
OpenCore

Reference Manual (0.6.0
:::
.1)

[2020.08.11]

Copyright ©2018-2020 vit9696

• Write inline documentation for the functions and variables only once: in headers, where a header prototype is
available, and inline for static variables and functions.

• Use line length of 120 characters or less, preferably 100 characters.
• Use spaces after casts, e.g. (VOID *)(UINTN) Variable.
• Use SPDX license headers as shown in acidanthera/bugtracker#483.

3.5 Debugging
The codebase incorporates EDK II debugging and few custom features to improve the experience.

• Use module prefixes, 2-5 letters followed by a colon (:), for debug messages. For OpenCorePkg use OC:, for
libraries and drivers use their own unique prefixes.

• Do not use dots (.) in the end of debug messages and separate EFI_STATUS, printed by %r, with a hyphen (e.g.
OCRAM: Allocation of %u bytes failed - %r\n).

• Use DEBUG_CODE_BEGIN () and DEBUG_CODE_END () constructions to guard debug checks that may potentially
reduce the performance of release builds and are otherwise unnecessary.

• Use DEBUG macro to print debug messages during normal functioning, and RUNTIME_DEBUG for debugging after
EXIT_BOOT_SERVICES.

• Use DEBUG_VERBOSE debug level to leave debug messages for future debugging of the code, which are currently
not necessary. By default DEBUG_VERBOSE messages are ignored even in DEBUG builds.

• Use DEBUG_INFO debug level for all non critical messages (including errors) and DEBUG_BULK_INFO for extensive
messages that should not appear in NVRAM log that is heavily limited in size. These messages are ignored in
RELEASE builds.

• Use DEBUG_ERROR to print critical human visible messages that may potentially halt the boot process, and
DEBUG_WARN for all other human visible errors, RELEASE builds included.

When trying to find the problematic change it is useful to rely on git-bisect functionality.
:::::
There

::::
also

:::
are

::::::
some

::::::::
unnoficial

:::::::::
resources

::::
that

:::::::
provide

:::::::::::
per-commit

::::::
binary

::::::
builds

:::
of

::::::::::
OpenCore,

:::
like

:
Dortania.

:

9

https://github.com/acidanthera/bugtracker/issues/483
https://git-scm.com/docs/git-bisect
https://dortania.github.io/builds

Description: Data bitwise mask used during replacement. Allows fuzzy replacement by updating masked (set
to non-zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

13. Skip
Type: plist integer
Failsafe: 0
Description: Number of found occurrences to be skipped before replacement is done.

7.7 Quirks Properties
1. AppleCpuPmCfgLock

Type: plist boolean
Failsafe: false
Description: Disables PKG_CST_CONFIG_CONTROL (0xE2) MSR modification in AppleIntelCPUPowerManage-
ment.kext, commonly causing early kernel panic, when it is locked from writing.

Certain firmwares lock PKG_CST_CONFIG_CONTROL MSR register. To check its state one can use bundled
VerifyMsrE2 tool. Select firmwares have this register locked on some cores only.

As modern firmwares provide CFG Lock setting, which allows configuring PKG_CST_CONFIG_CONTROL MSR register
lock, this option should be avoided whenever possible. For several APTIO firmwares not displaying CFG Lock
setting in the GUI it is possible to access the option directly:

(a) Download UEFITool and IFR-Extractor.
(b) Open your firmware image in UEFITool and find CFG Lock unicode string. If it is not present, your firmware

may not have this option and you should stop.
(c) Extract the Setup.bin PE32 Image Section (the one UEFITool found) through Extract Body menu option.
(d) Run IFR-Extractor on the extracted file (e.g. ./ifrextract Setup.bin Setup.txt).
(e) Find CFG Lock, VarStoreInfo (VarOffset/VarName): in Setup.txt and remember the offset right after

it (e.g. 0x123).
(f) Download and run Modified GRUB Shell compiled by brainsucker or use a newer version by datasone.
(g) Enter setup_var 0x123 0x00 command, where 0x123 should be replaced by your actual offset, and reboot.

WARNING
::::::::
Warning: Variable offsets are unique not only to each motherboard but even to its firmware version.

Never ever try to use an offset without checking.

2. AppleXcpmCfgLock
Type: plist boolean
Failsafe: false
Description: Disables PKG_CST_CONFIG_CONTROL (0xE2) MSR modification in XNU kernel, commonly causing
early kernel panic, when it is locked from writing (XCPM power management).

Note: This option should be avoided whenever possible. See AppleCpuPmCfgLock description for more details.

3. AppleXcpmExtraMsrs
Type: plist boolean
Failsafe: false
Description: Disables multiple MSR access critical for select CPUs, which have no native XCPM support.

This is normally used in conjunction with Emulate section on Haswell-E, Broadwell-E, Skylake-SP, and similar
CPUs. More details on the XCPM patches are outlined in acidanthera/bugtracker#365.

Note: Additional not provided patches will be required for Ivy Bridge or Pentium CPUs. It is recommended to
use AppleIntelCpuPowerManagement.kext for the former.

4. AppleXcpmForceBoost
Type: plist boolean
Failsafe: false
Description: Forces maximum performance in XCPM mode.

This patch writes 0xFF00 to MSR_IA32_PERF_CONTROL (0x199), effectively setting maximum multiplier for all the
time.

26

https://github.com/LongSoft/UEFITool/releases
https://github.com/LongSoft/Universal-IFR-Extractor/releases
http://brains.by/posts/bootx64.7z
https://geektimes.com/post/258090
https://github.com/datasone/grub-mod-setup_var
https://github.com/datasone
https://github.com/acidanthera/bugtracker/issues/365

• Mark the option as the default option to boot.
• Boot option through the picker or without it depending on the ShowPicker option.
• Show picker on failure otherwise.

Note 1 : This process is meant to work reliably only when RequestBootVarRouting option is enabled or the firmware
does not control UEFI boot options (OpenDuetPkg or custom BDS). Without BootProtect it also is possible that other
operating systems overwrite OpenCore, make sure to enable it if you plan to use them.

Note 2 : UEFI variable boot options’ boot arguments will be removed if present as they may contain arguments
compromising the operating system, which is undesired once secure boot is enabled.

Note 3 : Some operating systems, namely Windows, will create their boot option and mark it as top most upon first
boot or after NVRAM Reset. When this happens default boot entry choice will update till next manual reconfiguration.

8.2 Properties
1. Boot

Type: plist dict
Description: Apply boot configuration described in Boot Properties section below.

