OpenCore

Reference Manual (0.7-8.9)
[2022.02.27]

Copyright ©2018-2022 vit9696

Here ParseDarwinVersion argument is assumed to be 3 integers obtained by splitting Darwin kernel version
string from left to right by the . symbol. FindDarwinVersion function looks up Darwin kernel version by
locating "Darwin Kernel Version x.A.u" string in the kernel image.

MinKernel

Type: plist string

Failsafe: Empty

Description: Adds kernel extension on specified macOS version or newer.

Note: Refer to the [Add MaxKernel description| for matching logic.

PlistPath

Type: plist string

Failsafe: Empty

Description: Kext Info.plist path relative to bundle (e.g. Contents/Info.plist).

Block Properties

1. Arch

Type: plist string
Failsafe: Any (Apply to any supported architecture)
Description: Kext block architecture (1386, x86_64).

Comment

Type: plist string

Failsafe: Empty

Description: Arbitrary ASCII string used to provide human readable reference for the entry. Whether this
value is used is implementation defined.

Enabled

Type: plist boolean

Failsafe: false

Description: Set to true to block this kernel extension.

Identifier

Type: plist string

Failsafe: Empty

Description: Kext bundle identifier (e.g. com.apple.driver.AppleTyMCEDriver).

MaxKernel

Type: plist string

Failsafe: Empty

Description: Blocks kernel extension on specified macOS version or older.

Note: Refer to the [Add MaxKernel description| for matching logic.

MinKernel

Type: plist string

Failsafe: Empty

Description: Blocks kernel extension on specified macOS version or newer.

Note: Refer to the |Add MaxKernel description|for matching logic.

Strategy
Failsafe: Disable (Forcibly make the kernel driver kmod startup code return failure)
Description: Determines the behaviour of kernel driver blocking.

Valid values:

e Disable — Forcibly make the kernel driver kmod startup code return failure.
e Exclude — Remove the kernel driver from the kernel cache by dropping plist entry and filling in zeroes.

Note: It is risky to Exclude a kext that is a dependency of others.

26

Note 2:_At _this moment Exclude is only applied to prelinkedkernel and newer mechanisms.
Note 3: In most cases strategy Exclude requires the new kext to be injected as a replacement.

Emulate Properties

1. CpuidiData

Type: plist data, 16 bytes
Failsafe: All zero
Description: Sequence of EAX, EBX, ECX, EDX values to replace CPUID (1) call in XNU kernel.

This property primarily meets three requirements:

o Enabling support for an unsupported CPU model (e.g. Intel Pentium).
o Enabling support for a CPU model not yet supported by a specific version of macOS (typically old versions).
¢ Enabling XCPM support for an unsupported CPU variant.

Note 1: It may also be the case that the CPU model is supported but there is no power management supported
(e.g. virtual machines). In this case, MinKernel and MaxKernel can be set to restrict CPU virtualisation and
dummy power management patches to the particular macOS kernel version.

Note 2: Only the value of EAX, which represents the full CPUID, typically needs to be accounted for and remaining
bytes should be left as zeroes. The byte order is Little Endian. For example, C3 06 03 00 stands for CPUID
0x0306C3 (Haswell).

Note 3: For XCPM support it is recommended to use the following combinations. Be warned that one is required
to set the correct [frequency vectors matching the installed CPU.

o Haswell-E (0x0306F2) to Haswell (0x0306C3):
CpuidiData: C3 06 03 00 00 00 00 00 OO 00O 00 00 00 OO OO 00
CpuidiMask: FF FF FF FF 00 00 00 00 00 00 00 00 00 00 0O 00
o Broadwell-E (0x0406F1) to Broadwell (0x0306D4):
CpuidiData: D4 06 03 00 00 00 00 00O 00 00 00 00O 0O OO0 00 00
CpuidiMask: FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00
o Comet Lake U62 (0x0A0660) to Comet Lake U42 (0x0806EC):
CpuidiData: EC 06 08 00 00 00 00 00 OO 00 00 00 00 OO OO 00
CpuidiMask: FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00
o Rocket Lake (0x040670) to Comet Lake (0x0A0655):
CpuidiData: 55 06 OA 00 00 00 00 00 00 00 00 00O 0O OO0 00 00
CpuidiMask: FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00
o Alder Lake (0x090672) to Comet Lake (0x0A0655):
CpuidiData: 55 06 OA 00 00 00 00 00 OO 00 00 00 00 OO OO 00
CpuidiMask: FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00

