
OpenCore

Reference Manual (0.7.1
:::
.2)

[2021.07.17]

Copyright ©2018-2021 vit9696

Note3 : For any other value which you may need to use, it is possible to configure CsrUtil.efi as a TextMode
Tools entry to configure a different value, e.g. use toggle 0x6F in Arguments to toggle the SIP disabled value
set by default by csrutil disable --no-internal in Big Sur.

4. ApECID
Type: plist integer, 64 bit
Failsafe: 0
Description: Apple Enclave Identifier.

Setting this value to any non-zero 64-bit integer will allow using personalised Apple Secure Boot identifiers. To
use this setting, generate a random 64-bit number with a cryptographically secure random number generator.
As an alternative, the first 8 bytes of SystemUUID can be used for ApECID, this is found in macOS 11 for Macs
without the T2 chip.

With this value set and SecureBootModel valid (and not Disabled), it is possible to achieve Full Security of
Apple Secure Boot.

To start using personalised Apple Secure Boot, the operating system must be reinstalled or personalised. Unless
the operating system is personalised, macOS DMG recovery cannot be loaded. In cases where DMG recovery
is missing, it can be downloaded by using the macrecovery utility and saved in com.apple.recovery.boot as
explained in the Tips and Tricks section. Note that DMG loading needs to be set to Signed to use any DMG
with Apple Secure Boot.

To personalise an existing operating system, use the bless command after loading to macOS DMG recovery.
Mount the system volume partition, unless it has already been mounted, and execute the following command:

bless bless --folder "/Volumes/Macintosh HD/System/Library/CoreServices" \

:::::
bless

::
-
:
-
:::::::
folder

::
"

:
/
:::::::
Volumes

:
/
::::::::::
Macintosh

:::
HD

:
/
::::::
System

:
/
::::::::
Library

:
/

::::::::::::
CoreServices

:
"
::

\
--bootefi --personalize

On macOS versions before macOS 11, which introduced a dedicated x86legacy model for models without the T2
chip, personalised Apple Secure Boot may not work as expected. When reinstalling the operating system, the
macOS Installer from macOS 10.15 and older will often run out of free memory on the /var/tmp partition when
trying to install macOS with the personalised Apple Secure Boot. Soon after downloading the macOS installer
image, an Unable to verify macOS error message will appear.

To workaround this issue, allocate a dedicated RAM disk of 2 MBs for macOS personalisation by entering the
following commands in the macOS recovery terminal before starting the installation:

disk=$(hdiutil attach -nomount ram://4096)
diskutil erasevolume HFS+ SecureBoot $disk
diskutil unmount $disk
mkdir /var/tmp/OSPersonalizationTemp
diskutil mount -mountpoint /var/tmp/OSPersonalizationTemp $disk

5. AuthRestart
Type: plist boolean
Failsafe: false
Description: Enable VirtualSMC-compatible authenticated restart.

Authenticated restart is a way to reboot FileVault 2 enabled macOS without entering the password. A dedicated
terminal command can be used to perform authenticated restarts: sudo fdesetup authrestart. It is also used
when installing operating system updates.

VirtualSMC performs authenticated restarts by splitting and saving disk encryption keys between NVRAM and
RTC, which despite being removed as soon as OpenCore starts, may be considered a security risk and thus is
optional.

6. BlacklistAppleUpdate
Type: plist boolean
Failsafe: false
Description: Ignore boot options trying to update Apple peripheral firmware (e.g. MultiUpdater.efi).

47

https://support.apple.com/en-us/HT208330

Failsafe: Default
Description: Apple Secure Boot hardware model.

Sets Apple Secure Boot hardware model and policy. Specifying this value defines which operating systems will be
bootable. Operating systems shipped before the specified model was released will not boot.

Valid values:

• Default — Recent available model, currently set to j137
::::::::::
x86legacy.