2. BlessOverride
Type: plist array
Description: Add custom scanning paths through bless model.

Designed to be filled with plist string entries containing absolute UEFI paths to customised bootloaders,
for example, \EFI\debian\grubx64.efi for Debian bootloader. This allows unusual boot paths to be au-
tomaticlly discovered by the boot picker. Designwise they are equivalent to predefined blessed path, such
as \System\Library\CoreServices\boot.efi or \EFI\Microsoft\Boot\bootmgfw.efi, but unlike predefined
bless paths they have highest priority.

3. Debug
Type: plist dict
Description: Apply debug configuration described in Debug Properties section below.

4. Entries
Type: plist array
Description: Add boot entries to boot picker.

Designed to be filled with plist dict values, describing each load entry. See Entry Properties section below.

5. Security
Type: plist dict
Description: Apply security configuration described in Security Properties section below.

6. Tools
Type: plist array
Description: Add tool entries to boot picker.

Designed to be filled with plist dict values, describing each load entry. See Entry Properties section below.

Note: Select tools, for example, UEFI Shell, are very dangerous and MUST NOT appear in production
configurations, especially in vaulted ones and protected with secure boot, as they may be used to easily bypass
secure boot chain.

:::
For

::::
tool

::::::::
examples

::::::
check

:::
the

:
UEFI

::::::
section

:::
of

::::
this

:::::::::
document.

:

8.3 Boot Properties
1. ConsoleAttributes

Type: plist integer
Failsafe: 0
Description: Sets specific attributes for console.

Text renderer supports colour arguments as a sum of foreground and background colours according to UEFI
specification. The value of black background and black foreground (0) is reserved. List of colour names:

• 0x00 — EFI_BLACK

30

8. TakeoffDelay
Type: plist integer, 32 bit
Failsafe: 0
Description: Delay in microseconds performed before handling picker startup and action hotkeys.

Introducing a delay may give extra time to hold the right action hotkey sequence to e.g. boot to recovery mode.
On some platforms setting this option to at least 5000-10000 microseconds may be necessary to access action
hotkeys at all due to the nature of the keyboard driver.

9. Timeout
Type: plist integer, 32 bit
Failsafe: 0
Description: Timeout in seconds in boot picker before automatic booting of the default boot entry. Use 0 to
disable timer.

10. PickerMode
Type: plist string
Failsafe: Builtin
Description: Choose boot picker used for boot management.

Picker describes underlying boot management with an optional user interface responsible for handling boot
options. The following values are supported:

• Builtin — boot management is handled by OpenCore, a simple text only user interface is used.
• External — an external boot management protocol is used if available. Otherwise Builtin mode is used.
• Apple — Apple boot management is used if available. Otherwise Builtin mode is used.

Upon success External mode will entirely disable all boot management in OpenCore except policy enforcement.
In Apple mode it may additionally bypass policy enforcement. See OpenCanopy plugin for an example of a
custom user interface.

OpenCore built-in boot picker contains a set of actions chosen during the boot process. The list of supported
actions is similar to Apple BDS and in general can be accessed by holding action hotkeys during boot process.
Currently the following actions are considered:

• Default — this is the default option, and it lets OpenCore built-in boot picker to loads the default boot
option as specified in Startup Disk preference pane.

• ShowPicker — this option forces picker to show. Normally it can be achieved by holding OPT key during
boot. Setting ShowPicker to true will make ShowPicker the default option.

• ResetNvram — this option performs select UEFI variable erase and is normally achieved by holding
CMD+OPT+P+R key combination during boot. Another way to erase UEFI variables is to choose Reset NVRAM
in the picker. This option requires AllowNvramReset to be set to true.

• BootApple — this options performs booting to the first found Apple operating system unless the default
chosen operating system is already made by Apple. Hold X key to choose this option.

• BootAppleRecovery — this option performs booting to Apple operating system recovery. Either the one
related to the default chosen operating system, or first found in case default chosen operating system is not
made by Apple or has no recovery. Hold CMD+R key combination to choose this option.

Note 1 : Activated KeySupport, OpenUsbKbDxe, or similar driver is required for key handling to work. On many
firmwares it is not possible to get all the keys function.

Note 2 : In addition to OPT OpenCore supports Escape key to display picker when ShowPicker is disabled. This
key exists for Apple picker mode and for firmwares with PS/2 keyboards that fail to report held OPT key and
require continual presses of Escape key to enter the boot menu.

Note 3 : On Macs with problematic GOP it may be difficult to access Apple BootPicker. To
:::::::::::
BootKicker

::::::
utility

:::
can

:::
be

:::::::
blessed

::
to

:
workaround this problem even without loading OpenCore

:
.
:::
On

:::::
some

::::::
Macs BootKicker utility

can be blessed
:::
will

:::
not

::::
run

:::::
from

:::::::::
OpenCore.

8.4 Debug Properties
1. AppleDebug

Type: plist boolean

33

https://support.apple.com/HT202796

7. SysReport
Type: plist boolean
Failsafe: false
Description: Produce system report on ESP folder.

This option will create a SysReport directory on ESP partition unless it is already present. The directory will
contain ACPI and SMBIOS dumps.

Note: For security reasons SysReport option is not available in RELEASE builds. Use a DEBUG build if you need
this option.

8. Target
Type: plist integer
Failsafe: 0
Description: A bitmask (sum) of enabled logging targets. By default all the logging output is hidden, so this
option is required to be set when debugging is necessary.

The following logging targets are supported:

• 0x01 (bit 0) — Enable logging, otherwise all log is discarded.
• 0x02 (bit 1) — Enable basic console (onscreen) logging.
• 0x04 (bit 2) — Enable logging to Data Hub.
• 0x08 (bit 3) — Enable serial port logging.
• 0x10 (bit 4) — Enable UEFI variable logging.
• 0x20 (bit 5) — Enable non-volatile UEFI variable logging.
• 0x40 (bit 6) — Enable logging to file.

Console logging prints less than all the other variants. Depending on the build type (RELEASE, DEBUG, or NOOPT)
different amount of logging may be read (from least to most).

Data Hub log will not log kernel and kext patches. To obtain Data Hub log use the following command in macOS:

ioreg -lw0 -p IODeviceTree | grep boot-log | sort | sed 's/.*<\(.*\)>.*/\1/' | xxd -r -p

UEFI variable log does not include some messages and has no performance data. For safety reasons log size is
limited to 32 kilobytes. Some firmwares may truncate it much earlier or drop completely if they have no memory.
Using non-volatile flag will write the log to NVRAM flash after every printed line. To obtain UEFI variable log
use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-log |
awk '{gsub(/%0d%0a%00/,"");gsub(/%0d%0a/,"\n")}1'

Warning
:::::::::
Warning: Some firmwares are reported to have broken NVRAM garbage collection. This means that

they may not be able to always free space after variable deletion. Do not use non-volatile NVRAM logging
without extra need on such devices.

While OpenCore boot log already contains basic version information with build type and date, this data may also
be found in NVRAM in opencore-version variable even with boot log disabled.