Note 4: Be aware that the following configurations are unsupported by XCPM (at least out of the box):

o Consumer Ivy Bridge (0x030649) as Apple disabled XCPM for Ivy Bridge and recommends legacy power
management for these CPUs. _xcpm_bootstrap should manually be patched to enforce XCPM on these
CPUs instead of this option.

e Low-end CPUs (e.g. Haswell+ Pentium) as they are not supported properly by macOS. Legacy workarounds
for older models can be found in the Special NOTES section of acidanthera/bugtracker#365.

CpuidiMask

Type: plist data, 16 bytes

Failsafe: All zero

Description: Bit mask of active bits in CpuidiData.

When each CpuidiMask bit is set to 0, the original CPU bit is used, otherwise set bits take the value of CpuidiData.

DummyPowerManagement

Type: plist boolean

Failsafe: false

Requirement: 10.4

Description: Disables AppleIntelCpuPowerManagement.

27

https://github.com/dortania/bugtracker/issues/190
https://github.com/acidanthera/bugtracker/issues/365

16.

17.

18.

19.

Requirement: 10.13 (not required for older)
Description: Prevent kernel from printing kext dump in the panic log preventing from observing panic details.
Affects 10.13 and above.

PowerTimeoutKernelPanic

Type: plist boolean

Failsafe: false

Requirement: 10.15 (not required for older)

Description: Disables kernel panic on setPowerState timeout.

An additional security measure was added to macOS Catalina (10.15) causing kernel panic on power change
timeout for Apple drivers. Sometimes it may cause issues on misconfigured hardware, notably digital audio, which
sometimes fails to wake up. For debug kernels setpowerstate_panic=0 boot argument should be used, which is
otherwise equivalent to this quirk.

ProvideCurrentCpulnfo

Type: plist boolean

Failsafe: false

Requirement: 10.8 (10.14)

Description: Provides current CPU info to the kernel.

This quirk works differently depending on the CPU:

e For Microsoft Hyper-V it provides the correct TSC and FSB values to the kernel, as well as disables CPU
topology validation (10.8+).

e For KVM and other hypervisors it provides precomputed MSR, 35h values solving kernel panic with -cpu
host.

o For Intel CPUs it adds support for asymmetrical SMP systems (e.g. Intel Alder Lake) by patching core
count to thread count along with the supplemental required changes (10.14+).

SetApfsTrimTimeout

Type: plist integer

Failsafe: -1

Requirement: 10.14 (not required for older)

Description: Set trim timeout in microseconds for APFS filesystems on SSDs.

The APFS filesystem is designed in a way that the space controlled via the spaceman structure is either used or
free. This may be different in other filesystems where the areas can be marked as used, free, and unmapped. All
free space is trimmed (unmapped/deallocated) at macOS startup. The trimming procedure for NVMe drives
happens in LBA ranges due to the nature of the DSM command with up to 256 ranges per command. The more
fragmented the memory on the drive is, the more commands are necessary to trim all the free space.

Depending on the SSD controller and the level of drive fragmenation, the trim procedure may take a considerable
amount of time, causing noticeable boot slowdown. The APFS driver explicitly ignores previously unmapped
areas and repeatedly trims them on boot. To mitigate against such boot slowdowns, the macOS driver introduced
a timeout (9.999999 seconds) that stops the trim operation when not finished in time.

On several controllers, such as Samsung, where the deallocation process is relatively slow, this timeout can be
reached very quickly. Essentially, it means that the level of fragmentation is high, thus macOS will attempt to
trim the same lower blocks that have previously been deallocated, but never have enough time to deallocate
higher blocks. The outcome is that trimming on such SSDs will be non-functional soon after installation, resulting
in additional wear on the flash.

One way to workaround the problem is to increase the timeout to an extremely high value, which at the cost
of slow boot times (extra minutes) will ensure that all the blocks are trimmed. Set this option to a high value,
such as 4294967295, to ensure that all blocks are trimmed. Alternatively, use over-provisioning, if supported, or
create a dedicated unmapped partition where the reserve blocks can be found by the controller. Conversely, the
trim operation can be disabled by setting a very low timeout value. e.g. 999. Refer to this article| for details.

