OpenCore

Reference Manual (0.5.2.3)
[2019.11.27]

Copyright ©2018-2019 vit9696

-I/UefiPackages/MdePkg
-I/UefiPackages/MdePkg/Include
-I/UefiPackages/MdePkg/Include/X64
-I/UefiPackages/EfiPkg
-I/UefiPackages/EfiPkg/Include
-I/UefiPackages/EfiPkg/Include/X64
-I/UefiPackages/AppleSupportPkg/Include
-I/UefiPackages/OpenCorePkg/Include
-I/UefiPackages/0cSupportPkg/Include
-I/UefiPackages/MacInfoPkg/Include
-I/UefiPackages/UefiCpuPkg/Include
-IInclude

—include
/UefiPackages/MdePkg/Include/Uefi.h
-fshort-wchar

-Wall

-Wextra

-Wno-unused-parameter
-Wno-missing-braces
-Wno-missing-field-initializers
-Wno-tautological-compare
-Wno-sign-compare

-Wno-varargs
-Wno-unused-const-variable
-DOC_TARGET_NOOPT=1

Listing 2: ECC Configuration

Warning: Tool developers modifying config.plist or any other OpenCore files must ensure that their tool checks
for opencore-version NVRAM variable (see Debug Properties section below) and warn the user if the version listed
is unsupported or prerelease. OpenCore configuration may change across the releases and the tool shall ensure that it
carefully follows this document. Failure to do so may result in this tool to be considered as malware and blocked with
all possible means.

3.4 Coding conventions

Just like any other project we have conventions that we follow during the development. All third-party contributors
are highly recommended to read and follow the conventions listed below before submitting their patches. In general
it is also recommended to firstly discuss the issue in /Acidanthera Bugtracker| before sending the patch to ensure no.
double work and to avoid your patch being rejected.

Organisation. The codebase is structured in multiple repositories which contain separate EDK II packages. AppleSupportPk
and OpenCorePkg are primary packages, and EfiPkg, OcSupportPkg, MacInfoPkg.dsc) are dependent packages.

+ Whenever changes are required in multiple repositories, separate pull requests should be sent to each.

+ Committing the changes should happen firstly to dependent repositories, secondly to primary repositories to.
avoid automatic build errors.

+ Each unique commit should compile with XCODES and preferably with other toolchains. In the majority of the
cases it can be checked by accessing the CI interface. Ensuring that static analysis finds no warnings is preferred.

» External pull requests and tagged commits must be validated. That said, commits in master may build but may.
not necessarily work.

» Internal branches should be named as follows: author-name-date, e.g. vit9696-ballooning=20191026.

e Commit messages should be prefixed with the primary module (e.g. library or code module) the changes were

made in. For example, OcGuardLib: Add OC_ALIGNED macro. For non-library changes Docs or Build prefixes

are used.

Design. The codebase is written in a subset of freestanding C11 (C17) supported by most modern toolchains used b
EDK II. Applying common software development practices or requesting clarification is recommended if any particular

https://github.com/acidanthera/bugtracker
https://travis-ci.com/acidanthera

case is not discussed below.

* Never rely on undefined behaviour and try to avoid implementation defined behaviour unless explicitly covered
below (feel free to create an issue when a relevant case is not present).

* Use OcGuardLib to ensure safe integral arithmetics avoiding overflows. Unsigned wraparound should be relied
on with care and reduced to the necessary amount.

» Check pointers for correct alignment with OcGuardLib and do not rely on the architecture being able to
dereference unaligned pointers.

» Use flexible array members instead of zero-length or one-length arrays where necessary.

» Use static assertions (STATIC_ASSERT) for type and value assumptions, and runtime assertions (ASSERT) for
precondition and invariant sanity checking, Do not use runtime assertions to check for errors as they should
never alter control flow and potentially be excluded.

« Assume UINT32/INT32 to be int-sized and use %u, %d, and %x to print them.

« Assume UINTN/INTN to be of unspecified size, and cast them to UINT64/INT64 for printing with %Lu, ALd and so.
on as normal.

» Do not rely on integer promotions for numeric literals. Use explicit casts when the type is implementation-dependent
or suffixes when type size is known. Assume U for UINT32 and ULL for UINT64.

