OpenCore

Reference Manual (0.0.40.5.0)
[2019.08.31]

Copyright ©2018-2019 vit9696

1 Introduction

This document provides information on |OpenCore| user configuration file format used to setup the correct functioning of

macOS operating system. It is to be read as the official clarification of expected OpenCore behaviour. All deviations, if

found in published OpenCore releases, shall be considered documentation or implementation bugs, and are requested
to be reported through Acidanthera Bugtracker, All other sources or translations of this document are unofficial and.

may contain errors.

1.1 Known defects

—OpenCore-isstes-pleasereferto-This document is structured as a specification, and is not meant to provide a
step by step algorithm for configuring end-user board support package (BSP). Any third-party articles, tools, books,
etc.. providing such material are prone to their authors’ preferences, tastes, this document misinterpretation, and
essential obsolescence. In case you still use these sources, for example, Opencore Vanilla Desktop Guide, please ensure
following this document for every made decision and judging its consequences. Regardless of the sources used you are
required to fully understand every dedicated OpenCore configuration option and concept prior to reporting any issues

in |Acidanthera Bugtrackerl

1.1 Generic Terms

e plist — Subset of ASCII Property List format written in XML, also know as XML plist format version
1. Uniform Type Identifier (UTI): com.apple.property-list. Plists consist of plist objects, which are
combined to form a hierarchical structure. Due to plist format not being well-defined, all the definitions of this
document may only be applied after plist is considered valid by running plutil -lint. External references:
https://www.apple.com/DTDs/PropertyList-1.0.dtd, man plutil.

o plist type — plist collections (plist array, plist dictionary, plist key) and primitives (plist string,
plist data, plist date, plist boolean, plist integer, plist real).

e plist object — definite realisation of plist type, which may be interpreted as value.
e plist array — array-like collection, conforms to array. Consists of zero or more plist objects.

o plist dictionary — map-like (associative array) collection, conforms to dict. Consists of zero or more plist
keys.

e plist key — contains one plist object going by the name of plist key, conforms to key. Consists of
printable 7-bit ASCII characters.

e plist string — printable 7-bit ASCII string, conforms to string.

e plist data — base64-encoded blob, conforms to data.

e plist date — ISO-8601 date, conforms to date, unsupported.

o plist boolean — logical state object, which is either true (1) or false (0), conforms to true and false.

e plist integer — possibly signed integer number in base 10, conforms to integer. Fits in 64-bit unsigned integer
in two’s complement representation, unless a smaller signed or unsigned integral type is explicitly mentioned in
specific plist object description.

e plist real — floating point number, conforms to real, unsupported.

e plist metadata — value cast to data by the implementation. Permits passing plist string, in which case
the result is represented by a null-terminated sequence of bytes (aka C string), plist integer, in which case
the result is represented by 32-bit little endian sequence of bytes in two’s complement representation, plist
boolean, in which case the value is one byte: 01 for true and 00 for false, and plist data itself. All other
types or larger integers invoke undefined behaviour.

https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/bugtracker
https://khronokernel-2.gitbook.io/opencore-vanilla-desktop-guide
https://github.com/acidanthera/bugtracker

Main booter driver responsible for operating system loading.
e vault.plist

Hashes for all files potentially loadable by 0C Config.
e config.plist

0C Config.
e vault.sig

Signature for vault.plist.
e nvram.plist

OpenCore variable import file.
e opencore-YYYY-MM-DD-HHMMSS. txt

OpenCore log file.

3.2 Installation and Upgrade

To install OpenCore reflect the Configuration Structure described in the previous section on a EFI volume of a GPT
partition. While corresponding sections of this document do provide some information in regards to external resources
like ACPI tables, UEFI drivers, or kernel extensions (kexts), completeness of the matter is out of the scope of this
document. Information about kernel extensions may be found in a separate Kext List document available in OpenCore
repository. Vaulting information is provided in Security Properties section of this document.

0C config, just like any property lists can be edited with any stock textual editor (e.g. nano, vim), but specialised
software may provide better experience. On macOS the preferred GUI application is Xcode. For a lightweight
cross-platform and open-source alternative ProperTree editor can be utilised.