File logging will create a file named opencore-YYYY-MM-DD-HHMMSS.txt at EFI volume root with log contents
(the upper case letter sequence is replaced with date and time from the firmware). Please be warned that some
file system drivers present in firmwares are not reliable, and may corrupt data when writing files through UEFI.
Log is attempted to be written in the safest manner, and thus is very slow. Ensure that DisableWatchDog is set
to true when you use a slow drive. Try to avoid frequent use of this option when dealing with flash drives as
large I/O amounts may speedup memory wear and render this flash drive unusable in shorter time.

When interpreting the log, note that the lines are prefixed with a tag describing the relevant location (module)
of the log line allowing one to better attribute the line to the functionality. The list of currently used tags is
provided below.

Drivers and tools:

• BMF — OpenCanopy, bitmap font
• BS — Bootstrap

35

Note 1 : It is known that some Lenovo laptops have a firmware bug, which makes them unbootable after performing
NVRAM reset. See acidanthera/bugtracker#995 for more details.

Note 2 : Resetting NVRAM will also erase all the boot options otherwise not backed up with bless (e.g. Linux).

2. AllowSetDefault
Type: plist boolean
Failsafe: false
Description: Allow CTRL+Enter and CTRL+Index handling to set the default boot option in boot picker.

3.
::::::
ApECID
:::::
Type

:
:
::::::
plist

::::::::
integer

:
,
::
64

::::
bit

:::::::
Failsafe

:
:
::
0

::::::::::::
Description:

::::::
Apple

::::::::
Enclave

:::::::::
Identifier.

:

::::::
Setting

::::
this

:::::
value

:::
to

::::
any

::::::::
non-zero

::::::
64-bit

::::::
integer

::::
will

::::::
allow

:::::
using

:::::::::::
personalised

::::::
Apple

::::::
Secure

:::::
Boot

::::::::::
identifiers.

:::
If

:::
you

:::::
want

:::
to

:::
use

::::
this

::::::::
setting,

:::::
make

::::
sure

:::
to

::::::::
generate

::
a
::::::::
random

:::::
64-bit

::::::::
number

:::::
with

:
a
::::::::::::::::
cryptographically

:::::::
secure

:::::::
random

:::::::
number

::::::::::
generator.

:::::
With

::::
this

:::::
value

:::
set

::::
and

:::::::::::::::::
SecureBootModel

::::
valid

::::
and

:::
not

:::::::::
Disabled

:
it
:::
is

:::::::
possible

:::
to

::::::
achieve

:
Full Security

::
of

::::::
Apple

::::::
Secure

::::::
Boot.

::::
Note

:
:
::::
You

::::
will

::::
have

:::
to

:::::::
reinstall

::::
the

:::::::::
operating

::::::
system

:::
or

:::
use

:::::::
macOS

::::::::
recovery

::::
after

:::::::
setting

::::
this

:::::
value

::
to

:::::::::
non-zero.

::::::::
Installing

::::
the

:::::::::
operating

::::::
system

:::::
with

:::::::
ApECID

:::::
value

:::
set

::
to

:::::::::
non-zero

::
is

::::
only

::::::::
possible

:::::::
through

:::::::
macOS

::::::::
recovery.

:

4. AuthRestart
Type: plist boolean
Failsafe: false
Description: Enable VirtualSMC-compatible authenticated restart.

Authenticated restart is a way to reboot FileVault 2 enabled macOS without entering the password. To perform
authenticated restart one can use a dedicated terminal command: sudo fdesetup authrestart. It is also used
when installing operating system updates.

VirtualSMC performs authenticated restart by saving disk encryption key split in NVRAM and RTC, which
despite being removed as soon as OpenCore starts, may be considered a security risk and thus is optional.

5. BootProtect
Type: plist string
Failsafe: None
Description: Attempt to provide bootloader persistence.

Valid values:

• None — do nothing.
• Bootstrap — create or update top-priority \EFI\OC\Bootstrap\Bootstrap.efi boot option (Boot9696)

in UEFI variable storage at bootloader startup. For this option to work RequestBootVarRouting is required
to be enabled.

This option provides integration with third-party operating system installation and upgrade at the times they
overwrite \EFI\BOOT\BOOTx64.efi file. By creating a custom option in Bootstrap mode this file path becomes
no longer used for bootstraping OpenCore.

Note 1 : Some firmewares may have broken NVRAM, no boot option support, or various other incompatibilities
of any kind. While unlikely, the use of this option may even cause boot failure. Use at your own risk on boards
known to be compatible.

Note 2 : Be warned that while NVRAM reset executed from OpenCore should not erase the boot option created
in Bootstrap, executing NVRAM reset prior to loading OpenCore will remove it.

6.
:::::::::::
DmgLoading
:::::
Type

:
:
::::::
plist

:::::::
string

:::::::
Failsafe

:
:
:::::::
Signed

::::::::::::
Description:

:::::::
Define

::::
Disk

::::::
Image

:::::::
(DMG)

:::::::
loading

::::::
policy

:::::
used

:::
for

:::::::
macOS

:::::::::
Recovery.

:

:::::
Valid

::::::
values:

:

•
::::::::
Disabled

::
—

:::::::
loading

::::::
DMG

::::::
images

::::
will

::::
fail.

:

37

https://github.com/acidanthera/bugtracker/issues/995
https://support.apple.com/en-us/HT208330

•
::::::
Signed

::
—

::::
only

::::::::::::
Apple-signed

::::::
DMG

::::::
images

::::
will

:::::
load.

:

•
:::
Any

::
—

::::
any

:::::
DMG

:::::::
images

::::
will

::::::
mount

::
as

:::::::
normal

:::::::::::
filesystems.

7. ExposeSensitiveData
Type: plist integer
Failsafe: 0x6
Description: Sensitive data exposure bitmask (sum) to operating system.

• 0x01 — Expose printable booter path as an UEFI variable.
• 0x02 — Expose OpenCore version as an UEFI variable.
• 0x04 — Expose OpenCore version in boot picker menu title.
• 0x08 — Expose OEM information as a set of UEFI variables.

Exposed booter path points to OpenCore.efi or its booter depending on the load order. To obtain booter path
use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-path

To use booter path for mounting booter volume use the following command in macOS:

u=$(nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-path | sed 's/.*GPT,\([^,]*\),.*/\1/'); \
if ["$u" != ""]; then sudo diskutil mount $u ; fi

To obtain OpenCore version use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:opencore-version

To obtain OEM information use the following commands in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:oem-product # SMBIOS Type1 ProductName
nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:oem-vendor # SMBIOS Type2 Manufacturer
nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:oem-board # SMBIOS Type2 ProductName

8. HaltLevel
Type: plist integer, 64 bit
Failsafe: 0x80000000 (DEBUG_ERROR)
Description: EDK II debug level bitmask (sum) causing CPU to halt (stop execution) after obtaining a message
of HaltLevel. Possible values match DisplayLevel values.