* Do ensure unsigned arithmetics especially in bitwise maths, shifts in particular.

* sizeof operator should take variables instead of types where possible to be crror prone. Use ARRAY STZE to.
obtain array size in elements, Use L_STR_LEN and L_STR_SIZE macros from OcStringLib to obtain string literal

* Do not use goto keyword. Prefer early return, break, or continue after failing to pass error checking instead
of nesting conditionals.

» Use EFTAPT, force UEFT calling convention, only in protocols, external callbacks between modules, and functions
with variadic arguments.

« Provide inline documentation to every added function. at least describing its inputs, outputs, precondition,
postcondition, and giving a brief description.

+ Do not use RETURN STATUS. Assume EFT_STATUS to be a matching superset that is to be always used when
BOOLEAN is not enough.

» Security violations should halt the system or cause a forced reboot.

Codestyle. The codebase follows EDK II codestyle with few changes and clarifications.

e Write inline documentation for the functions and variables only once: in headers, where a header prototype is
available, and inline for static variables and functions.
e Use line length of 120 characters or less, preferably 100 characters.

e Use spaces after casts, e.g. (VOID *) (UINTN) Variable.
» Use SPDX license headers as shown in jacidanthera/bugtracker#483.

Debugging. The codebase incorporates EDK II debugging and few custom features to improve the experience.
¢ Use module prefixes, 2-5 letters followed by a colon (:), for debug messages. For OpenCorePkg use 0C:, for

ARRAARARARA
libraries and drivers use their own unique prefixes.
e Do not use dots (.) in the end of debug messages and separate EFI_STATUS, printed by %r, with a hyphen (e.g.

OCRAM: Allocation of 7u bytes failed - Jr\n).

» Use DEBUG_CODE_BEGIN () and DEBUG_CODE END () comstructions to guard debug checks that may potentially.
reduce the performance of release builds and are otherwise unnecessary.

+ Use DEBUG macro to print debug messages during normal functioning, and RUNTIME DEBUG for debugging after
EXIT_BOOT_SERVICES.

» Use DEBUG_VERBOSE debug level to leave debug messages for future debugging of the code, which are currently
not necessary, By default DEBUG_VERBOSE messages are ignored even in DEBUG builds.

« Use DEBUG_INFQ debug level for all non critical messages (including errors) and DEBUG_BULK_INFQ for extensive
messages that should not appear in NVRAM log that is heavily limited in size. These messages are ignored in
RELEASE builds.

o Use DEBUG_ERROR to print critical human visible messages that may potentially halt the boot process, and
DEBUG_WARN for all other human visible errors, RELEASE builds included.

R N N o R A R A A R A AN A AN R A R N A NN N NN AN AR AN AN NS ARANAAN AN R AN AANAANAR AN A

https://github.com/tianocore/tianocore.github.io/wiki/Code-Style-C
https://github.com/acidanthera/bugtracker/issues/483

5.4

The addresses written here must be part of the memory map, have Ef iMemoryMappedI0 type and EFI_MEMORY_RUNTIME
attribute (highest bit) set. To find the list of the candidates the debug log can be used.

Comment

Type: plist string

Failsafe: Empty string

Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

Enabled

Type: plist boolean

Failsafe: false

Description: This address will be devirtualised unless set to true.

Quirks Properties

. AvoidRuntimeDefrag

Type: plist boolean
Failsafe: false
Description: Protect from boot.efi runtime memory defragmentation.

This option fixes UEFI runtime services (date, time, NVRAM, power control, etc.) support on many firmwares
using SMM backing for select services like variable storage. SMM may try to access physical addresses, but they
get moved by boot.efi.

Note: Most but Apple and VMware firmwares need this quirk.

DevirtualiseMmio

Type: plist boolean

Failsafe: false

Description: Remove runtime attribute from select MMIO regions.

This option reduces stolen memory footprint from the memory map by removing runtime bit for known memory
regions. This quirk may result in the increase of KASLR slides available, but is not necessarily compatible with
the target board without additional measures. In general this frees from 64 to 256 megabytes of memory (present
in the debug log), and on some platforms it is the only way to boot macOS, which otherwise fails with allocation
error at bootloader stage.

This option is generally useful on all firmwares except some very old ones, like Sandy Bridge. On select firmwares
it may require a list of exceptional addresses that still need to get their virtual addresses for proper NVRAM and
hibernation functioning. Use MmioWhitelist section to do this.

DisableSingleUser

Type: plist boolean

Failsafe: false

Description: Disable single user mode.

This is a security option allowing one to restrict single user mode usage by ignoring CMD+S hotkey and -s boot
argument. The behaviour with this quirk enabled is supposed to match T2-based model behaviour. Read /this
article/ to understand how to use single user mode with this quirk enabled.

DisableVariableWrite

Type: plist boolean

Failsafe: false

Description: Protect from macOS NVRAM write access.

This is a security option allowing one to restrict NVRAM access in macOS. This quirk requires 0C_FIRMWARE_RUNTIME
protocol implemented in FwRuntimeServices.efi.

Note: This quirk can also be used as an ugly workaround to buggy UEFI runtime services implementations that
fail to write variables to NVRAM and break the rest of the operating system.

DiscardHibernateMap
Type: plist boolean

14

https://support.apple.com/HT201573
https://support.apple.com/HT201573

7.4

Failsafe: Empty string
Description: Kext executable path relative to bundle (e.g. Contents/Mac0S/Lilu).

MaxKernel

Type: plist string

Failsafe: Empty string

Description: Adds kernel driver on specified macOS version or older.

Kernel version can be obtained with uname -r command, and should look like 3 numbers separated by dots, for
example 18.7.0 is the kernel version for 10.14.6. Kernel version interpretation is implemented as follows:

ParseDarwinVersion(k, A\, u) = k- 10000 Where & € (0,99) is kernel version major
+ A - 100 Where A € (0,99) is kernel version minor
+ i Where p € (0,99) is kernel version patch

Kernel version comparison is implemented as follows:

ParseDarwinVersion(MinKernel), If MinKernel is valid
o =
0 Otherwise
5 ParseDarwinVersion(MaxKernel), If MaxKernel is valid
RS Otherwise
|} ParseDarwinV ersion(FindDarwinV ersion()), If valid "Darwin Kernel Version" is found
RS Otherwise

fla,B,7) =a<~y< B

Here ParseDarwinVersion argument is assumed to be 3 integers obtained by splitting Darwin kernel version
string from left to right by the . symbol. FindDarwinVersion function looks up Darwin kernel version by
locating "Darwin Kernel Version k.A.u" string in the kernel image.

MinKernel

Type: plist string

Failsafe: Empty string

Description: Adds kernel driver on specified macOS version or newer.

Note: Refer to|Add MaxKernel description| for matching logic.

PlistPath

Type: plist string

Failsafe: Empty string

Description: Kext Info.plist path relative to bundle (e.g. Contents/Info.plist).

Block Properties

. Comment

Type: plist string

Failsafe: Empty string

Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

. Enabled

Type: plist boolean
Failsafe: false
Description: This kernel driver will not be blocked unless set to true.

Identifier

Type: plist string

Failsafe: Empty string

Description: Kext bundle identifier (e.g. com.apple.driver.AppleTyMCEDriver).

19

10.

AppleXcpmExtraMsrs

Type: plist boolean

Failsafe: false

Description: Disables multiple MSR access critical for select CPUs, which have no native XCPM support.

This is normally used in conjunction with Emulate section on Haswell-E, Broadwell-E, Skylake-X, and similar
CPUs. More details on the XCPM patches are outlined in [acidanthera/bugtracker#365.

Note: Additional not provided patches will be required for Ivy Bridge or Pentium CPUs. It is recommended to
use AppleIntelCpuPowerManagement.kext for the former.

. CustomSMBIOSGuid

Type: plist boolean
Failsafe: false
Description: Performs GUID patching for UpdateSMBIOSMode Custom mode. Usually relevant for Dell laptops.

DisableIoMapper

Type: plist boolean

Failsafe: false

Description: Disables I0Mapper support in XNU (VT-d), which may conflict with the firmware implementation.

Note: This option is a preferred alternative to dropping DMAR ACPI table and disabling VT-d in firmware
preferences, which does not break VT-d support in other systems in case they need it.

ExternalDiskIcons

Type: plist boolean

Failsafe: false

Description: Apply icon type patches to AppleAHCIPort.kext to force internal disk icons for all AHCI disks.

Note: This option should avoided whenever possible. Modern firmwares usually have compatible AHCI controllers.

LapicKernelPanic

Type: plist boolean

Failsafe: false

Description: Disables kernel panic on LAPIC interrupts.

PanicNoKextDump

Type: plist boolean

Failsafe: false

Description: Prevent kernel from printing kext dump in the panic log preventing from observing panic details.
Affects 10.13 and above.

PowerTimeoutKernelPanic

Type: plist boolean

Failsafe: false

Description: Disables kernel panic on setPowerState timeout.

An additional security measure was added to macOS Catalina (10.15) causing kernel panic on power change
timeout for Apple drivers. Sometimes it may cause issues on misconfigured hardware, notably digital audio, which
sometimes fails to wake up. For debug kernels setpowerstate_panic=0 boot argument should be used, which is
otherwise equivalent to this quirk.

ThirdPartyTrimThirdPartyDrives
Type: plist boolean

Failsafe: false

Description: Pateh-Apply vendor patches to IOAHCIBlockStorage.kext to ferce-FTRIM-commeand-support-on
AHCESSDs-enable native features for third-party drives, such as TRIM on SSDs or hibernation support on 10.15

and newer.

Note: This option s , siblemay be avoided on user preference. NVMe SSDs are
compatible without the change For AHCI SSDS on modern macOS version there is a dedicated built-in utility
called trimforce. Starting from 10.15 this utility creates EnableTRIM variable in APPLE_BOOT_VARIABLE_GUID
namespace with 01 00 00 00 value.

22

https://github.com/acidanthera/bugtracker/issues/365

11. XhciPortLimit
Type: plist boolean
Failsafe: false
Description: Patch various kexts (AppleUSBXHCILkext, AppleUSBXHCIPCIL kext, IOUSBHostFamily.kext) to
remove USB port count limit of 15 ports.

Note: This option should be avoided whenever possible. USB port limit is imposed by the amount of used bits in
locationID format and there is no possible way to workaround this without heavy OS modification. The only valid
solution is to limit the amount of used ports to 15 (discarding some). More details can be found on AppleLife.ru.

23

https://applelife.ru/posts/550233

5. RequireVault
Type: plist boolean
Failsafe: true
Description: Require vault.plist file present in OC directory.

This file should contain SHA-256 hashes for all files used by OpenCore. Presence of this file is highly recommended
to ensure that unintentional file modifications (including filesystem corruption) do not happen unnoticed. To
create this file automatically use create_vault.sh script.

Regardless of the underlying filesystem, path name and case must match between config.plist and vault.plist.

Note: vault.plist is tried to be read regardless of the value of this option, but setting it to true will ensure
configuration sanity, and abort the boot process.

The complete set of commands to:

o Create vault.plist.

o Create a new RSA key (always do this to avoid loading old configuration).
¢ Embed RSA key into OpenCore.efi.

e Create vault.sig.

Can look as follows:

cd /Volumes/EFI/EFI/0C

/path/to/create_vault.sh .

/path/to/RsaTool -sign vault.plist vault.sig vault.pub

off=$(($(strings -a -t d OpenCore.efi | grep "=BEGIN OC VAULT=" | cut -f1 -d' ')+16))

dd of=0penCore.efi if=vault.pub bs=1 seek=$off count=528 conv=notrunc

rm vault.pub

Note: While it may appear obvious, but you have to use an external method to verify OpenCore.efi and
BOOTx64.efi for secure boot path. For this you are recommended to at least enable UEFI SecureBoot with a
custom certificate, and sign OpenCore.efi and BOOTx64.efi with your custom key. More details on customising
secure boot on modern firmwares can be found in [Taming UEFI SecureBoot paper (in Russian).

6. ScanPolicy
Type: plist integer, 32 bit
Failsafe: 0xF0103
Description: Define operating system detection policy.

This value allows to prevent scanning (and booting) from untrusted source based on a bitmask (sum) of select
flags. As it is not possible to reliably detect every file system or device type, this feature cannot be fully relied
upon in open environments, and the additional measures are to be applied.

Third party drivers may introduce additional security (and performance) measures following the provided scan
policy. Scan policy is exposed in scan-policy variable of 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102 GUID for
UEFI Boot Services only.

e 0x00000001 (bit 0) — OC_SCAN_FILE_SYSTEM_LOCK, restricts scanning to only known file systems defined as
a part of this policy. File system drivers may not be aware of this policy, and to avoid mounting of undesired
file systems it is best not to load its driver. This bit does not affect dmg mounting, which may have any file
system. Known file systems are prefixed with 0C_SCAN_ALLOW_FS_.

e 0x00000002 (bit 1) — OC_SCAN_DEVICE_LOCK, restricts scanning to only known device types defined as a
part of this policy. This is not always possible to detect protocol tunneling, so be aware that on some
systems it may be possible for e.g. USB HDDs to be recognised as SATA. Cases like this must be reported.
Known device types are prefixed with 0C_SCAN_ALLOW_DEVICE._.

e 0x00000100 (bit 8) — OC_SCAN_ALLOW_FS_APFS, allows scanning of APFS file system.

e 0x00000200 (bit 9) — OC_SCAN_ALLOW_FS_HFS, allows scanning of HFS file system.

e 0x00000400 (bit 10) — OC_SCAN_ALLOW_FS_ESP, allows scanning of EFI System Partition file system.

e 0x00000800 (bit 11) — 0C_SCAN_ALLOW_FS_NTFS, allows scanning of NTFS (Msft Basic Data) file system.

e 0x00001000 (bit 12) — OC_SCAN_ALLOW_FS_EXT, allows scanning of EXT (Linux Root) file system.

e 0x00010000 (bit 16) — OC_SCAN_ALLOW_DEVICE_SATA, allow scanning SATA devices.

29

https://github.com/acidanthera/OcSupportPkg/tree/master/Utilities/CreateVault
https://habr.com/post/273497/

11 UEFI

11.1 Introduction

UEFT (Unified Extensible Firmware Interface) is a specification that defines a software interface between an operating
system and platform firmware. This section allows to load additional UEFI modules and/or apply tweaks for the onboard
firmware. To inspect firmware contents, apply modifications and perform upgrades UEFITooll and supplementary
utilities can be used.

11.2 Properties

1. ConnectDrivers
Type: plist boolean
Failsafe: false
Description: Perform UEFT controller connection after driver loading. This option is useful for loading filesystem
drivers, which usually follow UEFT driver model, and may not start by themselves. While effective, this option is
not necessary with e.g. APFS loader driver, and may slightly slowdown the boot.

2. Drivers
Type: plist array
Failsafe: None
Description: Load selected drivers from 0C/Drivers directory.

Designed to be filled with string filenames meant to be loaded as UEFI drivers. Depending on the firmware a
different set of drivers may be required. Loading an incompatible driver may lead your system to unbootable
state or even cause permanent firmware damage. Some of the known drivers include:

e |ApfsDriverLoader|— APFS file system bootstrap driver adding the support of embedded APFS drivers in
bootable APFS containers in UEFI firmwares.

e FwRuntimeServices|— OC_FIRMWARE_RUNTIME protocol implementation that increases the security of Open-
Core and Lilu by supporting read-only and write-only NVRAM variables. Some quirks, like RequestBootVarRouting,
require this driver for proper function. Due to the nature of being a runtime driver, i.e. functioning in
parallel with the target operating system, it cannot be implemented within OpenCore itself.

o EnhancedFatDxe| — FAT filesystem driver from FatPkg. This driver is embedded in all UEFI firmwares,
and cannot be used from OpenCore. It is known that multiple firmwares have a bug in their FAT support
implementation, which leads to corrupted filesystems on write attempt. Embedding this driver within the
firmware may be required in case writing to EFI partition is needed during the boot process.

