
OpenCore

Reference Manual (0.5.9
:::::::::
0.6.0)

[2020.06.17]

Copyright ©2018-2020 vit9696



1 Introduction
This document provides information on OpenCore user configuration file format used to setup the correct functioning
of macOS operating system. It is to be read as the official clarification of expected OpenCore behaviour. All deviations,
if found in published OpenCore releases, shall be considered documentation or implementation bugs, and are requested
to be reported through Acidanthera Bugtracker.

::::::
Errata

:::::
sheet

::
is

::::::::
available

:::
in OpenCorePkg repository.

:

This document is structured as a specification, and is not meant to provide a step by step algorithm for configuring
end-user board support package (BSP). The intended audience of the document are programmers and engineers with
basic understanding of macOS internals and UEFI functioning. For these reasons this document is available exclusively
in English, and all other sources or translations of this document are unofficial and may contain errors.

Third-party articles, utilities, books, and alike may be more useful for a wider audience as they could provide guide-like
material. However, they are prone to their authors’ preferences, tastes, this document misinterpretation, and essential
obsolescence. In case you use these sources, for example, Dortania’s OpenCore Desktop Guide and related material,
please ensure to follow this document for every made decision and judge its consequences.

Be warned that regardless of the sources used you are required to fully understand every dedicated OpenCore
configuration option and concept prior to reporting any issues in Acidanthera Bugtracker.

1.1 Generic Terms
• plist — Subset of ASCII Property List format written in XML, also know as XML plist format version

1. Uniform Type Identifier (UTI): com.apple.property-list. Plists consist of plist objects, which are
combined to form a hierarchical structure. Due to plist format not being well-defined, all the definitions of this
document may only be applied after plist is considered valid by running plutil -lint. External references:
https://www.apple.com/DTDs/PropertyList-1.0.dtd, man plutil.

• plist type — plist collections (plist array, plist dictionary, plist key) and primitives (plist string,
plist data, plist date, plist boolean, plist integer, plist real).

• plist object — definite realisation of plist type, which may be interpreted as value.

• plist array — array-like collection, conforms to array. Consists of zero or more plist objects.

• plist dictionary — map-like (associative array) collection, conforms to dict. Consists of zero or more plist
keys.

• plist key — contains one plist object going by the name of plist key, conforms to key. Consists of
printable 7-bit ASCII characters.

• plist string — printable 7-bit ASCII string, conforms to string.

• plist data — base64-encoded blob, conforms to data.

• plist date — ISO-8601 date, conforms to date, unsupported.

• plist boolean — logical state object, which is either true (1) or false (0), conforms to true and false.

• plist integer — possibly signed integer number in base 10, conforms to integer. Fits in 64-bit unsigned integer
in two’s complement representation, unless a smaller signed or unsigned integral type is explicitly mentioned in
specific plist object description.

• plist real — floating point number, conforms to real, unsupported.

• plist metadata — value cast to data by the implementation. Permits passing plist string, in which case
the result is represented by a null-terminated sequence of bytes (aka C string), plist integer, in which case
the result is represented by 32-bit little endian sequence of bytes in two’s complement representation, plist
boolean, in which case the value is one byte: 01 for true and 00 for false, and plist data itself. All other
types or larger integers invoke undefined behaviour.

2

https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/bugtracker
https://github.com/acidanthera/OpenCorePkg/blob/master/Docs/Errata/Errata.pdf
https://dortania.github.io
https://dortania.github.io/OpenCore-Desktop-Guide
https://dortania.github.io/getting-started
https://github.com/acidanthera/bugtracker


Type Value
plist integer 0 (<integer>0</integer>)
plist boolean False (<false/>)
plist tristate False (<false/>)

2.3 Configuration Structure
OC config is separated into following sections, which are described in separate sections of this document. By default it
is tried to not enable anything and optionally provide kill switches with Enable property for plist dict entries. In
general the configuration is written idiomatically to group similar actions in subsections:

• Add provides support for data addition. Existing data will not be overridden, and needs to be handled separately
with Delete if necessary.