9. Vault
Type: plist string
Failsafe: Secure
Description: Enables vaulting mechanism in OpenCore.

Valid values:

• Optional — require nothing, no vault is enforced, insecure.
• Basic — require vault.plist file present in OC directory. This provides basic filesystem integrity verification

and may protect from unintentional filesystem corruption.
• Secure — require vault.sig signature file for vault.plist in OC directory. This includes Basic integrity

checking but also attempts to build a trusted bootchain.

vault.plist file should contain SHA-256 hashes for all files used by OpenCore. Presence of this file is highly
recommended to ensure that unintentional file modifications (including filesystem corruption) do not happen
unnoticed. To create this file automatically use create_vault.sh script. Regardless of the underlying filesystem,
path name and case must match between config.plist and vault.plist.

vault.sig file should contain a raw 256 byte RSA-2048 signature from SHA-256 hash of vault.plist. The
signature is verified against the public key embedded into OpenCore.efi. To embed the public key you should
do either of the following:

• Provide public key during the OpenCore.efi compilation in OpenCoreVault.c file.

38

https://github.com/acidanthera/OpenCorePkg/tree/master/Utilities/CreateVault
https://github.com/acidanthera/OpenCorePkg/blob/master/Platform/OpenCore/OpenCoreVault.c

• Binary patch OpenCore.efi replacing zeroes with the public key between =BEGIN OC VAULT= and ==END
OC VAULT== ASCII markers.

RSA public key 520 byte format description can be found in Chromium OS documentation. To convert public
key from X.509 certificate or from PEM file use RsaTool.

The complete set of commands to:

• Create vault.plist.
• Create a new RSA key (always do this to avoid loading old configuration).
• Embed RSA key into OpenCore.efi.
• Create vault.sig.

Can look as follows:

cd /Volumes/EFI/EFI/OC
/path/to/create_vault.sh .
/path/to/RsaTool -sign vault.plist vault.sig vault.pub
off=$(($(strings -a -t d OpenCore.efi | grep "=BEGIN OC VAULT=" | cut -f1 -d' ')+16))
dd of=OpenCore.efi if=vault.pub bs=1 seek=$off count=528 conv=notrunc
rm vault.pub

Note 1 : While it may appear obvious, but you have to use an external method to verify OpenCore.efi and
BOOTx64.efi for secure boot path. For this you are recommended to at least enable UEFI SecureBoot with a
custom certificate, and sign OpenCore.efi and BOOTx64.efi with your custom key. More details on customising
secure boot on modern firmwares can be found in Taming UEFI SecureBoot paper (in Russian).

Note 2 : vault.plist and vault.sig are used regardless of this option when vault.plist is present or public
key is embedded into OpenCore.efi. Setting this option will only ensure configuration sanity, and abort the boot
process otherwise.

10. ScanPolicy
Type: plist integer, 32 bit
Failsafe: 0x10F0103
Description: Define operating system detection policy.

This value allows to prevent scanning (and booting) from untrusted source based on a bitmask (sum) of select
flags. As it is not possible to reliably detect every file system or device type, this feature cannot be fully relied
upon in open environments, and the additional measures are to be applied.

Third party drivers may introduce additional security (and performance) measures following the provided scan
policy. Scan policy is exposed in scan-policy variable of 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102 GUID for
UEFI Boot Services only.

• 0x00000001 (bit 0) — OC_SCAN_FILE_SYSTEM_LOCK, restricts scanning to only known file systems defined as
a part of this policy. File system drivers may not be aware of this policy, and to avoid mounting of undesired
file systems it is best not to load its driver. This bit does not affect dmg mounting, which may have any file
system. Known file systems are prefixed with OC_SCAN_ALLOW_FS_.

• 0x00000002 (bit 1) — OC_SCAN_DEVICE_LOCK, restricts scanning to only known device types defined as a
part of this policy. This is not always possible to detect protocol tunneling, so be aware that on some
systems it may be possible for e.g. USB HDDs to be recognised as SATA. Cases like this must be reported.
Known device types are prefixed with OC_SCAN_ALLOW_DEVICE_.

• 0x00000100 (bit 8) — OC_SCAN_ALLOW_FS_APFS, allows scanning of APFS file system.
• 0x00000200 (bit 9) — OC_SCAN_ALLOW_FS_HFS, allows scanning of HFS file system.
• 0x00000400 (bit 10) — OC_SCAN_ALLOW_FS_ESP, allows scanning of EFI System Partition file system.
• 0x00000800 (bit 11) — OC_SCAN_ALLOW_FS_NTFS, allows scanning of NTFS (Msft Basic Data) file system.
• 0x00001000 (bit 12) — OC_SCAN_ALLOW_FS_EXT, allows scanning of EXT (Linux Root) file system.
• 0x00010000 (bit 16) — OC_SCAN_ALLOW_DEVICE_SATA, allow scanning SATA devices.
• 0x00020000 (bit 17) — OC_SCAN_ALLOW_DEVICE_SASEX, allow scanning SAS and Mac NVMe devices.
• 0x00040000 (bit 18) — OC_SCAN_ALLOW_DEVICE_SCSI, allow scanning SCSI devices.
• 0x00080000 (bit 19) — OC_SCAN_ALLOW_DEVICE_NVME, allow scanning NVMe devices.
• 0x00100000 (bit 20) — OC_SCAN_ALLOW_DEVICE_ATAPI, allow scanning CD/DVD devices.

39

https://github.com/acidanthera/OpenCorePkg/tree/master/Utilities/CreateVault
https://habr.com/post/273497/

• 0x00200000 (bit 21) — OC_SCAN_ALLOW_DEVICE_USB, allow scanning USB devices.
• 0x00400000 (bit 22) — OC_SCAN_ALLOW_DEVICE_FIREWIRE, allow scanning FireWire devices.
• 0x00800000 (bit 23) — OC_SCAN_ALLOW_DEVICE_SDCARD, allow scanning card reader devices.
• 0x01000000 (bit 24) — OC_SCAN_ALLOW_DEVICE_PCI, allow scanning devices directly connected to PCI bus

(e.g. VIRTIO).