o NvmExpressDxe — NVMe support driver from MdeModulePkg. This driver is included in most firmwares
starting with Broadwell generation. For Haswell and earlier embedding it within the firmware may be more
favourable in case a NVMe SSD drive is installed.

e UsbKbDxe — USB keyboard driver adding the support of AppleKeyMapAggregator protocols on top of a
custom USB keyboard driver implementation. This is an alternative to builtin KeySyppertKeySupport,
which may work better or worse depending on the firmware.

e [VirtualSmc|— UEFI SMC driver, required for proper FileVault 2 functionality and potentially other macOS
specifics. An alternative, named SMCHelper, is not compatible with VirtualSmc and OpenCore, which
is unaware of its specific interfaces. In case FakeSMC kernel extension is used, manual NVRAM variable
addition may be needed and VirtualSmc driver should still be used.

e VBoxHfs| — HFS file system driver with bless support. This driver is an alternative to a closed source
HFSP1lus driver commonly found in Apple firmwares. While it is feature complete, it is approximately 3 times
slower and is yet to undergo a security audit.

e XhciDxe| — XHCI USB controller support driver from MdeModulePkg. This driver is included in most
firmwares starting with Sandy Bridge generation. For earlier firmwares or legacy systems it may be used to
support external USB 3.0 PCI cards.

To compile the drivers from UDK (EDK II) use the same command you do normally use for OpenCore compilation,
but choose a corresponding package:

git clone https://github.com/acidanthera/audk UDK
cd UDK
source edksetup.sh

42

https://uefi.org/specifications
https://github.com/LongSoft/UEFITool/releases
https://github.com/acidanthera/AppleSupportPkg
https://github.com/acidanthera/AppleSupportPkg
https://github.com/acidanthera/audk
https://github.com/acidanthera/audk
https://github.com/acidanthera/AppleSupportPkg
https://github.com/acidanthera/VirtualSMC
https://github.com/acidanthera/AppleSupportPkg
https://github.com/acidanthera/audk

large memory chunks, such as macOS DMG recovery entries. On unaffected boards it may cause boot failures,
and thus strongly not recommended. For known issues refer to acidanthera/bugtracker#449.

- ClearScreenOnModeSwitch

Type: plist boolean
Description: Some firmwares clear only part of screen when switching from graphics to text mode, leaving a
fragment of previously drawn image visible. This option fills the entire graphics screen with black color before
switching to text mode.

. ExitBootServicesDelay

Type: plist integer

Failsafe: 0

Description: Adds delay in microseconds after EXIT_BOOT_SERVICES event.

This is a very ugly quirk to circumvent "Still waiting for root device" message on select APTIO IV firmwares,
namely ASUS Z87-Pro, when using FileVault 2 in particular. It seems that for some reason they execute code
in parallel to EXIT_BOOT_SERVICES, which results in SATA controller being inaccessible from macOS. A better
approach should be found in some future. Expect 3-5 seconds to be enough in case the quirk is needed.

. IgnoreInvalidFlexRatio

Type: plist boolean

Failsafe: false

Description: Select firmwares, namely APTIO IV, may contain invalid values in MSR_FLEX_RATIO (0x194) MSR
register. These values may cause macOS boot failure on Intel platforms.

Note: While the option is not supposed to induce harm on unaffected firmwares, its usage is not recommended
when it is not required.

. IgnoreTextInGraphics

Type: plist boolean

Failsafe: false

Description: Select firmwares output text onscreen in both graphics and text mode. This is normally unexpected,
because random text may appear over graphical images and cause Ul corruption. Setting this option to true will
discard all text output when console control is in mode different from Text.

Note: While the option is not supposed to induce harm on unaffected firmwares, its usage is not recommended
when it is not required. This option may hide onscreen error messages. ConsoleControl may need to be set to
true for this to work.

. ReplaceTabWithSpace

Type: plist boolean

Failsafe: false

Description: Some firmwares do not print tab characters or even everything that follows them, causing difficulties
or inability to use the UEFI Shell builtin text editor to edit property lists and other documents. This option
makes the console output spaces instead of tabs.

Note: ConsoleControl may need to be set to true for this to work.