• Delete provides support for data removal.
• Patch provides support for data modification.
• Quirks provides support for specific hacks.

Root configuration entries consist of the following:

• ACPI
• Booter
• DeviceProperties
• Kernel
• Misc
• NVRAM
• PlatformInfo
• UEFI

It is possible to perform basic validation of the configuration by using ConfigValidity
::::::::::
ocvalidate utility. Please

note, that ConfigValidity
:::::::::::
ocvalidate must match the used OpenCore release and may not be able to detect all

configuration flaws present in the file.

Note: Currently most properties try to have defined values even if not specified in the configuration for safety reasons.
This behaviour should not be relied upon, and all fields must be properly specified in the configuration.

4



8 Misc

8.1 Introduction
This section contains miscellaneous configuration affecting OpenCore operating system loading behaviour as well as
other entries, which do not go to any other section.

OpenCore tries to follow “bless” model also known as “Apple Boot Policy”. The primary specialty of “bless” model
is to allow embedding boot options within the file system (and be accessible through a specialised driver) as well
as supporting a broader range of predefined boot paths compared to the removable media list found in the UEFI
specification.

Each partition will only be used for booting when it corresponds to “Scan policy”: a set of restrictions to only use
partitions with specific file systems and from specific device types. Scan policy behaviour is discussed in ScanPolicy
property description.

Scan process starts with obtaining all the partitions filtered with “Scan policy”. Each partition may produce multiple
primary and alternate options. Primary options describe operating systems installed on this media. Alternate options
describe recovery options for the operating systems on the media. It is possible for alternate options to exist without
primary options and vice versa. Be warned that the options may not necessarily describe the operating systems on the
same partition. Each primary and alternate option can be an auxiliary option or not, refer to HideAuxiliary for more
details. Algorithm to determine boot options behaves as follows:

1. Obtain all available partition handles filtered by “Scan policy” (and driver availability).
2. Obtain all available boot options from BootOrder UEFI variable.
3. For each found boot option:

• Retrieve device path of the boot option.
• Perform fixups (e.g. NVMe subtype correction) and expansion (e.g. for Boot Camp) of the device path.
• Obtain device handle by locating device path of the resulting device path (ignore it on failure).
• Find device handle in the list of partition handles (ignore it if missing).
• For disk device paths (not specifying a bootloader) execute “bless” (may return > 1 entry).
• For file device paths check presence on the file system directly.
• Exclude options with blacklisted filenames (refer to BlacklistAppleUpdate option).
• On OpenCore boot partition exclude all OpenCore bootstrap files by header checks.
• Mark device handle as used in the list of partition handles if any.
• Register the resulting entries as primary options and determine their types.

The option will become auxiliary for some types (e.g. Apple HFS recovery).
4. For each partition handle:

• If partition handle is marked as unused execute “bless” primary option list retrieval.
In case BlessOverride list is set, not only standard “bless” paths will be found but also custom ones.

• Exclude options with blacklisted filenames (refer to BlacklistAppleUpdate option).
• On OpenCore boot partition exclude all OpenCore bootstrap files by header checks.
• Register the resulting entries as primary options and determine their types if found.

The option will become auxiliary for some types (e.g. Apple HFS recovery).
• If partition already has primary options of “Apple Recovery” type proceed to next handle.
• Lookup alternate entries by “bless” recovery option list retrieval and predefined paths.
• Register the resulting entries as alternate auxiliary options and determine their types if found.

5. Custom entries and tools are added as primary options without any checks with respect to Auxiliary.
6. System entries (e.g. Reset NVRAM) are added as primary auxiliary options.

The display order of the boot options in the picker and the boot process are determined separately from the scanning
algorithm. The display order as follows:

• Alternate options follow corresponding primary options, i.e. Apple recovery will be following the relevant macOS
option whenever possible.

• Options will be listed in file system handle firmware order to maintain an established order across the reboots
regardless of the chosen operating system for loading.

• Custom entries, tools, and system entries will be added after all other options.
• Auxiliary options will only show upon entering “Advanced Mode” in the picker (usually by pressing “Space”).