Note: Given the above description, 0xF0103 value is expected to allow scanning of SATA, SAS, SCSI, and NVMe
devices with APFS file system, and prevent scanning of any devices with HFS or FAT32 file systems in addition
to not scanning APFS file systems on USB, CD, and FireWire drives. The combination reads as:

• OC_SCAN_FILE_SYSTEM_LOCK
• OC_SCAN_DEVICE_LOCK
• OC_SCAN_ALLOW_FS_APFS
• OC_SCAN_ALLOW_DEVICE_SATA
• OC_SCAN_ALLOW_DEVICE_SASEX
• OC_SCAN_ALLOW_DEVICE_SCSI
• OC_SCAN_ALLOW_DEVICE_NVME

11.
::::::::::::::::
SecureBootModel
:::::
Type

:
:
::::::
plist

:::::::
string

:::::::
Failsafe

:
:
::::::::
Default

::::::::::::
Description:

::::::
Apple

:::::::
Secure

::::
Boot

:::::::::
hardware

:::::::
model.

:

::::::
Defines

::::::
Apple

:::::::
Secure

:::::
Boot

:::::::::
hardware

::::::
model

::::
and

::::::
policy.

::::::::::
Specifying

::::
this

::::::
value

::::::
defines

::::::
which

:::::::::
operating

::::::::
systems

:::
will

:::
be

:::::::::
bootable.

:::::::::
Operating

::::::::
systems

:::::::
shipped

::::::
before

:::
the

::::::::
specified

::::::
model

::::
was

::::::::
released

:::
will

::::
not

:::::
boot.

:::::
Valid

:::::::
values:

•
:::::::
Default

::
—

:::::::
Recent

::::::::
available

::::::
model,

:::::::::
currently

:::
set

:::
to

::::
j215

:
.
:

•
::::::::
Disabled

::
—

:::
No

:::::::
model,

::::::
Secure

:::::
Boot

::::
will

::
be

:::::::::
disabled.

:

•
::::
j137

::
—

:::::::::::
iMacPro1,1

:::::::::::
(December

::::::
2017)

•
::::
j680

::
—

:::::::::::::::
MacBookPro15,1

:::::::
(July

::::::
2018)

•
::::
j132

::
—

:::::::::::::::
MacBookPro15,2

:::::::
(July

::::::
2018)

•
::::
j174

::
—

:::::::::::
Macmini8,1

:::::::::
(October

:::::::
2018)

•
:::::
j140k

::
—

::::::::::::::
MacBookAir8,1

::::::::::
(October

::::::
2018)

•
::::
j780

::
—

:::::::::::::::
MacBookPro15,3

:::::
(May

:::::::
2019)

•
::::
j213

::
—

:::::::::::::::
MacBookPro15,4

:::::::
(July

::::::
2019)

•
:::::
j140a

::
—

::::::::::::::
MacBookAir8,2

:::::::
(July

::::::
2019)

•
:::::
j152f

::
—

:::::::::::::::
MacBookPro16,1

:::::::::::
(November

::::::
2019)

•
::::
j160

::
—

::::::::::
MacPro7,1

::::::::::
(December

:::::::
2019)

•
:::::
j230k

::
—

::::::::::::::
MacBookAir9,1

::::::::
(March

::::::
2020)

•
:::::
j214k

::
—

:::::::::::::::
MacBookPro16,2

::::::
(May

::::::
2020)

•
::::
j223

::
—

:::::::::::::::
MacBookPro16,3

:::::
(May

:::::::
2020)

•
::::
j215

::
—

:::::::::::::::
MacBookPro16,4

:::::::
(June

::::::
2020)

•
::::
j185

::
—

:::::::::
iMac20,1

::::::::
(August

:::::::
2020)

•
:::::
j185f

::
—

:::::::::
iMac20,2

::::::::
(August

:::::::
2020)

:::::::::::::
PlatformInfo

:::
and

::::::::::::::::
SecureBootModel

:::
are

:::::::::::
independent,

::::::::
allowing

::
to

::::::::
enabling

::::::
Apple

::::::
Secure

::::
Boot

:::::
with

:::
any

:::::::::
SMBIOS.

::::::
Setting

:::::::::::::::::
SecureBootModel

::
to

::::
any

:::::
valid

:::::
value

::::
but

:::::::::
Disabled

:
is
::::::::::
equivalent

::
to

:
Medium Security

:
of

::::::
Apple

:::::::
Secure

:::::
Boot.

:::
To

:::::::
achieve

:::::
Full

:::::::::
Security

:::
one

::::
will

::::
need

:::
to

::::
also

::::::
specify

:::::::
ApECID

:::::
value.

:

::::
Note

:
:
::::::::
Default

:::::
value

::::
will

:::::::
increase

:::::
with

:::::
time

:::
to

:::::::
support

::::
the

::::::
latest

:::::
major

:::::::
release

:::::::::
operating

::::::::
system.

:::
It

::
is

::::
not

::::::::::::
recommended

::
to

::::
use

:::::::
ApECID

:::
and

::::::::
Default

:::::
value

::::::::
together.

:

8.6 Entry Properties
1. Arguments

Type: plist string
Failsafe: Empty string
Description: Arbitrary ASCII string used as boot arguments (load options) of the specified entry.

2. Auxiliary
Type: plist boolean

40

https://support.apple.com/en-us/HT208330

9 NVRAM

9.1 Introduction
Has plist dict type and allows to set volatile UEFI variables commonly referred as NVRAM variables. Refer
to man nvram for more details. macOS extensively uses NVRAM variables for OS — Bootloader — Firmware
intercommunication, and thus supplying several NVRAM is required for proper macOS functioning.

Each NVRAM variable consists of its name, value, attributes (refer to UEFI specification), and its GUID, representing
which ‘section’ NVRAM variable belongs to. macOS uses several GUIDs, including but not limited to:

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14 (APPLE_VENDOR_VARIABLE_GUID)
• 7C436110-AB2A-4BBB-A880-FE41995C9F82 (APPLE_BOOT_VARIABLE_GUID)
• 8BE4DF61-93CA-11D2-AA0D-00E098032B8C (EFI_GLOBAL_VARIABLE_GUID)
• 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102 (OC_VENDOR_VARIABLE_GUID)

Note: Some of the variables may be added by PlatformNVRAM or Generic subsections of PlatformInfo section. Please
ensure that variables of this section never collide with them, as behaviour is undefined otherwise.

For proper macOS functioning it is often required to use OC_FIRMWARE_RUNTIME protocol implementation currently
offered as a part of OpenRuntime driver. While it brings any benefits, there are certain limitations which arise depending
on the use.

1. Not all tools may be aware of protected namespaces.
When RequestBootVarRouting is used Boot-prefixed variable access is restricted and protected in a separate
namespace. To access the original variables tools have to be aware of OC_FIRMWARE_RUNTIME logic.

9.2 Properties
1. Add

Type: plist dict
Description: Sets NVRAM variables from a map (plist dict) of GUIDs to a map (plist dict) of variable
names and their values in plist metadata format. GUIDs must be provided in canonic string format in upper
or lower case (e.g. 8BE4DF61-93CA-11D2-AA0D-00E098032B8C).