For BIOS booting a third-party UEFI environment provider will have to be used. DuetPkg is one of the known UEFI
environment providers for legacy systems. To run OpenCore on such a legacy system you can install DuetPkg with a
dedicated tool: BootInstall.

For upgrade purposes refer to Differences.pdf document, providing the information about the changes affecting
the configuration compared to the previous release, and Changelog.md document, containing the list of modifications
across all published updates.

3.3 Contribution

OpenCore can be compiled as an ordinary EDK II. Since UDK] development was abandoned by TianoCore, OpenCore
requires the use of EDK II Stable. Currently supported EDK II release (potentially with patches enhancing the
experience) is hosted in acidanthera/audk.

The only officially supported toolchain is XCODE5. Other toolchains might work, but are neither supported, nor
recommended. Contribution of clean patches is welcome. Please do follow EDK II C Codestyle.

Required external package dependencies include EfiPkg, MacInfoPkg, and |OcSupportPkgl

To compile with XCODE5, besides Xcode, one should also install NASM and MTOC. The latest Xcode version is
recommended for use despite the toolchain name. Example command sequence may look as follows:

git clone https://github.com/acidanthera/audk UDK

cd UDK

git clone https://github.com/acidanthera/EfiPkg

git clone https://github.com/acidanthera/MacInfoPkg

git clone https://github.com/acidanthera/0OcSupportPkg

git clone https://github.com/acidanthera/OpenCorePkg

source edksetup.sh

make -C BaseTools

build -a X64 -b RELEASE -t XCODE5 -p OpenCorePkg/OpenCorePkg.dsc

Listing 1: Compilation Commands

For IDE usage Xcode projects are available in the root of the repositories. Another approach could be Sublime Text
with [EasyClangComplete plugin. Add .clang_complete file with similar content to your UDK root:

https://github.com/acidanthera/OpenCorePkg/blob/master/Docs/Kexts.md
https://developer.apple.com/xcode
https://github.com/corpnewt/ProperTree
https://github.com/acidanthera/OcSupportPkg/tree/master/Utilities/BootInstall
https://github.com/tianocore/tianocore.github.io/wiki/EDK-II
https://github.com/tianocore/tianocore.github.io/wiki/UDK
https://github.com/tianocore/tianocore.github.io/wiki/EDK-II#stable-tags
https://github.com/acidanthera/audk
https://github.com/tianocore/tianocore.github.io/wiki/Code-Style-C
https://github.com/acidanthera/OcSupportPkg
https://github.com/acidanthera/OcSupportPkg
https://github.com/acidanthera/OcSupportPkg
https://developer.apple.com/xcode
https://www.nasm.us
https://github.com/acidanthera/ocbuild/raw/master/external/mtoc-mac64.zip
https://www.sublimetext.com
https://niosus.github.io/EasyClangComplete

-I/UefiPackages/MdePkg
-I/UefiPackages/MdePkg/Include
-I/UefiPackages/MdePkg/Include/X64
-I/UefiPackages/EfiPkg
-I/UefiPackages/EfiPkg/Include
-I/UefiPackages/EfiPkg/Include/X64
-I/UefiPackages/AppleSupportPkg/Include
-I/UefiPackages/OpenCorePkg/Include
-I/UefiPackages/0cSupportPkg/Include
-I/UefiPackages/MacInfoPkg/Include
-I/UefiPackages/UefiCpuPkg/Include
-IInclude

—include
/UefiPackages/MdePkg/Include/Uefi.h
-fshort-wchar

-Wall

-Wextra

-Wno-unused-parameter
-Wno-missing-braces
-Wno-missing-field-initializers
-Wno-tautological-compare
-Wno-sign-compare

-Wno-varargs
-Wno-unused-const-variable
~DOC_TARGET NOOPT=1

Listing 2: ECC Configuration

Warning: Tool developers modifying config.plist or any other OpenCore files must ensure that their tool checks
for opencore-version NVRAM variable (see Debug Properties section below) and warn the user if the version listed
is unsupported or prerelease. OpenCore configuration may change across the releases and the tool shall ensure that it
carefully follows this document. Failure to do so may result in this tool to be considered as malware and blocked with

all possible means.

5 Booter

5.1 Introduction

This section allows to apply different kinds of UEFI modifications on Apple bootloader (boot.efi). The modifications
currently provide various patches and environment alterations for different firmwares. Some of these features were
originally implemented as a part of AptioMemoryFix.efi, which is no longer maintained. See Tips and Tricks section
for migration steps.

If you are using this for the first time on a customised firmware, there is a list of checks to do first. Prior to starting
please ensure that you have:

o Most up-to-date UEFI firmware (check your motherboard vendor website).

e Fast Boot and Hardware Fast Boot disabled in firmware settings if present.

e Above 4G Decoding or similar enabled in firmware settings if present. Note, that on some motherboards (notably
ASUS WS-X299-PRO) this option causes adverse effects, and must be disabled. While no other motherboards
with the same issue are known, consider this option to be first to check if you have erratic boot failures.

e DisableIoMapper quirk enabled, or VT-d disabled in firmware settings if present, or ACPI DMAR table dropped.

e No ‘slide* boot argument present in NVRAM or anywhere else. It is not necessary unless you cannot boot at all
or see No slide values are usable! Use custom slide! message in the log.

o CFG Lock (MSR 0xE2 write protection) disabled in firmware settings if present. Cconsider patching it|if you have
enough skills and no option is available. See VerifyMsrE2| nots for more details.

e CSM (Compatibility Support Module) disabled in firmware settings if present. You may need to flash GOP ROM
on NVIDIA 6xx/AMD 2xx or older. Use GopUpdate|or AMD UEFI GOP MAKER]/in case you are not sure how.

e EHCI/XHCI Hand-off enabled in firmware settings only if boot stalls unless USB devices are disconnected.

e VT-x, Hyper Threading, Execute Disable Bit enabled in firmware settings if present.

o While it may not be required, sometimes you have to disable Thunderbolt support, Intel SGX, and Intel
Platform Trust in firmware settings present.

When debugging sleep issues you may want to (temporarily) disable Power Nap and automatic power off, which appear
to sometimes cause wake to black screen or boot loop issues on older platforms. The particular issues may vary, but in
general you should check ACPI tables first. Here is an example of a bug found in some Z68 motherboards. To turn
Power Nap and the others off run the following commands in Terminal:

sudo pmset autopoweroff O
sudo pmset powernap O
sudo pmset standby O

Note: these settings may reset at hardware change and in certain other circumstances. To view their current state use
pmset -g command in Terminal.

5.2 Properties

1. Quirks
Type: plist dict
Description: Apply individual booter quirks described in |Quirks Properties| section below.

5.3 Quirks Properties

1. AvoidRuntimeDefrag
Type: plist boolean
Failsafe: false
Description: Protect from boot.efi runtime memory defragmentation.

This option fixes UEFI runtime services (date, time, NVRAM, power control, etc.) support on many firmwares
using SMM backing for select services like variable storage. SMM may try to access physical addresses, but they
get moved by boot.efi.

Note: Most but Apple and VMware firmwares need this quirk.

12

https://github.com/acidanthera/AptioFixPkg
https://github.com/LongSoft/UEFITool/blob/master/UEFIPatch/patches.txt
https://github.com/acidanthera/AppleSupportPkg#verifymsre2
https://www.win-raid.com/t892f16-AMD-and-Nvidia-GOP-update-No-requests-DIY.html#msg15730
http://www.insanelymac.com/forum/topic/299614-asus-eah6450-video-bios-uefi-gop-upgrade-and-gop-uefi-binary-in-efi-for-many-ati-cards/page-1#entry2042163
http://www.insanelymac.com/forum/topic/329624-need-cmos-reset-after-sleep-only-after-login/#entry2534645

Type: plist boolean

Description: Remove runtime attribute from select MMIO regions.

This option reduces stolen memory footprint from the memory map by removing runtime bit for known memor
regions. This quirk may result in the increase of KASLR slides available, but is not necessarily compatible with
the target board.

Note: This option is generally useful on APTIO V firmwares (Broadwell and newer).

. DisableVariableWrite

Type: plist boolean
Failsafe: false
Description: Protect from macOS NVRAM write access.

This is a security option allowing one to restrict NVRAM access in macOS. This quirk requires 0C_FIRMWARE_RUNTIME
protocol implemented in FwRuntimeServices.efi.

Note: This quirk can also be used as an ugly workaround to buggy UEFI runtime services implementations that
fail to write variables to NVRAM and break the rest of the operating system.

. DiscardHibernateMap

Type: plist boolean

Failsafe: false

Description: Reuse original hibernate memory map.

This option forces XNU kernel to ignore newly supplied memory map and assume that it did not change after
waking from hibernation. This behaviour is required to work by Windows, which mandates to preserve runtime
memory size and location after S4 wake.

Note: This may be used to workaround buggy memory maps on older hardware, and is now considered rare legacy.
Do not use this unless you fully understand the consequences.

. EnableSafeModeSlide

Type: plist boolean

Failsafe: false

Description: Patch bootloader to have KASLR enabled in safe mode.

This option is relevant to the users that have issues booting to safe mode (e.g. by holding shift or using -x boot
argument). By default safe mode forces 0 slide as if the system was launched with s1ide=0 boot argument. This
quirk tries to patch boot.efi to lift that limitation and let some other value (from 1 to 255) be used. This quirk
requires ProvideCustomSlide to be enabled.

Note: The necessity of this quirk is determined by safe mode availability. If booting to safe mode fails, this option
can be tried to be enabled.

. EnableWriteUnprotector

Type: plist boolean

Failsafe: false

Description: Permit write access to UEFI runtime services code.

This option bypasses R permissions in code pages of UEFI runtime services by removing write protection (WP)
bit from CRO register during their execution. This quirk requires 0C_FIRMWARE_RUNTIME protocol implemented in
FwRuntimeServices.efi.

Note: The necessity of this quirk is determined by early boot crashes of the firmware.

. ForceExitBootServices

Type: plist boolean

Failsafe: false

Description: Retry ExitBootServices with new memory map on failure.

Try to ensure that ExitBootServices call succeeds even with outdated MemoryMap key argument by obtaining
current memory map and retrying ExitBootServices call.

13

https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-uefi#hibernation-state-s4-transition-requirements

7.4

7.6

Failsafe: Empty string
Description: Kext executable path relative to bundle (e.g. Contents/Mac0S/Lilu).

MatchKernel

Type: plist string

Failsafe: Empty string

Description: Adds kernel driver on selected macOS version only. The selection happens based on prefix match
with the kernel version, i.e. 16.7.0 will match macOS 10.12.6 and 16. will match any macOS 10.12.x version.

PlistPath

Type: plist string

Failsafe: Empty string

Description: Kext Info.plist path relative to bundle (e.g. Contents/Info.plist).

Block Properties

. Comment

Type: plist string

Failsafe: Empty string

Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

Enabled

Type: plist boolean

Failsafe: false

Description: This kernel driver will not be blocked unless set to true.

Identifier

Type: plist string

Failsafe: Empty string

Description: Kext bundle identifier (e.g. com.apple.driver.AppleTyMCEDriver).

. MatchKernel

Type: plist string

Failsafe: Empty string

Description: Blocks kernel driver on selected macOS version only. The selection happens based on prefix match
with the kernel version, i.e. 16.7.0 will match macOS 10.12.6 and 16. will match any macOS 10.12.x version.

Emulate Properties

. CpuidiData

Type: plist data, 16 bytes
Failsafe: All zero
Description: Sequence of EAX, EBX, ECX, EDX values in Little Endian order to replace CPUID (1) call in XNU

kernel. Normally it is only the value of EAX that needs to be taken care of, which represents the exact CPUID.
And the remainders are to be left as zeroes. For instance, A9 06 03 00 stands for CPUID 0x0306A9 (Ivy Bridge).