The boot process is as follows:

28



• Try looking up first valid primary option through BootNext UEFI variable.
• On failure looking up first valid primary option through BootOrder UEFI variable.
• Mark the option as the default option to boot.
• Boot option through the picker or without it depending on the ShowPicker option.
• Show picker on failure otherwise.

Note 1 : This process is meant to work reliably only when RequestBootVarRouting option is enabled or the firmware
does not control UEFI boot options (OpenDuetPkg or custom BDS). Without BootProtect it also is possible that other
operating systems overwrite OpenCore, make sure to enable it if you plan to use them.

Note 2 : UEFI variable boot options’ boot arguments will be removed if present as they may contain arguments
compromising the operating system, which is undesired once secure boot is enabled.

Note 3 : Some operating systems, namely Windows, will create their boot option and mark it as top most upon first
boot or after NVRAM Reset. When this happens default boot entry choice will update till next manual reconfiguration.

8.2 Properties
1. Boot

Type: plist dict
Description: Apply boot configuration described in Boot Properties section below.

2. BlessOverride
Type: plist array
Description: Add custom scanning paths through bless model.

Designed to be filled with plist string entries containing absolute UEFI paths to customised bootloaders,
for example, \EFI\debian\grubx64.efi for Debian bootloader. This allows unusual boot paths to be au-
tomaticlly discovered by the boot picker. Designwise they are equivalent to predefined blessed path, such
as \System\Library\CoreServices\boot.efi or \EFI\Microsoft\Boot\bootmgfw.efi, but unlike predefined
bless paths they have highest priority.

3. Debug
Type: plist dict
Description: Apply debug configuration described in Debug Properties section below.

4. Entries
Type: plist array
Description: Add boot entries to boot picker.

Designed to be filled with plist dict values, describing each load entry. See Entry Properties section below.

5. Security
Type: plist dict
Description: Apply security configuration described in Security Properties section below.

6. Tools
Type: plist array
Description: Add tool entries to boot picker.

Designed to be filled with plist dict values, describing each load entry. See Entry Properties section below.

Note: Select tools, for example, UEFI Shell, are very dangerous and MUST NOT appear in production
configurations, especially in vaulted ones and protected with secure boot, as they may be used to easily bypass
secure boot chain.

8.3 Boot Properties
1. ConsoleAttributes

Type: plist integer
Failsafe: 0
Description: Sets specific attributes for console.

29



Text renderer supports colour arguments as a sum of foreground and background colors
::::::
colours

:
according to

UEFI specification. The value of black background and black foreground (0) is reserved. List of colour names:

• 0x00 — EFI_BLACK
• 0x01 — EFI_BLUE
• 0x02 — EFI_GREEN
• 0x03 — EFI_CYAN
• 0x04 — EFI_RED
• 0x05 — EFI_MAGENTA
• 0x06 — EFI_BROWN
• 0x07 — EFI_LIGHTGRAY
• 0x08 — EFI_DARKGRAY
• 0x09 — EFI_LIGHTBLUE
• 0x0A — EFI_LIGHTGREEN
• 0x0B — EFI_LIGHTCYAN
• 0x0C — EFI_LIGHTRED
• 0x0D — EFI_LIGHTMAGENTA
• 0x0E — EFI_YELLOW
• 0x0F — EFI_WHITE
• 0x00 — EFI_BACKGROUND_BLACK
• 0x10 — EFI_BACKGROUND_BLUE
• 0x20 — EFI_BACKGROUND_GREEN
• 0x30 — EFI_BACKGROUND_CYAN
• 0x40 — EFI_BACKGROUND_RED
• 0x50 — EFI_BACKGROUND_MAGENTA
• 0x60 — EFI_BACKGROUND_BROWN
• 0x70 — EFI_BACKGROUND_LIGHTGRAY

Note: This option may not work well with System text renderer. Setting a background different from black could
help testing proper GOP functioning.