On macOS 12+, it is no longer possible to set trim timeout for APFS filesystems. However, trim can be disabled

ThirdPartyDrives

33

https://interface31.ru/tech_it/2015/04/mozhno-li-effektivno-ispolzovat-ssd-bez-podderzhki-trim.html

Development and debug kernels produce more useful kernel panic logs. Consider downloading and installing the
KernelDebugKit from developer.apple.com when debugging a problem. To activate a development kernel, the
boot argument kcsuffix=development should be added. Use the uname -a command to ensure that the current
loaded kernel is a development (or a debug) kernel.

In cases where the OpenCore kernel panic saving mechanism is not used, kernel panic logs may still be found in
the /Library/Logs/DiagnosticReports directory.

Starting with macOS Catalina, kernel panics are stored in JSON format and thus need to be preprocessed before
passing to kpdescribe. sh:

cat Kernel.panic | grep macOSProcessedStackshotData |
python -c 'import json,sys;print(json.load(sys.stdin) ["macOSPanicString"])"'

3. DisableWatchDog
Type: plist boolean
Failsafe: false
Description: Some types of firmware may not succeed in booting the operating system quickly, especially in
debug mode. This results in the watchdog timer aborting the process. This option turns off the watchdog timer.

4. DisplayDelay
Type: plist integer
Failsafe: 0
Description: Delay in microseconds executed after every printed line visible onscreen (i.e. console).

5. DisplayLevel
Type: plist integer, 64 bit
Failsafe: 0
Description: EDK II debug level bitmask (sum) showed onscreen. Unless Target enables console (onscreen)
printing, onscreen debug output will not be visible.

The following levels are supported (discover more in DebugLib.h):

e 0x00000002 (bit 1) — DEBUG_WARN in DEBUG, NOOPT, RELEASE.

e 0x00000040 (bit 6) — DEBUG_INFO in DEBUG, NOOPT.

e 0x00400000 (bit 22) — DEBUG_VERBOSE in custom builds.

¢ 0x80000000 (bit 31) — DEBUG_ERROR in DEBUG, NOOPT, RELEASE.

6. LogModules

Description: Filter log entries by module.
This option filters logging generated by specific modules, both in the log and onscreen. Two modes are supported:

o + — Positive filtering: Only present selected modules.
e - — Negative filtering: Exclude selected modules.

When multiple ones are selected, comma (,) should be used as the splitter. For instance, +0CCPU, 0CA,0CB means

only OCCPU, OCA, OCB being printed, while ~0CCPU,0CA, 0CB indicates these modules being filtered out (i.e. not
logged). When no symbol is specified, positive filtering (+) will be used. * indicates all modules being logged.

Note I:_Acronyms of libraries can be found in the [Libraries]section below.

Note 2: Messages printed before the configuration of log protocol cannot be filtered.

7. Seriallnit
Type: plist boolean
Failsafe: false
Description: Perform serial port initialisation.

This option will perform serial port initialisation within OpenCore prior to enabling (any) debug logging. Serial
port configuration is defined via PCDs at compile time in gEfiMdeModulePkgTokenSpaceGuid GUID.

45

https://developer.apple.com
https://github.com/acidanthera/audk/blob/master/MdePkg/Include/Library/DebugLib.h

to true when a slow drive is used. Try to avoid frequent use of this option when dealing with flash drives as large
I/O amounts may speed up memory wear and render the flash drive unusable quicker.

When interpreting the log, note that the lines are prefixed with a tag describing the relevant location (module) of
the log line allowing better attribution of the line to the functionality.

The list of currently used tags is as follows.
Drivers and tools:

e BMF — OpenCanopy, bitmap font
e BS — Bootstrap

e GSTT — GoptStop

e HDA — AudioDxe

o KKT — KeyTester

e LNX — OpenLinuxBoot

e MMDD — MmapDump

e 0OCPAVP — PavpProvision

e OCRST — ResetSystem

e 0CUI — OpenCanopy

e 0C — OpenCore main, also OcMainLib
e VMOPT — VerifyMemOpt

Libraries:

e AAPL — OcDebugLogLib, Apple EfiBoot logging
e 0CABC — OcAfterBootCompatLib
e OCAE — OcAppleEventLib