. ProvideConsoleGop

Type: plist boolean

Failsafe: false

Description: macOS bootloader requires GOP (Graphics Output Protocol) to be present on console handle.
This option will install it if missing.

. ReconnectOnResChange

Type: plist boolean

Failsafe: false

Description: Reconnect console controllers after changing screen resolution.

On some firmwares when screen resolution is changed via GOP, it is required to reconnect the controllers, which
produce the console protocols (simple text out). Otherwise they will not produce text based on the new resolution.

46

https://github.com/acidanthera/bugtracker/issues/449

Note: On several boards this logic may result in black screen when launching OpenCore from Shell and thus it is
optional. In versions prior to 0.5.2 this option was mandatory and not configurable. Please do not use this unless
required.

9. ReleaseUsbOwnership
Type: plist boolean
Failsafe: false
Description: Attempt to detach USB controller ownership from the firmware driver. While most firmwares
manage to properly do that, or at least have an option for, select firmwares do not. As a result, operating system
may freeze upon boot. Not recommended unless required.

10. RequestBootVarFallback
Type: plist boolean

Description: Request fallback of some Boot prefixed variables from 0C_VENDOR_VARIABLE GUID to_
EFI_GLOBAL_VARIABLE GUID. _

This quirk requires RequestBootVarRouting to be enabled and therefore 0C_FIRMWARE_RUNTIME protocol implemented

in FvRuntimeServices.efi.

By redirecting Boot prefixed variables to a separate GUID namespace we achieve multiple goals:

* Operating systems are jailed and ouly controlled by OpenCore boot environment to enhance security.

» Operating systems do not mess with OpenCore boot priority, and guarantee fluent updates and hibernation
wakes for cases that require reboots with OpenCore in the middle.

» Potentially incompatible boot entries, such as macOS entries, are not deleted or anyhow corrupted.

However, some firmwares do their own boot option scanning upon startup by checking file presence on the
available disks. Quite often this scanning includes non-standard locations, such as Windows Bootloader paths.
Normally it is not an issue, but some firmwares, ASUS firmwares on APTIO V in particular, have bugs. For them
scanning is implemented improperly, and firmware preferences may get accidentally corrupted due to BootOrder
entry duplication (each option will be added twice) making it impossible to boot without cleaning NVRAM.

To trigger the bug one should have some valid boot options (e.g. OpenCore) and then install Windows with

RequestBootVarRouting enabled. As Windows bootloader option will not be created by Windows installer, the
firmware will attempt to create it itself, and then corrupt its boot option list.

This quirk forwards all UEFI specification valid boot options, that are not related to macOS, to the firmware
into BootF### and BootOrder variables upon write. As the entries are added to the end of Boot0Order, this does

not break boot priority, but ensures that the firmware does not try to append a new option on its own after
Windows installation for instance.

11. RequestBootVarRoutin
Type: plist boolean

Failsafe: false
Description: Request redirect of all Boot prefixed variables from EFI_GLOBAL_VARIABLE_GUID to
OC_VENDOR_VARIABLE_GUID.

This quirk requires OC_FIRMWARE_RUNTIME protocol implemented in FwRuntimeServices.efi. The quirk lets
default boot entry preservation at times when firmwares delete incompatible boot entries. Simply said, you are
required to enable this quirk to be able to reliably use [Startup Disk preference pane in a firmware that is not
compatible with macOS boot entries by design.

12. SanitiseClearScreen
Type: plist boolean
Failsafe: false
Description: Some firmwares reset screen resolution to a failsafe value (like 1024x768) on the attempts to clear
screen contents when large display (e.g. 2K or 4K) is used. This option attempts to apply a workaround.

Note: ConsoleControl may need to be set to true for this to work. On all known affected systems ConsoleMode
had to be set to empty string for this to work.

13. ClearScreenbnModeSwitehUnblockFsConnect
Type: plist boolean

47

https://support.apple.com/HT202796

Failsafe: false
Description: Some firmwares

5 leblock partition handles by opening them in By Driver mode, which results in File System
rotocols being unable to install.
Note: €onseteControl shouwld-besetto-true forthisto-workThe quirk is mostly relevant for select HP laptops

with no drives listed.