• Disabled — No model, Secure Boot will be disabled.
• j137 — iMacPro1,1 (December 2017). Minimum macOS 10.13.2 (17C2111)
• j680 — MacBookPro15,1 (July 2018). Minimum macOS 10.13.6 (17G2112)
• j132 — MacBookPro15,2 (July 2018). Minimum macOS 10.13.6 (17G2112)
• j174 — Macmini8,1 (October 2018). Minimum macOS 10.14 (18A2063)
• j140k — MacBookAir8,1 (October 2018). Minimum macOS 10.14.1 (18B2084)
• j780 — MacBookPro15,3 (May 2019). Minimum macOS 10.14.5 (18F132)
• j213 — MacBookPro15,4 (July 2019). Minimum macOS 10.14.5 (18F2058)
• j140a — MacBookAir8,2 (July 2019). Minimum macOS 10.14.5 (18F2058)
• j152f — MacBookPro16,1 (November 2019). Minimum macOS 10.15.1 (19B2093)
• j160 — MacPro7,1 (December 2019). Minimum macOS 10.15.1 (19B88)
• j230k — MacBookAir9,1 (March 2020). Minimum macOS 10.15.3 (19D2064)
• j214k — MacBookPro16,2 (May 2020). Minimum macOS 10.15.4 (19E2269)
• j223 — MacBookPro16,3 (May 2020). Minimum macOS 10.15.4 (19E2265)
• j215 — MacBookPro16,4 (June 2020). Minimum macOS 10.15.5 (19F96)
• j185 — iMac20,1 (August 2020). Minimum macOS 10.15.6 (19G2005)
• j185f — iMac20,2 (August 2020). Minimum macOS 10.15.6 (19G2005)
• x86legacy — Macs without T2 chip and VMs. Minimum macOS 11.0.1 (20B29)

:::::::
Warning

:
:
::::
Not

:::
all

:
Apple Secure Boot

::::::
models

:::
are

::::::::::
supported

:::
on

::
all

:::::::::
hardware

:::::::::::::
configurations.

::::::::
Starting

:::::
with

:::::::
macOS

::
12

::::::::::
x86legacy

:
is
::::
the

::::
only

::::::
Apple

:::::::
Secure

:::::
Boot

::::::
model

::::::::::
compatible

:::::
with

:::::::
software

:::::::
update

:::
on

:::::::::
hardware

:::::::
without

::::
T2

:::::
chips.

:

:::::
Apple

::::::
Secure

:::::
Boot

:
appeared in macOS 10.13 on models with T2 chips. Since PlatformInfo and SecureBootModel

are independent, Apple Secure Boot can be used with any SMBIOS with and without T2. Setting SecureBootModel
to any valid value but Disabled is equivalent to Medium Security of Apple Secure Boot. The ApECID value must
also be specified to achieve Full Security. Check ForceSecureBootScheme when using Apple Secure Boot on
a virtual machine.

Note that enabling Apple Secure Boot is demanding on invalid configurations, faulty macOS installations, and on
unsupported setups.

Things to consider:

(a) As with T2 Macs, all unsigned kernel extensions as well as several signed kernel extensions, including NVIDIA
Web Drivers, cannot be installed.

(b) The list of cached kernel extensions may be different, resulting in a need to change the list of Added or
Forced kernel extensions. For example, IO80211Family cannot be injected in this case.

(c) System volume alterations on operating systems with sealing, such as macOS 11, may result in the operating
system being unbootable. Do not try to disable system volume encryption unless Apple Secure Boot is
disabled.

(d) Boot failures might occur when the platform requires certain settings, but they have not been enabled
because the associated issues were not discovered earlier. Be extra careful with IgnoreInvalidFlexRatio
or HashServices.

(e) Operating systems released before Apple Secure Boot was released (e.g. macOS 10.12 or earlier), will still
boot until UEFI Secure Boot is enabled. This is so because Apple Secure Boot treats these as incompatible
and they are then handled by the firmware (as Microsoft Windows is).

(f) On older CPUs (e.g. before Sandy Bridge), enabling Apple Secure Boot might cause slightly slower loading
(by up to 1 second).

(g) As the Default value will increase with time to support the latest major released operating system, it is not
recommended to use the ApECID and the Default settings together.

51

https://support.apple.com/en-us/HT208330

Note: all protocol instances are installed prior to driver loading.

8. Quirks
Type: plist dict
Failsafe: None
Description: Apply individual firmware quirks described in the Quirks Properties section below.