Created variables get EFI_VARIABLE_BOOTSERVICE_ACCESS and EFI_VARIABLE_RUNTIME_ACCESS attributes set.
Variables will only be set if not present or deleted. I.e. to overwrite an existing variable value add the variable
name to the Delete section. This approach enables to provide default values till the operating system takes the
lead.

Note: If plist key does not conform to GUID format, behaviour is undefined.

2. Delete
Type: plist dict
Description: Removes NVRAM variables from a map (plist dict) of GUIDs to an array (plist array) of
variable names in plist string format.

3. LegacyEnable
Type: plist boolean
Failsafe: false
Description: Enables loading of NVRAM variable file named nvram.plist from EFI volume root.

This file must have root plist dictionary type and contain two fields:

• Version — plist integer, file version, must be set to 1.
• Add — plist dictionary, equivalent to Add from config.plist.

Variable loading happens prior to Delete (and Add) phases. Unless LegacyOverwrite is enabled, it will not
overwrite any existing variable. Variables allowed to be set must be specified in LegacySchema. Third-party
scripts may be used to create nvram.plist file. An example of such script can be found in Utilities. The use of
third-party scripts may require ExposeSensitiveData set to 0x3 to provide boot-path variable with OpenCore
EFI partition UUID.

42

https://en.wikipedia.org/wiki/Universally_unique_identifier

WARNING
::::::::
Warning: This feature is very dangerous as it passes unprotected data to your firmware variable

services. Use it only when no hardware NVRAM implementation is provided by the firmware or it is incompatible.

4. LegacyOverwrite
Type: plist boolean
Failsafe: false
Description: Permits overwriting firmware variables from nvram.plist.

Note: Only variables accessible from the operating system will be overwritten.

5. LegacySchema
Type: plist dict
Description: Allows setting select NVRAM variables from a map (plist dict) of GUIDs to an array (plist
array) of variable names in plist string format.

You can use * value to accept all variables for select GUID.

WARNING: Choose variables very carefully, as nvram.plist is not vaulted. For instance, do not put boot-args
or csr-active-config, as this can bypass SIP.

6. WriteFlash
Type: plist boolean
Failsafe: false
Description: Enables writing to flash memory for all added variables.

Note: This value is recommended to be enabled on most firmwares, but is left configurable for firmwares that
may have issues with NVRAM variable storage garbage collection or alike.

To read NVRAM variable value from macOS one could use nvram by concatenating variable GUID and name separated
by : symbol. For example, nvram 7C436110-AB2A-4BBB-A880-FE41995C9F82:boot-args.

A continuously updated variable list can be found in a corresponding document: NVRAM Variables.

9.3 Mandatory Variables
Warning

:::::::::
Warning: These variables may be added by PlatformNVRAM or Generic subsections of PlatformInfo section.

Using PlatformInfo is the recommend way of setting these variables.

The following variables are mandatory for macOS functioning:

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeatures
32-bit FirmwareFeatures. Present on all Macs to avoid extra parsing of SMBIOS tables

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeaturesMask
32-bit FirmwareFeaturesMask. Present on all Macs to avoid extra parsing of SMBIOS tables.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:MLB
BoardSerialNumber. Present on newer Macs (2013+ at least) to avoid extra parsing of SMBIOS tables, especially
in boot.efi.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ROM
Primary network adapter MAC address or replacement value. Present on newer Macs (2013+ at least) to
avoid accessing special memory region, especially in boot.efi.

9.4 Recommended Variables
The following variables are recommended for faster startup or other improvements:

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:csr-active-config
32-bit System Integrity Protection bitmask. Declared in XNU source code in csr.h.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ExtendedFirmwareFeatures
Combined FirmwareFeatures and ExtendedFirmwareFeatures. Present on newer Macs to avoid extra parsing
of SMBIOS tables

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ExtendedFirmwareFeaturesMask
Combined FirmwareFeaturesMask and ExtendedFirmwareFeaturesMask. Present on newer Macs to avoid
extra parsing of SMBIOS tables.

43

https://docs.google.com/spreadsheets/d/1HTCBwfOBkXsHiK7os3b2CUc6k68axdJYdGl-TyXqLu0
https://opensource.apple.com/source/xnu/xnu-4570.71.2/bsd/sys/csr.h.auto.html

10 PlatformInfo
Platform information is comprised of several identification fields generated or filled manually to be compatible with
macOS services. The base part of the configuration may be obtained from AppleModels, which itself generates a set of
interfaces based on a database in YAML format. These fields are written to three select destinations:

• SMBIOS
• Data Hub
• NVRAM

Most of the fields specify the overrides in SMBIOS, and their field names conform to EDK2 SmBios.h header file.
However, several important fields reside in Data Hub and NVRAM. Some of the values can be found in more than one
field and/or destination, so there are two ways to control their update process: manual, where one specifies all the
values (the default), and semi-automatic, where (Automatic) only select values are specified, and later used for system
configuration.

To inspect SMBIOS contents dmidecode utility can be used. Version with macOS specific enhancements can be
downloaded from Acidanthera/dmidecode.

10.1 Properties
1. Automatic

Type: plist boolean
Failsafe: false
Description: Generate PlatformInfo based on Generic section instead of using values from DataHub, NVRAM,
and SMBIOS sections.

Enabling this option is useful when Generic section is flexible enough:

• When enabled SMBIOS, DataHub, and PlatformNVRAM data is unused.
• When disabled Generic section is unused.

:::::::::
Warning:

:::
It

::
is

::::::::
strongly

:::::::::::
discouraged

:::
set

::::
this

::::::
option

:::
to

::::::
false

:::::
when

:::::::::
intending

::
to

:::::::
update

:::::::::
platform

:::::::::::
information.

:::
The

:::::
only

::::::
reason

:::
to

::
do

:::::
that

::
is

:::::
when

:::::
doing

::::::
minor

::::::::::
correction

::
of

:::
the

:::::::::
SMBIOS

:::::::
present

::::
and

:::::
alike.

:::
In

::
all

::::::
other

:::::
cases

:::
not

:::::
using

::::::::::
Automatic

::::
may

::::
lead

::
to

:::::
hard

::
to

::::::
debug

::::::
errors.

:

2. UpdateDataHub
Type: plist boolean
Failsafe: false
Description: Update Data Hub fields. These fields are read from Generic or DataHub sections depending on
Automatic value.

3. UpdateNVRAM
Type: plist boolean
Failsafe: false
Description: Update NVRAM fields related to platform information.

These fields are read from Generic or PlatformNVRAM sections depending on Automatic value. All the other
fields are to be specified with NVRAM section.

If UpdateNVRAM is set to false the aforementioned variables can be updated with NVRAM section. If UpdateNVRAM
is set to true the behaviour is undefined when any of the fields are present in NVRAM section.