e 0CAK — OcAppleKernellib

e 0CAU — OcAudioLib

e 0CA — OcAcpiLib

e 0CBP — OcAppleBootPolicyLib

e 0CB — OcBootManagementLib

e OCLBT — OcBlitLib

e 0CCL — OcAppleChunkListLib

e 0CCPU — OcCpulLib

e 0CC — OcConsoleLib

e 0CDC — OcDriverConnectionLib
e 0OCDH — OcDataHubLib

e 0CDI — OcAppleDiskImageLib

e 0CDM — OcDeviceMiscLib

e 0OCFS — OcFileLib

e 0OCFV — OcFirmwareVolumeLib

e OCHS — OcHashServicesLib

e 0CI4 — OcApplelmg4Lib

e 0CIC — OclmageConversionLib
e 0CII — OclnputLib

e 0CJS — OcApfsLib

e 0CKM — OcAppleKeyMapLib

e OCL — OcDebugLogLib

e 0CM — OcMiscLib

e 0CMCO — OcMachoLib

e OCME — OcHeciLib

e OCMM — OcMemoryLib

e OCPE — OcPeCoffLib, OcPeCoffExtLib
e 0CPI — OckFileLib, partition info
e OCPNG — OcPngLib

e OCRAM — OcAppleRamDiskLib

e OCRTC — OcRtcLib

e 0CSB — OcAppleSecureBootLib

47

As an alternative, the first 8 bytes of SystemUUID can be used for ApECID, this is found in macOS 11 for Macs
without the T2 chip.

With this value set and SecureBootModel valid (and not Disabled), it is possible to achieve Full Security of
Apple Secure Boot.

To start using personalised Apple Secure Boot, the operating system must be reinstalled or personalised.
Unless—Until the operating system is personalised, only macOS DMG recovery eannot—can be loaded. In
cases where DMG recovery is missing, it can be downloaded by using the macrecovery utility and saved in
com.apple.recovery.boot as explained in the Tips and Tricks section. Note that needs to be set
to Signed to use any DMG with Apple Secure Boot.

To personalise an existing operating system, use the bless command after loading to macOS DMG recovery.
Mount the system volume partition, unless it has already been mounted, and execute the following command:

bless --folder "/Volumes/Macintosh HD/System/Library/CoreServices" \
--bootefi --personalize

On macOS 11 and newer the dedicated x861legacy model always uses ApECID. When this configuration setting is
left as 0 first 8 bytes of system-id variable are used instead.

On macOS versions before macOS 11, which introduced a dedicated x861legacy model for models without the T2
chip, personalised Apple Secure Boot may not work as expected. When reinstalling the operating system, the
macOS Installer from macOS 10.15 and older will often run out of free memory on the /var/tmp partition when
trying to install macOS with the personalised Apple Secure Boot. Soon after downloading the macOS installer
image, an Unable to verify macOS error message will appear.

To workaround this issue, allocate a dedicated RAM disk of 2 MBs for macOS personalisation by entering the
following commands in the macOS recovery terminal before starting the installation:

disk=$(hdiutil attach -nomount ram://4096)

diskutil erasevolume HFS+ SecureBoot $disk

diskutil unmount $disk

mkdir /var/tmp/0SPersonalizationTemp

diskutil mount -mountpoint /var/tmp/0OSPersonalizationTemp $disk

. AuthRestart

Type: plist boolean

Failsafe: false

Description: Enable VirtualSMC-compatible authenticated restart.

Authenticated restart is a way to reboot FileVault 2 enabled macOS without entering the password. A dedicated
terminal command can be used to perform authenticated restarts: sudo fdesetup authrestart. It is also used
when installing operating system updates.

VirtualSMC performs authenticated restarts by splitting and saving disk encryption keys between NVRAM and
RTC, which despite being removed as soon as OpenCore starts, may be considered a security risk and thus is
optional.

. BlacklistAppleUpdate

Type: plist boolean

Failsafe: false

Description: Ignore boot options trying to update Apple peripheral firmware (e.g. MultiUpdater.efi).

Note: Certain operating systems, such as macOS Big Sur, are incapable of disabling firmware updates by using
the run-efi-updater NVRAM variable.

. Dmgloading

Type: plist string

Failsafe: Signed

Description: Define Disk Image (DMG) loading policy used for macOS Recovery.

