5576 5577 5578 5579 5580
		return;

	if (lrucare)
		lock_page_lru(oldpage, &isolated);

5581
	oldpage->mem_cgroup = NULL;
5582 5583 5584 5585

	if (lrucare)
		unlock_page_lru(oldpage, isolated);

5586
	commit_charge(newpage, memcg, lrucare);
5587 5588
}

5589
/*
5590 5591 5592 5593 5594 5595
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5596 5597 5598
 */
static int __init mem_cgroup_init(void)
{
5599 5600
	int cpu, node;

5601
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5624 5625 5626
	return 0;
}
subsys_initcall(mem_cgroup_init);
5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

	if (!do_swap_account)
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5662 5663 5664 5665 5666 5667 5668
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688
	mem_cgroup_charge_statistics(memcg, page, -1);
	memcg_check_events(memcg, page);
}

/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
 * Drop the memsw charge associated with @entry.
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

	if (!do_swap_account)
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5689
	memcg = mem_cgroup_from_id(id);
5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754
	if (memcg) {
		if (!mem_cgroup_is_root(memcg))
			page_counter_uncharge(&memcg->memsw, 1);
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}

/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */