OpenCore

Reference Manual (0.7-8.9)
[2022.02.10]

Copyright ©2018-2022 vit9696



17.

18.

19.

20.

sometimes fails to wake up. For debug kernels setpowerstate_panic=0 boot argument should be used, which is
otherwise equivalent to this quirk.

ProvideCurrentCpulnfo

Type: plist boolean

Failsafe: false

Requirement: 10.8 (10.14)

Description: Provides current CPU info to the kernel.

This quirk works differently depending on the CPU:

e For Microsoft Hyper-V it provides the correct TSC and FSB values to the kernel, as well as disables CPU
topology validation (10.8+).

o For Intel CPUs it adds support for asymmetrical SMP systems (e.g. Intel Alder Lake) by patching core
count to thread count along with the supplemental required changes (10.14+).

SetApfsTrimTimeout

Type: plist integer

Failsafe: -1

Requirement: 10.14 (not required for older)

Description: Set trim timeout in microseconds for APFS filesystems on SSDs.

The APFS filesystem is designed in a way that the space controlled via the spaceman structure is either used or
free. This may be different in other filesystems where the areas can be marked as used, free, and unmapped. All
free space is trimmed (unmapped/deallocated) at macOS startup. The trimming procedure for NVMe drives
happens in LBA ranges due to the nature of the DSM command with up to 256 ranges per command. The more
fragmented the memory on the drive is, the more commands are necessary to trim all the free space.

Depending on the SSD controller and the level of drive fragmenation, the trim procedure may take a considerable
amount of time, causing noticeable boot slowdown. The APFS driver explicitly ignores previously unmapped
areas and repeatedly trims them on boot. To mitigate against such boot slowdowns, the macOS driver introduced
a timeout (9.999999 seconds) that stops the trim operation when not finished in time.

On several controllers, such as Samsung, where the deallocation process is relatively slow, this timeout can be
reached very quickly. Essentially, it means that the level of fragmentation is high, thus macOS will attempt to
trim the same lower blocks that have previously been deallocated, but never have enough time to deallocate
higher blocks. The outcome is that trimming on such SSDs will be non-functional soon after installation, resulting
in additional wear on the flash.

One way to workaround the problem is to increase the timeout to an extremely high value, which at the cost
of slow boot times (extra minutes) will ensure that all the blocks are trimmed. Set this option to a high value,
such as 4294967295, to ensure that all blocks are trimmed. Alternatively, use over-provisioning, if supported, or
create a dedicated unmapped partition where the reserve blocks can be found by the controller. Conversely, the
trim operation can be disabled by setting a very low timeout value. e.g. 999. Refer to this article| for details.

As of macOS 12.0, it is no longer possible to set trim timeout for APFES filesystems. However, trim can be

ThirdPartyDrives

Type: plist boolean

Failsafe: false

Requirement: 10.6 (not required for older)

Description: Apply vendor patches to IOAHCIBlockStorage.kext to enable native features for third-party drives,
such as TRIM on SSDs or hibernation support on 10.15 and newer.

Note: This option may be avoided on user preference. NVMe SSDs are compatible without the change. For AHCI
SSDs on modern macOS version there is a dedicated built-in utility called trimforce. Starting from 10.15 this
utility creates EnableTRIM variable in APPLE_BOOT_VARIABLE_GUID namespace with 01 00 00 00 value.

XhciPortLimit

Type: plist boolean

Failsafe: false

Requirement: 10.11 (not required for older)

33


https://interface31.ru/tech_it/2015/04/mozhno-li-effektivno-ispolzovat-ssd-bez-podderzhki-trim.html

Where the above files are not present, OpenLinuxBoot can autodetect and boot {boot}/vmlinuz* kernel files directly.
It links these automatically — based on the kernel version in the filename — to their associated {boot}/init* ramdisk
files. This applies to most Debian-related distros, including Debian itself, Ubuntu and variants.

When autodetecting, OpenLinuxBoot looks in /etc/default/grub for kernel boot options and /etc/os-release for
the distro name.

BootLoaderSpecByDefault (but not pure Boot Loader Specification) can expand GRUB variables in the *.conf files —
and this is used in practice in certain distros such as CentOS. In order to handle this correctly, when this situation is
detected OpenLinuxBoot extracts all variables from {boot}/grub2/grubenv and also any unconditionally set variables
from {boot}/grub2/grub.cfg, and then expands these where required in *.conf file entries.

The only currently supported method of starting Linux kernels relies on their being compiled with EFISTUB. This
applies to almost all modern distros, particularly those which use systemd. Note that most modern distros use systemd
as their system manager, even though most do not use systemd-boot as their bootloader.

systemd-boot users (probably almost exclusively Arch Linux users) should be aware that OpenLinuxBoot does not
support the systemd-boot—specific Boot Loader Interface; therefore efibootmgr rather than bootctl must be used for
any low-level Linux command line interaction with the boot menu.

11.7 AudioDxe

High Definition Audio support driver in UEFI firmware for most Intel and some other analog audio controllers.

Note: AudioDxe is a staging driver, refer to jacidanthera/bugtracker#740 for known issues.

11.7.1 Configuration

Most UEFT audio configuration is handled via the UEFI Audio Properties section, but if required the following
additonal configuration options (which are needed to produce sound on most Apple hardware, and possibly some others)
may be specified in UEFI/Drivers/Arguments:

o ——gpio-setup - Default value is 0 (GPIO setup disabled) if argument is not provided, or 7 (all GPIO setup
stages stages enabled) if the argument is provided with no value.