4. UpdateSMBIOS
Type: plist boolean
Failsafe: false
Description: Update SMBIOS fields. These fields are read from Generic or SMBIOS sections depending on
Automatic value.

5. UpdateSMBIOSMode
Type: plist string
Failsafe: Create
Description: Update SMBIOS fields approach:

47

https://github.com/acidanthera/OpenCorePkg/blob/master/AppleModels
https://yaml.org/spec/1.2/spec.html
https://www.dmtf.org/standards/smbios
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Intel/Protocol/DataHub.h
https://github.com/acidanthera/audk/blob/master/MdePkg/Include/IndustryStandard/SmBios.h
http://www.nongnu.org/dmidecode
https://github.com/acidanthera/dmidecode/releases

AudioDxe* HDA audio support driver in UEFI firmwares for most Intel and some other analog audio
controllers. Staging driver, refer to acidanthera/bugtracker#740 for known issues in AudioDxe.

CrScreenshotDxe* Screenshot making driver saving images to the root of OpenCore partition (ESP) or any avail-
able writeable filesystem upon pressing F10. This is a modified version of CrScreenshotDxe
driver by Nikolaj Schlej.

ExFatDxe Proprietary ExFAT file system driver for Bootcamp support commonly found in Apple
firmwares. For Sandy Bridge and earlier CPUs ExFatDxeLegacy driver should be used due
to the lack of RDRAND instruction support.

HfsPlus Proprietary HFS file system driver with bless support commonly found in Apple firmwares.
For Sandy Bridge and earlier CPUs HfsPlusLegacy driver should be used due to the lack of
RDRAND instruction support.

HiiDatabase* HII services support driver from MdeModulePkg. This driver is included in most firmwares
starting with Ivy Bridge generation. Some applications with the GUI like UEFI Shell may
need this driver to work properly.

EnhancedFatDxe FAT filesystem driver from FatPkg. This driver is embedded in all UEFI firmwares, and
cannot be used from OpenCore. It is known that multiple firmwares have a bug in their FAT
support implementation, which leads to corrupted filesystems on write attempt. Embedding
this driver within the firmware may be required in case writing to EFI partition is needed
during the boot process.

NvmExpressDxe* NVMe support driver from MdeModulePkg. This driver is included in most firmwares starting
with Broadwell generation. For Haswell and earlier embedding it within the firmware may be
more favourable in case a NVMe SSD drive is installed.

OpenCanopy* OpenCore plugin implementing graphical interface.
OpenRuntime* OpenCore plugin implementing OC_FIRMWARE_RUNTIME protocol.
OpenUsbKbDxe* USB keyboard driver adding the support of AppleKeyMapAggregator protocols on top of a

custom USB keyboard driver implementation. This is an alternative to builtin KeySupport,
which may work better or worse depending on the firmware.

PartitionDxe Proprietary partition management driver with Apple Partitioning Scheme support commonly
found in Apple firmwares. This driver can be used to support loading older DMG recoveries
such as macOS 10.9 using Apple Partitioning Scheme. For Sandy Bridge and earlier CPUs
PartitionDxeLegacy driver should be used due to the lack of RDRAND instruction support.

Ps2KeyboardDxe* PS/2 keyboard driver from MdeModulePkg. OpenDuetPkg and some firmwares may not include
this driver, but it is necessary for PS/2 keyboard to work. Note, unlike OpenUsbKbDxe this
driver has no AppleKeyMapAggregator support and thus requires KeySupport to be enabled.

Ps2MouseDxe* PS/2 mouse driver from MdeModulePkg. Some very old laptop firmwares may not include
this driver, but it is necessary for touchpad to work in UEFI graphical interfaces, such as
OpenCanopy.

UsbMouseDxe* USB mouse driver from MdeModulePkg. Some virtual machine firmwares like OVMF may not
include this driver, but it is necessary for mouse to work in UEFI graphical interfaces, such
as OpenCanopy.

VBoxHfs HFS file system driver with bless support. This driver is an alternative to a closed source
HfsPlus driver commonly found in Apple firmwares. While it is feature complete, it is
approximately 3 times slower and is yet to undergo a security audit.

XhciDxe* XHCI USB controller support driver from MdeModulePkg. This driver is included in most
firmwares starting with Sandy Bridge generation. For earlier firmwares or legacy systems it
may be used to support external USB 3.0 PCI cards.

Driver marked with * are bundled with OpenCore. To compile the drivers from UDK (EDK II) use the same command
you normally use for OpenCore compilation, but choose a corresponding package:

git clone https://github.com/acidanthera/audk UDK
cd UDK
source edksetup.sh
make -C BaseTools
build -a X64 -b RELEASE -t XCODE5 -p FatPkg/FatPkg.dsc
build -a X64 -b RELEASE -t XCODE5 -p MdeModulePkg/MdeModulePkg.dsc

56

https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/bugtracker/issues/740
https://github.com/acidanthera/OpenCorePkg
https://github.com/LongSoft/CrScreenshotDxe
https://github.com/NikolajSchlej
https://github.com/acidanthera/OcBinaryData
https://github.com/acidanthera/OcBinaryData
https://github.com/acidanthera/audk
https://github.com/acidanthera/audk
https://github.com/acidanthera/audk
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OcBinaryData
https://github.com/acidanthera/audk
https://github.com/acidanthera/audk
https://github.com/acidanthera/audk
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/audk

• Other — Custom entry (see Entries).
• ResetNVRAM — Reset NVRAM system action or tool.
• Shell — Entry with UEFI Shell name (e.g. OpenShell).
• Tool — Any other tool.

Predefined labels are put to \EFI\OC\Resources\Label directory. Each label has .lbl or .l2x suffix to represent the
scaling level. Full list of labels is provided below. All labels are mandatory.

• EFIBoot — Generic OS.
• Apple — Apple OS.
• AppleRecv — Apple Recovery OS.
• AppleTM — Apple Time Machine.
• Windows — Windows.
• Other — Custom entry (see Entries).
• ResetNVRAM — Reset NVRAM system action or tool.
• Shell — Entry with UEFI Shell name (e.g. OpenShell).
• Tool — Any other tool.

Label and icon generation can be performed with bundled utilities: disklabel and icnspack. Please refer to sample
data for the details about the dimensions. Font is Helvetica 12 pt times scale factor.

Font format corresponds to AngelCode binary BMF. While there are many utilities to generate font files, currently it is
recommended to use dpFontBaker to generate bitmap font (using CoreText produces best results) and fonverter to
export it to binary format.

WARNING: OpenCanopy is currently considered experimental and is not recommended for everyday use. Refer to
for more details regarding the current limitations.