Valid values:

49

https://support.apple.com/en-us/HT208330
https://github.com/acidanthera/bugtracker/issues/1255

Most Linux distros require the lext4_x64 driver, a few may require the btrfs_x64|driver, and a few may require no
additional file system driver: it depends on the filesystem of the boot partition of the installed distro, and on what
filesystems are already supported by the system’s firmware. LVM is not currently supported - this is because it is not
believed that there is currently a stand-alone UEFI LVM filesystem driver.

Be aware of the SyncRuntimePermissions quirk, which may need to be set to avoid early boot failure (typically halting
with a black screen) of the Linux kernel, due to a firmware bug of some firmware released after 2017. When present
and not mitigated by this quirk, this affects booting via OpenCore with or without OpenLinuxBoot.

After installing OpenLinuxBoot, it is recommended to compare the options shown in the OpenCore debug log when
booting (or attempting to boot) a given distro against the options seen using the shell command cat /proc/cmdline
when the same distro has been booted via its native bootloader. In general (for safety and security of the running
distro) these options should match, and if they do not it is recommended to use the driver arguments below (in
particular LINUX_BOOT_ADD_RO, LINUX_BOOT_ADD_RW, partuuideptsautoopts:{PARTUUID} and autoopts) to modify
the options as required. Note however that the following differences are normal and do not need to be fixed:

« If the default bootloader is GRUB then the options generated by OpenLinuxBoot will not contain a BOOT_IMAGE=. . .
value where the GRUB options do, and will contain an initrd=... value where the GRUB options do not.

¢ OpenLinuxBoot uses PARTUUID rather than filesystem UUID to identify the location of initrd, this is by design
as UEFI filesystem drivers do not make Linux filesystem UUID values available.

o Less important graphics handover options (such as discussed in the Ubuntu example given in autoopts below)
will not match exactly, this is not important as long as distro boots successfully.

If using OpenLinuxBoot with Secure Boot, users may wish to use the shim-to-cert.tool included in OpenCore
utilities, which can be used to extract the public key needed to boot a distro’s kernels directly, as done when using
OpenCore with OpenLinuxBoot, rather than via GRUB shim. For non-GRUB distros, the required public key must be
found by user research.

11.6.1 Configuration

The default parameter values should work well with no changes under most circumstances, but if required the following
options for the driver may be specified in UEFI/Drivers/Arguments:

e flags - Default: all flags exeeptEINUX_BBOT-ADD_DEBUG—INFG are set except the following:

— LINUX BOOT_ADD RW,
— LINUX_BOOT_LOG_VERBOSE and LINUX_BOOT LOG_VERBOSE are-set—

— LINUX_BOOT_ADD_DEBUG_INFO. _
Available flags are:

— 0x00000001 (bit 0) — LINUX_BOOT_SCAN_ESP, Allows scanning for entries on EFI System Partition.

0x00000002 (bit 1) — LINUX_BOOT_SCAN_XBOOTLDR, Allows scanning for entries on Extended Boot Loader

Partition.

0x00000004 (bit 2) — LINUX_BOOT_SCAN_LINUX_ROOQT, Allows scanning for entries on Linux Root filesystems.

0x00000008 (bit 3) — LINUX_BOOT_SCAN_LINUX_DATA, Allows scanning for entries on Linux Data filesystems.

— 0x00000080 (bit 7) — LINUX_BOOT_SCAN_OTHER, Allows scanning for entries on file systems not matched by
any of the above.

The following notes apply to all of the above options:
Note 1: Apple filesystems APFS and HFS are never scanned.

Note 2: Regardless of the above flags, a file system must first be allowed by Misc/Security/ScanPolicy
before it can be seen by OpenLinuxBoot or any other 0C_BOOT_ENTRY_PROTOCOL driver.

Note 3: Tt is recommended to enable scanning LINUX_ROOT and LINUX_DATA in both OpenLinuxBoot flags
and Misc/Security/ScanPolicy in order to be sure to detect all valid Linux installs, since Linux boot
filesystems are very often marked as LINUX_DATA.

— 0x00000100 (bit 8) — LINUX_BOOT_ALLOW_AUTODETECT, If set allows autodetecting and linking vmlinuz*
and init* ramdisk files when loader/entries files are not found.

— 0x00000200 (bit 9) — LINUX_BOOT_USE_LATEST, When a Linux entry generated by OpenLinuxBoot is
selected as the default boot entry in OpenCore, automatically switch to the latest kernel when a new version
is installed.

79

https://github.com/acidanthera/OcBinaryData
https://github.com/acidanthera/OcBinaryData

When this option is set, an internal menu entry id is shared between kernel versions from the same install of
Linux. Linux boot options are always sorted highest kernel version first, so this means that the latest kernel
version of the same install always shows as the default, with this option set.

Note: This option is recommended on all systems.

— 0x00000400 (bit 10) — LINUX_BOOT_ADD_RO, This option applies to autodetected Linux only (i.e. not to
BLSpec or Fedora-style distributions which have /loader/entries/*.conf files). Some distributions run a
filesystem check on loading which requires the root filesystem to initially be mounted read-only via the ro
kernel option, which requires this option to be added to the autodetected options. Set this bit to add this
option on autodetected distros; should be harmless but very slightly slow down boot time (due to requried
remount as read-write) on distros which do not require it. When there are multiple distros and it is required
to specify this option for specific distros only, use i -autoopts : {partuuidPARTUUID}=ro to
manually add the option where required, instead of using this flag.

— 0x00000800 (bit 11) — LINUX_BOOT_ADD_RW, Like LINUX_BOOT_ADD_RO, this option applies to autode-
tected Linux only. It is not required for most distros (which usually require either ro or nothing to
be added to detected boot options), but is required on some Arch-derived distros, e.g. EndeavourOS.
When there are multiple distros and it is required to specify this option for specific distros only, use
partuuidoptsautoopts: {partuuidPARTUUID}+=rw to manually add the option where required, instead of
using this flag. If this option and LINUX_BOOT_ADD_RO are both specified, only this option is applied and
LINUX_BOOT_ADD_RO is ignored.

— 0x00002000 (bit 13) — LINUX_BOOT_ALLOW_CONF_AUTO_ROOT, In some instances of BootLoaderSpecByDefault
in combination with ostree, the /loader/entries/*.conf files do not specify a required root=... kernel
option — it is added by GRUB. If this bit is set and this situation is detected, then automatically add this
option. (Required for example by Endless OS.)

— 0x00004000 (bit 14) — LINUX_BOOT_LOG_VERBOSE, Add additional debug log info about files encountered
and autodetect options added while scanning for Linux boot entries.

— 0x00008000 (bit 15) — LINUX_BOOT_ADD_DEBUG_INFO, Adds a human readable file system type, followed
by the first eight characters of the partition’s unique partition uuid, to each generated entry name. Can help
with debugging the origin of entries generated by the driver when there are multiple Linux installs on one
system.

Flag values can be specified in hexadecimal beginning with Ox or in decimal, e.g. f1ags=0x80 or flags=128. It is
also possible to specify flags to add or remove, using syntax such as £1lags+=0xC000 to add all debugging options
or flags-=0x400 to remove the LINUX_BOOT_ADD_RO option.

partuunidoptsautoopts: {partuuidPARTUUID} [+]="{options}" - Default: not set.

Allows manually specifying kernel options to use in autodetect mode for a given partition only. If specified with
+= then these are used in addition to any autodetected options, if specified with = they are used instead. Used for
autodetected Linux only. Values specified here are never used for entries created from /loader/entries/*.conf
files.

Note: The partuuid value to be specified here is typically the same as the PARTUUID seen in root=PARTUUID=. ..
in the Linux kernel boot options (view using cat /proc/cmdline) for autodetected Debian-style distros, but is
not the same for Fedora-style distros booted from /loader/entries/*.conf files.

Typically this option should not be needed inthelatter-easefor /loader/entries distros, but in case it is +to
find out the unique partition uuid to use look for LNX: entries in the OpenCore debug log file. Alternatively, and
for more advanced scenarios, it is possible to examine how the distro’s partitions are mounted using the Linux
mount command, and then find out the partuuid of relevant mounted partitions by examining the output of 1s
-1 /dev/disk/by-partuuid.

autoopts [+]="{options}" - Default: None specified. The kernel options to use for autodetected Linux only. The
value here is never used for entries created from /loader/entries/*.conf files. partuuideptsautoopts: {PARTUUID}
may be more suitable where there are multiple distros, but autoopts with no PARTUUID required is more
convenient for just one distro. If specified with += then these are used in addition to autodetected options, if
specified with = they are used instead. As example usage, it is possible to use += format to add a vt.handoff
options, such as autopts+="vt.handoff=7" or autopts+="vt.handoff=3" (check cat /proc/cmdline when
booted via the distro’s default bootloader) on Ubuntu and related distros, in order to add the vt.handoff option

to the auto-detected GRUB defaults, and avoid a flash of text showing before the distro splash screen.