2. HibernateMode
Type: plist string
Failsafe: None
Description: Hibernation detection mode. The following modes are supported:

• None — Avoid hibernation for your own good.
• Auto — Use RTC and NVRAM detection.
• RTC — Use RTC detection.
• NVRAM — Use NVRAM detection.

3. HideAuxiliary
Type: plist boolean
Failsafe: false
Description: Hides auxiliary entries from picker menu by default.

An entry is considered auxiliary when at least one of the following applies:

• Entry is macOS recovery.
• Entry is macOS Time Machine.
• Entry is explicitly marked as Auxiliary.
• Entry is system (e.g. Clean

::::::
Reset

:
NVRAM).

To see all entries picker menu needs to be reloaded in extended mode by pressing Spacebar key. Hiding auxiliary
entries may increase boot performance for multidisk systems.

4. PickerAttributes
Type: plist integer
Failsafe: 0
Description: Sets specific attributes for picker.

Different pickers may be configured through the attribute mask containing OpenCore-reserved (BIT0~BIT15) and

30



• OCCL — OcAppleChunkListLib
• OCCPU — OcCpuLib
• OCC — OcConsoleLib
• OCDH — OcDataHubLib
• OCDI — OcAppleDiskImageLib
• OCFSQ — OcFileLib, UnblockFs quirk
• OCFS — OcFileLib
• OCFV — OcFirmwareVolumeLib
• OCHS — OcHashServicesLib
• OCIC — OcImageConversionLib
• OCII — OcInputLib
• OCJS — OcApfsLib
• OCKM — OcAppleKeyMapLib
• OCL — OcDebugLogLib
• OCMCO — OcMachoLib
• OCME — OcHeciLib
• OCMM — OcMemoryLib
• OCPI — OcFileLib, partition info
• OCPNG — OcPngLib
• OCRAM — OcAppleRamDiskLib
• OCRTC — OcRtcLib
• OCSB — OcAppleSecureBootLib
• OCSMB — OcSmbiosLib
• OCSMC — OcSmcLib
• OCST — OcStorageLib
• OCS — OcSerializedLib
• OCTPL — OcTemplateLib
• OCUC — OcUnicodeCollationLib
• OCUT — OcAppleUserInterfaceThemeLib
• OCXML — OcXmlLib

8.5 Security Properties
1. AllowNvramReset

Type: plist boolean
Failsafe: false
Description: Allow CMD+OPT+P+R handling and enable showing NVRAM Reset entry in boot picker.

::::
Note

:
:
:::::::::
Resetting

::::::::
NVRAM

::::
will

::::
also

:::::
erase

:::
all

:::
the

:::::
boot

:::::::
options

:::::::::
otherwise

:::
not

:::::::
backed

:::
up

::::
with

:::::
bless

:::::
(e.g.

:::::::
Linux).

:

2. AllowSetDefault
Type: plist boolean
Failsafe: false
Description: Allow CTRL+Enter and CTRL+Index handling to set the default boot option in boot picker.

3. AuthRestart
Type: plist boolean
Failsafe: false
Description: Enable VirtualSMC-compatible authenticated restart.

Authenticated restart is a way to reboot FileVault 2 enabled macOS without entering the password. To perform
authenticated restart one can use a dedicated terminal command: sudo fdesetup authrestart. It is also used
when installing operating system updates.

VirtualSMC performs authenticated restart by saving disk encryption key split in NVRAM and RTC, which
despite being removed as soon as OpenCore starts, may be considered a security risk and thus is optional.

4. BlacklistAppleUpdateType: plist booleanFailsafe: falseDescription: Ignore boot options trying to
update Apple peripheral firmware (e.g. MultiUpdater.efi).

5. BootProtect

35



∗ 1 — enables print something to BOOTER.LOG (stripped code implies there may be a crash)
∗ 2 — enables perf logging to /efi/debug-log in the device three
∗ 4 — enables timestamp printing for styled printf calls

– level=VALUE — deprecated starting from 10.15. Verbosity level of DEBUG output. Everything but
0x80000000 is stripped from the binary, and this is the default value.

Note: To see verbose output from boot.efi on modern macOS versions enable AppleDebug option. This will
save the log to general OpenCore log. For versions before 10.15.4 set bootercfg to log=1. This will print verbose
output onscreen.

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:bootercfg-once
Booter arguments override removed after first launch. Otherwise equivalent to bootercfg.

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:efiboot-perf-record
Enable performance log saving in boot.efi. Performance log is saved to physical memory and is pointed
by efiboot-perf-record-data and efiboot-perf-record-size variables. Starting from 10.15.4 it can also be
saved to OpenCore log by AppleDebug option.

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:fmm-computer-name
Current saved host name. ASCII string.

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:nvda_drv
NVIDIA Web Driver control variable. Takes ASCII digit 1 or 0 to enable or disable installed driver.

•
:::::::::::::::::::::::::::::::::::::::::::::::::::::::
7C436110-AB2A-4BBB-A880-FE41995C9F82:run-efi-updater

::::::::
Override

::::
EFI

::::::::
firmware

:::::::::
updating

:::::::
support

:::
in

:::::::
macOS

::::::::::::::
(MultiUpdater,

:::::::::
ThorUtil,

::::
and

:::
so

::::
on).

::::::::
Setting

::::
this

:::
to

:::
No

::
or

::::::::::
alternative

:::::::::::::::
boolean-castable

:::::
value

::::
will

:::::::
prevent

::::
any

::::::::
firmware

::::::::
updates

::
in

:::::::
macOS

:::::::
starting

:::::
with

:::::
10.10

::
at

::::::
least.

:

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:StartupMute
Mute startup chime sound in firmware audio support. 8-bit integer. The value of 0x00 means unmuted.
Missing variable or any other value means muted. This variable only affects Gibraltar machines (T2).

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:SystemAudioVolume
System audio volume level for firmware audio support. 8-bit integer. The bit of 0x80 means muted. Lower bits are
used to encode volume range specific to installed audio codec. The value is capped by MaximumBootBeepVolume
AppleHDA layout value to avoid too loud audio playback in the firmware.

44



11.3 Tools
Standalone tools may help to debug firmware and hardware. Some of the known tools are listed below. While some
tools can be launched from within OpenCore many should be run separately either directly or from Shell.

To boot into OpenShell or any other tool directly save OpenShell.efi under the name of EFI\BOOT\BOOTX64.EFI on
a FAT32 partition. In general it is unimportant whether the partitition scheme is GPT or MBR.

While the previous approach works both on Macs and other computers, an alternative Mac-only approach to bless the
tool on an HFS+ or APFS volume:

sudo bless --verbose --file /Volumes/VOLNAME/DIR/OpenShell.efi \
--folder /Volumes/VOLNAME/DIR/ --setBoot

Listing 3: Blessing tool

Note 1 : You may have to copy /System/Library/CoreServices/BridgeVersion.bin to /Volumes/VOLNAME/DIR.
Note 2 : To be able to use bless you may have to disable System Integrity Protection.
Note 3 : To be able to boot you may have to disable Secure Boot if present.

Some of the known tools are listed below (builtin tools are marked with *):

BootKicker* Enter Apple BootPicker menu (exclusive for Macs with compatible GPUs).
ChipTune* Test BeepGen protocol and generate audio signals of different style and length.
CleanNvram* Reset NVRAM alternative bundled as a standalone tool.
GopStop* Test GraphicsOutput protocol with a simple scenario.
HdaCodecDump* Parse and dump High Definition Audio codec information (requires AudioDxe).
KeyTester* Test keyboard input in SimpleText mode.
MemTest86 Memory testing utility.
OpenControl* Unlock and lock back NVRAM protection for other tools to be able to get full NVRAM

access when launching from OpenCore.
OpenShell* OpenCore-configured UEFI Shell for compatibility with a broad range of firmwares.
PavpProvision Perform EPID provisioning (requires certificate data configuration).
ResetSystem* Utility to perform system reset. Takes reset type as an argument: ColdReset,

WarmReset
:::::::::
Firmware, Shutdown

:
,
::::::::::
WarmReset. Defaults to ColdReset.

RtcRw* Utility to read and write RTC (CMOS) memory.
VerifyMsrE2* Check CFG Lock (MSR 0xE2 write protection) consistency across all cores.

11.4 OpenCanopy
OpenCanopy is a graphical OpenCore user interface that runs in External PickerMode and relies on OpenCorePkg
OcBootManagementLib similar to the builtin text interface.

OpenCanopy requires graphical resources located in Resources directory to run. Sample resources (fonts and images)
can be found in OcBinaryData repository.

OpenCanopy provides full support for PickerAttributes and offers a configurable builtin icon set. The default chosen
icon set depends on the DefaultBackgroundColor variable value. For Light Gray Old icon set will be used, for other
colours — the one without a prefix.

Predefined icons are put to \EFI\OC\Resources\Image directory. Full list of supported icons (in .icns format) is
provided below. Missing optional icons will use the closest available icon. External entries will use Ext-prefixed icon if
available (e.g. OldExtHardDrive.icns).

• Cursor — Mouse cursor (mandatory).
• Selected — Selected item (mandatory).
• Selector — Selecting item (mandatory).
• HardDrive — Generic OS (mandatory).
• Apple — Apple OS.
• AppleRecv — Apple Recovery OS.
• AppleTM — Apple Time Machine.
• Windows — Windows.
• Other — Custom entry (see Entries).

55

https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
https://support.apple.com/HT208330
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg/tree/master/Application/GopStop
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://www.memtest86.com
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
http://github.com/tianocore/edk2
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OcBinaryData


• SystemGraphics — Switch to Graphics mode and use System renderer with custom ConsoleControl.
• SystemText — Switch to Text mode and use System renderer with custom ConsoleControl.
• SystemGeneric — Use System renderer with system ConsoleControl assuming it behaves correctly.

The use of BuiltinGraphics is generally straightforward. For most platforms it is necessary to enable
ProvideConsoleGop, set Resolution to Max.

The use of System protocols is more complicated. In general the preferred setting is SystemGraphics or
SystemText. Enabling ProvideConsoleGop, setting Resolution to Max, enabling ReplaceTabWithSpace is
useful on almost all platforms. SanitiseClearScreen, IgnoreTextInGraphics, and ClearScreenOnModeSwitch
are more specific, and their use depends on the firmware.

Note: Some Macs, namely MacPro5,1, may have broken console output with newer GPUs, and thus only
BuiltinGraphics may work for them.

2. ConsoleMode
Type: plist string
Failsafe: Empty string
Description: Sets console output mode as specified with the WxH (e.g. 80x24) formatted string.

Set to empty string not to change console mode. Set to Max to try to use largest available console mode. Currently
Builtin text renderer supports only one console mode, so this option is ignored.

Note: This field is best to be left empty on most firmwares.

3. Resolution
Type: plist string
Failsafe: Empty string
Description: Sets console output screen resolution.

• Set to WxH@Bpp (e.g. 1920x1080@32) or WxH (e.g. 1920x1080) formatted string to request custom resolution
from GOP if available.

• Set to empty string not to change screen resolution.
• Set to Max to try to use largest available screen resolution.

On HiDPI screens APPLE_VENDOR_VARIABLE_GUID UIScale NVRAM variable may need to be set to 02 to enable
HiDPI scaling in Builtin text renderer, FileVault 2 UEFI password interface, and boot screen logo. Refer to
Recommended Variables section for more details.

Note: This will fail when console handle has no GOP protocol. When the firmware does not provide it, it can be
added with ProvideConsoleGop set to true.

4. ClearScreenOnModeSwitch
Type: plist boolean
Failsafe: false
Description: Some firmwares clear only part of screen when switching from graphics to text mode, leaving a
fragment of previously drawn image visible. This option fills the entire graphics screen with black color

::::::
colour

before switching to text mode.

Note: This option only applies to System renderer.

5. DirectGopRendering
Type: plist boolean
Failsafe: false
Description: Use builtin graphics output protocol renderer for console.