9. ReservedMemory
Type: plist array
Description: To be filled with plist dict values, describing memory areas exclusive to specific firmware and
hardware functioning, which should not be used by the operating system. Examples of such memory regions could
be the second 256 MB corrupted by the Intel HD 3000 or an area with faulty RAM. Refer to the ReservedMemory
Properties section below for details.

11.7 APFS Properties
1. EnableJumpstart

Type: plist boolean
Failsafe: false
Description: Load embedded APFS drivers from APFS containers.

An APFS EFI driver is bundled in all bootable APFS containers. This option performs the loading of signed
APFS drivers (consistent with the ScanPolicy). Refer to the “EFI Jumpstart” section of the Apple File System
Reference for details.

2. GlobalConnect
Type: plist boolean
Failsafe: false
Description: Perform full device connection during APFS loading.

Every handle is connected recursively instead of the partition handle connection typically used for APFS driver
loading. This may result in additional time being taken but can sometimes be the only way to access APFS
partitions on certain firmware, such as those on older HP laptops.

3. HideVerbose
Type: plist boolean
Failsafe: false
Description: Hide verbose output from APFS driver.

APFS verbose output can be useful for debugging.

4. JumpstartHotPlug
Type: plist boolean
Failsafe: false
Description: Load APFS drivers for newly connected devices.

Permits APFS USB hot plug which enables loading APFS drivers, both at OpenCore startup and during OpenCore
picker display. Disable if not required.

5. MinDate
Type: plist integer
Failsafe: 0
Description: Minimal allowed APFS driver date.

The APFS driver date connects the APFS driver with the calendar release date. Apple ultimately drops support
for older macOS releases and APFS drivers from such releases may contain vulnerabilities that can be used to
compromise a computer if such drivers are used after support ends. This option permits restricting APFS drivers
to current macOS versions.

• 0 — require the default supported release date of APFS in OpenCore. The default release date will increase
with time and thus this setting is recommended. Currently set to 2018

::::
2021/06

::
01/21.

:::
01.

:

• -1 — permit any release date to load (strongly discouraged).
• Other — use custom minimal APFS release date, e.g. 20200401 for 2020/04/01. APFS release dates can be

found in OpenCore boot log and OcApfsLib.

78

https://developer.apple.com/support/apple-file-system/Apple-File-System-Reference.pdf
https://developer.apple.com/support/apple-file-system/Apple-File-System-Reference.pdf
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Acidanthera/Library/OcApfsLib.h

6. MinVersion
Type: plist integer
Failsafe: 0
Description: Minimal allowed APFS driver version.

The APFS driver version connects the APFS driver with the macOS release. Apple ultimately drops support
for older macOS releases and APFS drivers from such releases may contain vulnerabilities that can be used to
compromise a computer if such drivers are used after support ends. This option permits restricting APFS drivers
to current macOS versions.

• 0 — require the default supported version of APFS in OpenCore. The default version will increase with
time and thus this setting is recommended. Currently set to the latest point release from High Sierra from
App Store (

:::::
allow

:::::::
macOS

:::
Big

::::
Sur

::::
and

::::::
newer

:
(748077008000000

:::::::::::::::::
1600000000000000).

• -1 — permit any version to load (strongly discouraged).
• Other — use custom minimal APFS version, e.g. 1412101001000000 from macOS Catalina 10.15.4. APFS

versions can be found in OpenCore boot log and OcApfsLib.

11.8 AppleInput Properties
1. AppleEvent

Type: plist string
Failsafe: Auto
Description: Determine whether OC builtin or OEM Apple Event protocol is used.

This option determines whether Apple’s OEM Apple Event protocol is used (where available), or whether
OpenCore’s reversed engineered and updated re-implementation is used. In general OpenCore’s re-implementation
should be preferred, since it contains updates such as noticeably improved fine mouse cursor movement and
configurable key repeat delays.

• Auto — Use OEM Apple Event implementation if available, connected and recent enough to be used, otherwise
use OC reimplementation. On non-Apple hardware this will use the OpenCore builtin implementation. On
some Macs (e.g. classic Mac Pro) this will find the Apple implementation. On both older and newer Macs
than this, this option will always or often use the OC implementation. On older Macs this is because the
implementation available is too old to be used, on newer Macs it is because of optimisations added by Apple
which do not connect the Apple Event protocol except when needed – e.g. except when the Apple boot picker
is explicitly started. Due to its somewhat unpredicatable results, this option is not normally recommended.