80

11.6.2 Additional information

OpenLinuxBoot can detect the loader/entries/*.conf files created according to the Boot Loader Specification or
the closely related [systemd BootLoaderSpecByDefault. The former is specific to systemd-boot and is used by Arch
Linux, the latter applies to most Fedora-related distros including Fedora itself, RHEL and variants.

Where the above files are not present, OpenLinuxBoot can autodetect and boot {boot}/vmlinuz* kernel files directly.
It links these automatically — based on the kernel version in the filename — to their associated {boot}/init* ramdisk
files. This applies to most Debian-related distros, including Debian itself, Ubuntu and variants.

When autodetecting in /boot as part of the root filesystem, OpenLinuxBoot looks in /etc/default/grub for kernel

boot options and /etc/os-release for the distro name. When autodetecting in a standalone boot partition (i.e. when
/boot has its own mount point), OpenLinuxBoot cannot autodetect kernel arguments and all kernel arguments except

initrd=... must be fully specified by hand using autoopts=... or autoopts:{partuuid}=... (+= variants of these
options will not work, as these only add additional arguments).

BootLoaderSpecByDefault (but not pure Boot Loader Specification) can expand GRUB variables in the *. conf files —
and this is used in practice in certain distros such as CentOS. In order to handle this correctly, when this situation is
detected OpenLinuxBoot extracts all variables from {boot}/grub2/grubenv and also any unconditionally set variables
from {boot}/grub2/grub.cfg, and then expands these where required in *.conf file entries.

The only currently supported method of starting Linux kernels relies on their being compiled with EFISTUB. This
applies to almost all modern distros, particularly those which use systemd. Note that most modern distros use systemd
as their system manager, even though most do not use systemd-boot as their bootloader.

systemd-boot users (probably almost exclusively Arch Linux users) should be aware that OpenLinuxBoot does not
support the systemd-boot—specific Boot Loader Interface; therefore efibootmgr rather than bootctl must be used for
any low-level Linux command line interaction with the boot menu.

11.7 AudioDxe

High Definition Audio support driver in UEFT firmware for most Intel and some other analog audio controllers.

Note: AudioDxe is a staging driver, refer to Jacidanthera/bugtracker#740 for known issues.

11.7.1 Configuration

Most UEFT audio configuration is handled via the UEFI Audio Properties section, but if required the following
additonal configuration options (which are needed to produce sound on most Apple hardware, and possibly some others)
may be specified in UEFI/Drivers/Arguments:

o --gpio-setup - Default value is 0 (GPIO setup disabled) if argument is not provided, or 7 (all GPIO setup
stages stages enabled) if the argument is provided with no value.

Available values, which may be combined by adding, are:

— 0x00000001 (bit 0) — GPIO_SETUP_STAGE_DATA, set GPIO pin data high on specified pins. Required e.g.
on MacBookPro10,2 and MacPro5,1.

— 0x00000002 (bit 1) — GPIO_SETUP_STAGE_DIRECTION, set GPIO data direction to output on specified pins.
Required e.g. on MacPro5,1.

— 0x00000004 (bit 2) — GPIO_SETUP_STAGE_ENABLE, enable specified GPIO pins. Required e.g. on MacPro5,1.

If audio appears to be ‘playing’ on the correct codec, e.g. based on the debug log, but no sound is heard on any
channel, it is suggested to use --gpio-setup (with no value) in the AudioDxe driver arguments. If specified with
no value, all stages will be enabled (equivalent of specifying 7). If this produces sound, it is then possible to try
fewer bits, e.g. ——gpio-setup=1, ——gpio-setup=3, to find out which stages are actually required.

Note: Value 7 (all flags enabled) of this option — as required for the MacPro5,1 — is compatible with most systems,
but is known to cause problems with sound (previous sounds are not allowed to finish before new sounds start)
on a small number of other systems, hence this option is not enabled by default.

o —-gpio-pins - Default: 0, auto-detect.