On some firmwares this may provide better performance or even fix rendering issues, like on MacPro5,1. However,
it is recommended not to use this option unless there is an obvious benefit as it may even result in slower scrolling.

6. IgnoreTextInGraphics
Type: plist boolean
Failsafe: false
Description: Select firmwares output text onscreen in both graphics and text mode. This is normally unexpected,
because random text may appear over graphical images and cause UI corruption. Setting this option to true will
discard all text output when console control is in mode different from Text.

62



Description: Forcibly wraps Firmware Volume protocols or installs new to support custom cursor images for
File Vault 2. Should be set to true to ensure File Vault 2 compatibility on everything but VMs and legacy Macs.

Note: Several virtual machines including VMware may have corrupted cursor image in HiDPI mode and thus
may also require this setting to be enabled.

13. HashServices
Type: plist boolean
Failsafe: false
Description: Forcibly reinstalls Hash Services protocols with builtin versions. Should be set to true to ensure
File Vault 2 compatibility on platforms providing broken SHA-1 hashing. Can be diagnosed by invalid cursor size
with UIScale set to 02, in general platforms prior to APTIO V (Haswell and older) are affected.

14. OSInfo
Type: plist boolean
Failsafe: false
Description: Forcibly reinstalls OS Info protocol with builtin versions. This protocol is generally used to receive
notifications from macOS bootloader, by the firmware or by other applications.

15. UnicodeCollation
Type: plist boolean
Failsafe: false
Description: Forcibly reinstalls unicode collation services with builtin version. Should be set to true to ensure
UEFI Shell compatibility on platforms providing broken unicode collation. In general legacy Insyde and APTIO
platforms on Ivy Bridge and earlier are affected.

11.12 Quirks Properties
1. DeduplicateBootOrder

Type: plist boolean
Failsafe: false
Description: Remove duplicate entries in BootOrder variable in EFI_GLOBAL_VARIABLE_GUID.

This quirk requires RequestBootVarRouting to be enabled and therefore OC_FIRMWARE_RUNTIME protocol imple-
mented in OpenRuntime.efi.

By redirecting Boot prefixed variables to a separate GUID namespace with the help of RequestBootVarRouting
quirk we achieve multiple goals:

• Operating systems are jailed and only controlled by OpenCore boot environment to enhance security.
• Operating systems do not mess with OpenCore boot priority, and guarantee fluent updates and hibernation

wakes for cases that require reboots with OpenCore in the middle.
• Potentially incompatible boot entries, such as macOS entries, are not deleted or anyhow corrupted.

However, some firmwares do their own boot option scanning upon startup by checking file presence on the available
disks. Quite often this scanning includes non-standard locations, such as Windows Bootloader paths. Normally it
is not an issue, but some firmwares, ASUS firmwares on APTIO V in particular, have bugs. For them scanning
is implemented improperly, and firmware preferences may get accidentally corrupted due to BootOrder entry
duplication (each option will be added twice) making it impossible to boot without cleaning

::::::::
resetting

:
NVRAM.

To trigger the bug one should have some valid boot options (e.g. OpenCore) and then install Windows with
RequestBootVarRouting enabled. As Windows bootloader option will not be created by Windows installer, the
firmware will attempt to create it itself, and then corrupt its boot option list.

This quirk removes all duplicates in BootOrder variable attempting to resolve the consequences of the bugs upon
OpenCore loading. It is recommended to use this key along with BootProtect option.

2. ExitBootServicesDelay
Type: plist integer
Failsafe: 0
Description: Adds delay in microseconds after EXIT_BOOT_SERVICES event.

This is a very ugly quirk to circumvent "Still waiting for root device" message on select APTIO IV firmwares,
namely ASUS Z87-Pro, when using FileVault 2 in particular. It seems that for some reason they execute code

65


	Introduction
	Generic Terms

	Configuration Structure
	Misc
	Introduction
	Properties
	Boot Properties
	Security Properties

	Tools
	OpenCanopy
	Quirks Properties