• Builtin — Always use OpenCore’s updated re-implementation of the Apple Event protocol. Use of this
setting is recommended even on Apple hardware, due to improvements (better fine mouse control, configurable
key delays) made in the OC re-implementation of the protocol.

• OEM — Assume Apple’s protocol will be available at driver connection. On all Apple hardware where a
recent enough Apple OEM version of the protocol is available – whether or not connected automatically by
Apple’s firmware – this option will reliably access the Apple implementation. On all other systems, this
option will result in no keyboard or mouse support. For the reasons stated, Builtin is recommended in
preference to this option in most cases.

2. CustomDelays
Type: plist boolean
Failsafe: false
Description: Enable custom key repeat delays when using the OpenCore implementation of the Apple Event
protocol. Has no effect when using the OEM Apple implementation (see AppleEvent setting).

• true — The values of KeyInitialDelay and KeySubsequentDelay are used.
• false — Apple default values of 500ms (50) and 50ms (5) are used.

3. KeyInitialDelay
Type: plist integer
Failsafe: 50 (500ms before first key repeat)
Description: Configures the initial delay before keyboard key repeats in OpenCore implementation of Apple
Event protocol, in units of 10ms.

The Apple OEM default value is 50 (500ms).

79

https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Acidanthera/Library/OcApfsLib.h

Note 1 : On systems not using KeySupport, this setting may be freely used to configure key repeat behaviour.

Note 2 : On systems using KeySupport, but which do not show the ‘two long delays’ behavior (see Note 3)
and/or which always show a solid ‘set default’ indicator (see KeyForgetThreshold) then this setting may also
be freely used to configure key repeat initial delay behaviour, except that it should never be set to less than
KeyForgetThreshold to avoid uncontrolled key repeats.

Note 3 : On some systems using KeySupport, you may find that you see one additional slow key repeat before
normal speed key repeat starts, when holding a key down. If so, you may wish to configure KeyInitialDelay
and KeySubsequentDelay according to the instructions at Note 3 of KeySubsequentDelay.

4. KeySubsequentDelay
Type: plist integer
Failsafe: 5 (50ms between subsequent key repeats)
Description: Configures the gap between keyboard key repeats in OpenCore implementation of Apple Event
protocol, in units of 10ms.

The Apple OEM default value is 5 (50ms). 0 is an invalid value for this option (will issue a debug log warning
and use 1 instead).

Note 1 : On systems not using KeySupport, this setting may be freely used to configure key repeat behaviour.

Note 2 : On systems using KeySupport, but which do not show the ‘two long delays’ behaviour (see Note 3) and/or
which always show a solid ‘set default’ indicator (see KeyForgetThreshold) (which should apply to many/most
systems using AMI KeySupport mode) then this setting may be freely used to configure key repeat subsequent
delay behaviour, except that it should never be set to less than KeyForgetThreshold to avoid uncontrolled key
repeats.

Note 3 : On some systems using KeySupport, particularly KeySupport in non-AMI mode, you may find that after
configuring KeyForgetThreshold you get one additional slow key repeat before normal speed key repeat starts,
when holding a key down. On systems where this is the case, it is an unavoidable artefect of using KeySupport to
emulate raw keyboard data, which is not made available by UEFI. While this ‘two long delays’ issue has minimal
effect on overall usability, nevertheless you may wish to resolve it, and it is possible to do so as follows:

• Set CustomDelays to true
• Set KeyInitialDelay to 0
• Set KeySubsequentDelay to at least the value of your KeyForgetThreshold setting

The above procedure works as follows:

• Setting KeyInitialDelay to 0 cancels the Apple Event initial repeat delay (when using the OC builtin
Apple Event implementation with CustomDelays enabled), therefore the only long delay you will see is the
the non-configurable and non-avoidable initial long delay introduced by the BIOS key support on these
machines.