Specifies which GPIO pins should be operated on by --gpio-setup. This is a bit mask, with possible values from
0x0 to OxFF. The usable maximum depends on the number if available pins on the audio out function group of
the codec in use, e.g. it is 0x3 (lowest two bits) if two GPIO pins are present, 0x7 if three pins are present, etc.

81

https://systemd.io/BOOT_LOADER_SPECIFICATION/
https://fedoraproject.org/wiki/Changes/BootLoaderSpecByDefault
https://systemd.io/BOOT_LOADER_INTERFACE/
https://github.com/acidanthera/bugtracker/issues/740

When --gpio-setup is enabled (i.e. non-zero), then 0 is a special value for --gpio-pins, meaning that the pin
mask will be auto-generated based on the reported number of GPIO pins on the specified codec (see AudioCodec),
e.g. if the codec’s audio out function group reports 4 GPIO pins, a mask of 0xF will be used. The value in use
can be seen in the debug log in a line such as:

HDA: GPIO setup on pins OxOF - Success

Values for driver parameters can be specified in hexadecimal beginning with 0x or in decimal, e.g. —-gpio-pins=0x12

or --gpio-pins=18.
e —-restore-nosnoop - Boolean flag, enabled if present.
AudioDxe clears the Intel HDA No Snoop Enable (NSNPEN) bit. On some systems, this change must be

reversed on exit in order to avoid breaking sound in Windows. If so, this flag should be added to AudioDxe
driver arguments. Not enabled by default, since restoring the flag can prevent sound from working in macOS on

)

11.8 Properties

1. APFS
Type: plist dict
Failsafe: None
Description: Provide APFS support as configured in the APFS Properties section below.

2. Audio
Type: plist dict
Failsafe: None
Description: Configure audio backend support described in the Audio Properties section below.

Unless documented otherwise (e.g. ResetTrafficClass) settings in this section are for UEFI audio support only
(e.g. OpenCore generated boot chime and audio assist) and are unrelated to any configuration needed for OS
audio support (e.g. AppleALC).

UEFT audio support provides a way for upstream protocols to interact with the selected audio hardware and
resources. All audio resources should reside in \EFI\OC\Resources\Audio directory. Currently the supported
audio file formats are MP3 and WAVE PCM. While it is driver-dependent which audio stream format is supported,
most common audio cards support 16-bit signed stereo audio at 44100 or 48000 Hz.

Audio file path is determined by audio type, audio localisation, and audio path. Each filename looks as follows:
[audio type]_[audio localisation]_[audio path].[audio ext]. For unlocalised files filename does not
include the language code and looks as follows: [audio type]_[audio path].[audio ext]. Audio extension
can either be mp3 or wav.

¢ Audio type can be OCEFIAudio for OpenCore audio files or AXEFTAudio for macOS bootloader audio files.

o Audio localisation is a two letter language code (e.g. en) with an exception for Chinese, Spanish, and
Portuguese. Refer to APPLE_VOICE_OVER_LANGUAGE_CODE definition for the list of all supported localisations.

e Audio path is the base filename corresponding to a file identifier. For macOS bootloader audio paths refer to
APPLE_VOICE_OVER_AUDIO_FILE definition. For OpenCore audio paths refer to 0C_VOICE_OVER_AUDIO_FILE
definition. The only exception is OpenCore boot chime file, which is 0CEFIAudio_VoiceOver_Boot.mp3.

Audio localisation is determined separately for macOS bootloader and OpenCore. For macOS bootloader it is
set in preferences.efires archive in systemLanguage.utf8 file and is controlled by the operating system. For
OpenCore the value of prev-lang:kbd variable is used. When native audio localisation of a particular file is
missing, English language (en) localisation is used. Sample audio files can be found in |(OcBinaryData repository.

3. ConnectDrivers
Type: plist boolean
Failsafe: false
Description: Perform UEFI controller connection after driver loading.

This option is useful for loading drivers following UEFI driver model as they may not start by themselves.
Examples of such drivers are filesystem or audio drivers. While effective, this option may not be necessary for
drivers performing automatic connection, and may slightly slowdown the boot.

82

https://github.com/acidanthera/bugtracker/issues/740
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/Protocol/AppleVoiceOver.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/Protocol/AppleVoiceOver.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Acidanthera/Protocol/OcAudio.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Acidanthera/Protocol/OcAudio.h
https://github.com/acidanthera/OcBinaryData

	Block Properties
	Emulate Properties
	AudioDxe
	Properties