11.5 OpenRuntime
OpenRuntime is an OpenCore plugin implementing OC_FIRMWARE_RUNTIME protocol. This protocol implements multiple
features required for OpenCore that are otherwise not possible to implement in OpenCore itself as they are needed to
work in runtime, i.e. during operating system functioning. Feature highlights:

• NVRAM namespaces, allowing to isolate operating systems from accessing select variables (e.g. RequestBootVarRouting
or ProtectSecureBoot).

• Read-only and write-only NVRAM variables, enhancing the security of OpenCore, Lilu, and Lilu plugins, like
VirtualSMC, which implements AuthRestart support.

• NVRAM isolation, allowing to protect all variables from being written from an untrusted operating system (e.g.
DisableVariableWrite).

• UEFI Runtime Services memory protection management to workaround read-only mapping (e.g. EnableWriteUnprotector).

11.6 Properties
1. APFS

Type: plist dict
Failsafe: None
Description: Provide APFS support as configured in APFS Properties section below.

2. Audio
Type: plist dict
Failsafe: None
Description: Configure audio backend support described in Audio Properties section below.

Audio support provides a way for upstream protocols to interact with the selected hardware and audio resources.
All audio resources should reside in \EFI\OC\Resources\Audio directory. Currently the only supported audio
file format is WAVE PCM. While it is driver-dependent which audio stream format is supported, most common
audio cards support 16-bit signed stereo audio at 44100 or 48000 Hz.

58

https://www.angelcode.com/products/bmfont
https://github.com/danpla/dpfontbaker
https://github.com/danpla/dpfontbaker/pull/1
https://github.com/usr-sse2/fonverter

Some firmwares do not implement legacy UGA protocol, but it may be required for screen output by older EFI
applications like EfiBoot from 10.4.

11.11 ProtocolOverrides Properties
1. AppleAudio

Type: plist boolean
Failsafe: false
Description: Reinstalls Apple audio protocols with builtin versions.

Apple audio protocols allow macOS bootloader and OpenCore to play sounds and signals for screen reading or
audible error reporting. Supported protocols are beep generation and VoiceOver. VoiceOver protocol is specific to
Gibraltar machines (T2) and is not supported before macOS High Sierra (10.13). Instead older macOS versions
use AppleHDA protocol, which is currently not implemented.

Only one set of audio protocols can be available at a time, so in order to get audio playback in OpenCore user
interface on Mac system implementing some of these protocols this setting should be enabled.

Note: Backend audio driver needs to be configured in UEFI Audio section for these protocols to be able to stream
audio.

2. AppleBootPolicy
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple Boot Policy protocol with a builtin version. This may be used to ensure APFS
compatibility on VMs or legacy Macs.

Note: Some Macs, namely MacPro5,1, do have APFS compatibility, but their Apple Boot Policy protocol contains
recovery detection issues, thus using this option is advised on them as well.

3. AppleDebugLog
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple Debug Log protocol with a builtin version.

4. AppleEvent
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple Event protocol with a builtin version. This may be used to ensure File Vault 2
compatibility on VMs or legacy Macs.

5. AppleFramebufferInfo
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple Framebuffer Info protocol with a builtin version. This may be used to override
framebuffer information on VMs or legacy Macs to improve compatibility with legacy EfiBoot like the one in
macOS 10.4.

6. AppleImageConversion
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple Image Conversion protocol with a builtin version.

7.
::::::::::::::::::::::
AppleImg4Verification
:::::
Type

:
:
::::::
plist

::::::::
boolean

:::::::
Failsafe

:
:
::::::
false

::::::::::::
Description:

:::::::::
Reinstalls

::::::
Apple

::::::
IMG4

:::::::::::
Verification

:::::::
protocol

:::::
with

:
a
:::::::
builtin

:::::::
version.

:::::
This

:::::::
protocol

::
is
:::::
used

::
to

::::::
verify

::::
im4m

:::::::
manifest

::::
files

:::::
used

:::
by

:::::
Apple

:::::::
Secure

:::::
Boot.

:

8. AppleKeyMap
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple Key Map protocols with builtin versions.

66

9. AppleRtcRam
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple RTC RAM protocol with builtin version.

Note: Builtin version of Apple RTC RAM protocol may filter out I/O attempts to select RTC memory addresses.
The list of addresses can be specified in 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:rtc-blacklist variable as
a data array.

:

10.
::::::::::::::::
AppleSecureBoot
:::::
Type

:
:
::::::
plist

::::::::
boolean

:::::::
Failsafe

:
:
::::::
false

::::::::::::
Description:

::::::::::
Reinstalls

:::::
Apple

:::::::
Secure

:::::
Boot

:::::::
protocol

:::::
with

::
a

::::::
builtin

:::::::
version.

11. AppleSmcIo
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple SMC I/O protocol with a builtin version.

This protocol replaces legacy VirtualSmc UEFI driver, and is compatible with any SMC kernel extension.
However, in case FakeSMC kernel extension is used, manual NVRAM key variable addition may be needed.

12. AppleUserInterfaceTheme
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple User Interface Theme protocol with a builtin version.

13. DataHub
Type: plist boolean
Failsafe: false
Description: Reinstalls Data Hub protocol with a builtin version. This will delete all previous properties if the
protocol was already installed.

14. DeviceProperties
Type: plist boolean
Failsafe: false
Description: Reinstalls Device Property protocol with a builtin version. This will delete all previous properties
if it was already installed. This may be used to ensure full compatibility on VMs or legacy Macs.

15. FirmwareVolume
Type: plist boolean
Failsafe: false
Description: Forcibly wraps Firmware Volume protocols or installs new to support custom cursor images for
File Vault 2. Should be set to true to ensure File Vault 2 compatibility on everything but VMs and legacy Macs.

Note: Several virtual machines including VMware may have corrupted cursor image in HiDPI mode and thus
may also require this setting to be enabled.

16. HashServices
Type: plist boolean
Failsafe: false
Description: Forcibly reinstalls Hash Services protocols with builtin versions. Should be set to true to ensure
File Vault 2 compatibility on platforms providing broken SHA-1 hashing. Can be diagnosed by invalid cursor size
with UIScale set to 02, in general platforms prior to APTIO V (Haswell and older) are affected.

17. OSInfo
Type: plist boolean
Failsafe: false
Description: Forcibly reinstalls OS Info protocol with builtin versions. This protocol is generally used to receive
notifications from macOS bootloader, by the firmware or by other applications.

18. UnicodeCollation
Type: plist boolean

67

	Debugging
	Quirks Properties
	Properties
	Boot Properties
	Debug Properties
	Entry Properties
	NVRAM
	Introduction
	Properties
	Mandatory Variables
	Recommended Variables

	PlatformInfo
	Properties

	OpenRuntime
	Properties
	ProtocolOverrides Properties