• Key-smoothing parameter KeyForgetThreshold effectively acts as the shortest time for which a key can
appear to be held, therefore a key repeat delay of less than this will guarantee at least one extra repeat for
every key press, however quickly the key is physically tapped.

• In the unlikely event that you still get frequent, or occasional, double key responses after setting KeySubsequentDelay
equal to your system’s value of KeyForgetThreshold, then increase KeySubsequentDelay by one or two
more until this effect goes away.

5.
:::::::::::::::::::::::
GraphicsInputMirroring

:::::
Type

:
:
::::::
plist

::::::::
boolean

:::::::
Failsafe

:
:
::::::
false

::::::::::::
Description:

:::::::
Apple’s

:::::
own

::::::::::::::
implementation

::
of

:::::::::::
AppleEvent

::::::::
prevents

::::::::
keyboard

::::::
input

::::::
during

::::::::
graphics

:::::::::::
applications

::::
from

:::::::::
appearing

:::
on

::::
the

:::::
basic

::::::
console

::::::
input

:::::::
stream.

:

:::::
With

:::
the

:::::::
default

::::::
setting

:::
of

:::::
false

:
,
:::::
OC’s

::::::
builtin

:::::::::::::::
implementation

::
of

:::::::::::
AppleEvent

:::::::::
replicates

::::
this

::::::::::
behaviour.

:::
On

:::::::::
non-Apple

:::::::::
hardware

::::
this

::::
can

::::
stop

:::::::::
keyboard

:::::
input

::::::::
working

::
in

::::::::::::::
graphics-based

:::::::::::
applications

::::
such

:::
as

:::::::::
Windows

:::::::::
BitLocker

:::::
which

::::
use

:::::::::
non-Apple

::::
key

:::::
input

:::::::::
methods.

:

:::
The

:::::::::::::
recommended

:::::::
setting

::
on

:::
all

:::::::::
hardware

::
is

:::::
true.

:

80

::::
Note

:
:
::::::::::::
AppleEvent’s

:::::::
default

:::::::::
behaviour

::
is
:::::::::
intended

::
to

:::::::
prevent

:::::::::
unwanted

:::::::
queued

::::::::::
keystrokes

:::::
from

:::::::::
appearing

:::::
after

::::::
exiting

:::::::::::::
graphics-based

::::::
UEFI

::::::::::::
applications;

::::
this

::::
issue

::
is
:::::::
already

::::::::
handled

:::::::::
separately

:::::::
within

::::::::::
OpenCore.

:

•
::::
true

::
—

::::::
Allow

::::::::
keyboard

::::::
input

::
to

:::::
reach

::::::::
graphics

::::::
mode

::::
apps

::::::
which

:::
are

::::
not

:::::
using

::::::
Apple

:::::
input

:::::::::
protocols.

:

•
:::::
false

::
—

:::::::
Prevent

::::
key

:::::
input

:::::::::
mirroring

:::
to

:::::::::
non-Apple

:::::::::
protocols

:::::
when

:::
in

:::::::
graphics

::::::
mode.

:

6. PointerSpeedDiv
Type: plist integer
Failsafe: 1
Description: Configure pointer speed divisor in OpenCore implementation of Apple Event protocol. Has no
effect when using the OEM Apple implementation (see AppleEvent setting).

Configures the divisor for pointer movements. The Apple OEM default value is 1. 0 is an invalid value for this
option.

Note: The recommended value for this option is 1. This value may optionally be modified in combination with
PointerSpeedMul, according to user preference, to achieve customised mouse movement scaling.

7. PointerSpeedMul
Type: plist integer
Failsafe: 1
Description: Configure pointer speed multiplier in OpenCore implementation of Apple Event protocol. Has no
effect when using the OEM Apple implementation (see AppleEvent setting).

Configures the multiplier for pointer movements. The Apple OEM default value is 1.

Note: The recommended value for this option is 1. This value may optionally be modified in combination with
PointerSpeedDiv, according to user preference, to achieve customised mouse movement scaling.

11.9 Audio Properties
1. AudioCodec

Type: plist integer
Failsafe: 0
Description: Codec address on the specified audio controller for audio support.