48

o Logging is enabled (1) and shown onscreen (2): Misc — Debug — Target = 3.

o Logged messages from at least DEBUG_ERROR (0x80000000), DEBUG_WARN (0x00000002), and DEBUG_INFO
(0x00000040) levels are visible onscreen: Misc — Debug — DisplayLevel = 0x80000042.

o Critical error messages, like DEBUG_ERROR, stop booting: Misc — Security — HaltLevel = 0x80000000.

o Watch Dog is disabled to prevent automatic reboot: Misc — Debug — DisableWatchDog = true.

o Boot Picker (entry selector) is enabled: Misc — Boot — ShowPicker = true.

If there is no obvious error, check the available hacks in Quirks sections one by one. For early boot troubleshooting,
for instance, when OpenCore menu does not appear, using UEFI Shelll may help to see early debug messages.

. How to customise boot entries?

OpenCore follows standard Apple Bless model and extracts the entry name from .contentDetails and
.disk_label.contentDetails files in the booter directory if present. These files contain an ASCII string
with an entry title, which may then be customised by the user.

. How to choose the default boot entry?

OpenCore uses the primary UEFI boot option to select the default entry. This choice can be altered from UEFI
Setup, with the macOS Startup Disk| preference, or the Windows |Boot Camp Control Panel. Since choosing
OpenCore’s BOOTx64.EFI as a primary boot option limits this functionality in addition to several firmwares
deleting incompatible boot options, potentially including those created by macOS, you are strongly encouraged to
use the RequestBootVarRouting quirk, which will preserve your selection made in the operating system within
the OpenCore variable space. Note, that RequestBootVarRouting requires a separate driver for functioning.

. What is the simplest way to install macOS?

Copy online recovery image (*.dmg and *.chunklist files) to com.apple.recovery.boot directory on a FAT32
partition with OpenCore. Load OpenCore Boot Picker and choose the entry, it will have a (dmg) suffix. Custom
name may be created by providing .contentDetails file.

To download recovery online you may use macrecovery.py tool from MacInfoPkg,.
For offline installation refer to How to create a bootable installer for macQOS! article.
. Why do online recovery images (*.dmg) fail to load?

This may be caused by missing HFS+ driver, as all presently known recovery volumes have HFS+ filesystem.
Another cause may be buggy firmware allocator, which can be worked around with AvoidHighAlloc UEFI quirk.

. Can I use this on Apple hardware or virtual machines?

Sure, most relatively modern Mac models including MacPro5,1 and virtual machines are fully supported. Even
though there are little to none specific details relevant to Mac hardware, some ongoing instructions can be found
in acidanthera/bugtracker#377.

. Why do Find&Replace patches must equal in length?

For machine code (x86 code) it is not possible to do sueh-differently sized replacements due to relative addressing.
For ACPI code this is risky, and is technically equivalent to ACPI table replacement, thus not implemented. More
detailed explanation can be found on AppleLife.ru.

. How can I migrate from AptioMemoryFix?

Behaviour similar to that of AptioMemoryFix can be obtained by installing FwRuntimeServices driver and
enabling the quirks listed below. Please note, that most of these are not necessary to be enabled. Refer to their
individual descriptions in this document for more details.

o ProvideConsoleGop (UEFI quirk)
¢ AvoidRuntimeDefrag

e DiscardHibernateMap

¢ EnableSafeModeSlide

e EnableWriteUnprotector

e ForceExitBootServices

e ProtectCsmRegion

e ProvideCustomSlide

o1

https://github.com/acidanthera/OpenCoreShell
https://support.apple.com/HT202796
https://support.apple.com/guide/bootcamp-control-panel/start-up-your-mac-in-windows-or-macos-bcmp29b8ac66/mac
https://github.com/acidanthera/MacInfoPkg/blob/master/macrecovery/macrecovery.py
https://github.com/acidanthera/MacInfoPkg/releases
https://support.apple.com/HT201372
https://github.com/acidanthera/bugtracker/issues/377
https://en.wikipedia.org/w/index.php?title=Relative_addressing
https://applelife.ru/posts/819790

	Coding conventions
	Quirks Properties
	Block Properties
	UEFI
	Introduction
	Properties