Available values, which may be combined by adding, are:

— 0x00000001 (bit 0) — GPIO_SETUP_STAGE_DATA, set GPIO pin data high on specified pins. Required e.g.
on MacBookPro10,2 and MacPro5,1.

— 0x00000002 (bit 1) — GPIO_SETUP_STAGE_DIRECTION, set GPIO data direction to output on specified pins.
Required e.g. on MacPro5,1.

— 0x00000004 (bit 2) — GPIO_SETUP_STAGE_ENABLE, enable specified GPIO pins. Required e.g. on MacPro5,1.

If audio appears to be ‘playing’ on the correct codec, e.g. based on the debug log, but no sound is heard on any
channel, it is suggested to use -—gpio-setup (with no value) in the AudioDxe driver arguments. If specified with
no value, all stages will be enabled (equivalent of specifying 7). If this produces sound, it is then possible to try
fewer bits, e.g. ——gpio-setup=1, -—gpio-setup=3, to find out which stages are actually required.

Note: Value 7 (all flags enabled) of this option — as required for the MacPro5,1 — is compatible with most systems,
but is known to cause problems with sound (previous sounds are not allowed to finish before new sounds start)
on a small number of other systems, hence this option is not enabled by default.

e ——gpio-pins - Default: 0, auto-detect.

Specifies which GPIO pins should be operated on by --gpio-setup. This is a bit mask, with possible values from
0x0 to OxFF. The usable maximum depends on the number if available pins on the audio out function group of
the codec in use, e.g. it is 0x3 (lowest two bits) if two GPIO pins are present, 0x7 if three pins are present, etc.

When --gpio-setup is enabled (i.e. non-zero), then 0 is a special value for --gpio-pins, meaning that the pin
mask will be auto-generated based on the reported number of GPIO pins on the specified codec (see AudioCodec),
e.g. if the codec’s audio out function group reports 4 GPIO pins, a mask of 0xF will be used. The value in use
can be seen in the debug log in a line such as:

HDA: GPIO setup on pins OxOF - Success

79


https://systemd.io/BOOT_LOADER_INTERFACE/
https://github.com/acidanthera/bugtracker/issues/740

Values for driver parameters can be specified in hexadecimal beginning with Ox or in decimal, e.g. ——gpio-pins=0x12
or --gpio-pins=18.

e —-restore-nosnoop - Boolean fla , enabled if present.
AudioDxe clears the Intel HDA No Snoop Enable (NSNPEN) bit. On some systems, this change must be
reversed on exit in order to avoid breaking sound in Windows. If so, this flag should be added to AudioDxe
driver arguments. Not enabled by default, since restoring the flag can prevent sound from working in macOS on

11.8 Properties

1. APFS
Type: plist dict
Failsafe: None
Description: Provide APFS support as configured in the APFS Properties section below.

2. Audio
Type: plist dict
Failsafe: None
Description: Configure audio backend support described in the Audio Properties section below.

Unless documented otherwise (e.g. ResetTrafficClass) settings in this section are for UEFI audio support only
(e.g. OpenCore generated boot chime and audio assist) and are unrelated to any configuration needed for OS
audio support (e.g. AppleALC).

UEFT audio support provides a way for upstream protocols to interact with the selected audio hardware and
resources. All audio resources should reside in \EFI\OC\Resources\Audio directory. Currently the supported
audio file formats are MP3 and WAVE PCM. While it is driver-dependent which audio stream format is supported,
most common audio cards support 16-bit signed stereo audio at 44100 or 48000 Hz.

Audio file path is determined by audio type, audio localisation, and audio path. Each filename looks as follows:
[audio type]_[audio localisation]_[audio path].[audio ext]. For unlocalised files filename does not
include the language code and looks as follows: [audio type]_[audio path].[audio ext]. Audio extension
can either be mp3 or wav.

¢ Audio type can be OCEFIAudio for OpenCore audio files or AXEFTAudio for macOS bootloader audio files.

o Audio localisation is a two letter language code (e.g. en) with an exception for Chinese, Spanish, and
Portuguese. Refer to|APPLE_VOICE_OVER_LANGUAGE_CODE definition for the list of all supported localisations.

e Audio path is the base filename corresponding to a file identifier. For macOS bootloader audio paths refer to
APPLE_VOICE_OVER_AUDIO_FILE definition. For OpenCore audio paths refer to 0C_VOICE_OVER_AUDIO_FILE
definition. The only exception is OpenCore boot chime file, which is 0CEFIAudio_VoiceOver_Boot.mp3.

Audio localisation is determined separately for macOS bootloader and OpenCore. For macOS bootloader it is
set in preferences.efires archive in systemLanguage.utf8 file and is controlled by the operating system. For
OpenCore the value of prev-lang:kbd variable is used. When native audio localisation of a particular file is
missing, English language (en) localisation is used. Sample audio files can be found in |(OcBinaryData repository.

3. ConnectDrivers
Type: plist boolean
Failsafe: false
Description: Perform UEFI controller connection after driver loading.

This option is useful for loading drivers following UEFI driver model as they may not start by themselves.
Examples of such drivers are filesystem or audio drivers. While effective, this option may not be necessary for
drivers performing automatic connection, and may slightly slowdown the boot.

Note: Some types of firmware, particularly those made by Apple, only connect the boot drive to speed up the
boot process. Enable this option to be able to see all the boot options when running multiple drives.

4. Drivers
Type: plist array

80


https://github.com/acidanthera/bugtracker/issues/740
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/Protocol/AppleVoiceOver.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/Protocol/AppleVoiceOver.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Acidanthera/Protocol/OcAudio.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Acidanthera/Protocol/OcAudio.h
https://github.com/acidanthera/OcBinaryData

	AudioDxe
	Properties