This typically contains the first audio codec address on the builtin analog audio controller (HDEF). Audio codec
addresses, e.g. 2, can be found in the debug log (marked in bold-italic):

OCAU: 1/3 PciRoot(0x0)/Pci(0x1,0x0)/Pci(0x0,0x1)/VenMsg(<redacted>,00000000) (4 outputs)
OCAU: 2/3 PciRoot(0x0)/Pci(0x3,0x0)/VenMsg(<redacted>,00000000) (1 outputs)
OCAU: 3/3 PciRoot(0x0)/Pci(0x1B,0x0)/VenMsg(<redacted>,02000000) (7 outputs)

As an alternative, this value can be obtained from IOHDACodecDevice class in I/O Registry containing it in
IOHDACodecAddress field.

2. AudioDevice
Type: plist string
Failsafe: Empty
Description: Device path of the specified audio controller for audio support.

This typically contains builtin analog audio controller (HDEF) device path, e.g. PciRoot(0x0)/Pci(0x1b,0x0).
The list of recognised audio controllers can be found in the debug log (marked in bold-italic):

OCAU: 1/3 PciRoot(0x0)/Pci(0x1,0x0)/Pci(0x0,0x1)/VenMsg(<redacted>,00000000) (4 outputs)
OCAU: 2/3 PciRoot(0x0)/Pci(0x3,0x0)/VenMsg(<redacted>,00000000) (1 outputs)
OCAU: 3/3 PciRoot(0x0)/Pci(0x1B,0x0)/VenMsg(<redacted>,02000000) (7 outputs)

As an alternative, gfxutil -f HDEF command can be used in macOS. Specifying an empty device path will
result in the first available audio controller being used.

3. AudioOut
Type: plist integer
Failsafe: 0
Description: Index of the output port of the specified codec starting from 0.

81

Failsafe: false
Description: Replaces the Apple Debug Log protocol with a builtin version.

4. AppleEg2Info
Type: plist boolean
Failsafe: false
Description: Replaces the Apple EFI Graphics 2 protocol with a builtin version.

Note 1 : This protocol allows newer EfiBoot versions (at least 10.15) to expose screen rotation to macOS. Refer
to ForceDisplayRotationInEFI variable description on how to set screen rotation angle.

Note 2 : On systems without native support for ForceDisplayRotationInEFI, DirectGopRendering=true is
also required for this setting to have a visible

::
an

:
effect.

5. AppleFramebufferInfo
Type: plist boolean
Failsafe: false
Description: Replaces the Apple Framebuffer Info protocol with a builtin version. This may be used to override
framebuffer information on VMs and legacy Macs to improve compatibility with legacy EfiBoot such as the one
in macOS 10.4.

Note: The current implementation of this property results in it only being active when GOP is available (it is
always equivalent to false otherwise).

6. AppleImageConversion
Type: plist boolean
Failsafe: false
Description: Replaces the Apple Image Conversion protocol with a builtin version.

7. AppleImg4Verification
Type: plist boolean
Failsafe: false
Description: Replaces the Apple IMG4 Verification protocol with a builtin version. This protocol is used to
verify im4m manifest files used by Apple Secure Boot.

8. AppleKeyMap
Type: plist boolean
Failsafe: false
Description: Replaces Apple Key Map protocols with builtin versions.

9. AppleRtcRam
Type: plist boolean
Failsafe: false
Description: Replaces the Apple RTC RAM protocol with a builtin version.

Note: Builtin version of Apple RTC RAM protocol may filter out I/O attempts to certain RTC memory addresses.
The list of addresses can be specified in 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:rtc-blacklist variable as
a data array.

10. AppleSecureBoot
Type: plist boolean
Failsafe: false
Description: Replaces the Apple Secure Boot protocol with a builtin version.

11. AppleSmcIo
Type: plist boolean
Failsafe: false
Description: Replaces the Apple SMC I/O protocol with a builtin version.

This protocol replaces the legacy VirtualSmc UEFI driver, and is compatible with any SMC kernel extension.
However, in case the FakeSMC kernel extension is used, manual NVRAM key variable addition may be needed.

12. AppleUserInterfaceTheme
Type: plist boolean

88

	APFS Properties
	AppleInput Properties
	Audio Properties