A good example can be found at acidanthera/bugtracker#365. (See Special NOTES for Haswell+ low-end

. CpuidiMask

Type: plist data, 16 bytes

Failsafe: All zero

Description: Bit mask of active bits in CpuidiData. When each CpuidiMask bit is set to 0, the original CPU
bit is used, otherwise set bits take the value of CpuidiData.

Patch Properties

. Base

Type: plist string

Failsafe: Empty string

Description: Selects symbol-matched base for patch lookup (or immediate replacement) by obtaining the address
of provided symbol name. Can be set to empty string to be ignored.

17

https://github.com/acidanthera/bugtracker/issues/365

8.6

1.

e 0x00000002 (bit 1) — O0C_SCAN_DEVICE_LOCK, restricts scanning to only known device types defined as a
part of this policy. This is not always possible to detect protocol tunneling, so be aware that on some
systems it may be possible for e.g. USB HDDs to be recognised as SATA. Cases like this must be reported.
Known device types are prefixed with 0C_SCAN_ALLOW_DEVICE_.

e 0x00000100 (bit 8) — OC_SCAN_ALLOW_FS_APFS, allows scanning of APFS file system.

¢ 0x00000200 (bit 9) — OC_SCAN_ALLOW_FS_HFS, allows scanning of HF'S file system.

e 0x00000400 (bit 10) — OC_SCAN_ALLOW_FS_ESP, allows scanning of EFT System Partition file system.

0x00000800 (bit 11) — 0C_SCAN_ALLOW_FS_NTFS, allows scanning of NTFS (Msft Basic Data) file system.

+ 0200001000 (bit 12) —— 0C_SCAN_ALLOW_FS_EXT, allows scanning of EXT (Linux Root) file system.

e 0x00010000 (bit 16) — 0C_SCAN_ALLOW_DEVICE_SATA, allow scanning SATA devices.

¢ 0x00020000 (bit 17) — 0C_SCAN_ALLOW_DEVICE_SASEX, allow scanning SAS and Mac NVMe devices.

¢ 0x00040000 (bit 18) — 0C_SCAN_ALLOW_DEVICE_SCSI, allow scanning SCSI devices.

e 0x00080000 (bit 19) — 0C_SCAN_ALLOW_DEVICE_NVME, allow scanning NVMe devices.

()
()
()

e 0x00100000 (bit 20) — 0C_SCAN_ALLOW_DEVICE_ATAPI, allow scanning CD/DVD devices.

e 0x00200000 (bit 21) — OC_SCAN_ALLOW_DEVICE_USB, allow scanning USB devices.

e 0x00400000 (bit 22) — OC_SCAN_ALLOW_DEVICE_FIREWIRE, allow scanning FireWire devices.
¢ 0x00800000 (bit 23) — 0C_SCAN_ALLOW_DEVICE_SDCARD, allow scanning card reader devices.

Note: Given the above description, 0xF0103 value is expected to allow scanning of SATA, SAS, SCSI, and NVMe
devices with APF'S file system, and prevent scanning of any devices with HF'S or FAT32 file systems in addition
to not scanning APFS file systems on USB, CD, USB, and FireWire drives. The combination reads as:

o OC_SCAN_FILE_SYSTEM_LOCK
« 0C_SCAN_DEVICE_LOCK

o OC_SCAN_ALLOW_FS_APFS

o OC_SCAN_ALLOW_DEVICE_SATA
o OC_SCAN_ALLOW_DEVICE_SASEX
« 0OC_SCAN_ALLOW_DEVICE_SCSI
e 0OC_SCAN_ALLOW_DEVICE_NVME

Entry Properties

Comment

Type: plist string

Failsafe: Empty string

Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

. Enabled

Type: plist boolean
Failsafe: false
Description: This entry will not be listed unless set to true.

Name

Type: plist string

Failsafe: Empty string

Description: Human readable entry name displayed in boot picker.

Path

Type: plist string

Failsafe: Empty string

Description: Entry location depending on entry type.

e Entries specify external boot options, and therefore take device paths in Path key. These values are not
checked, thus be extremely careful. Example: PciRoot (0x0) /Pci(0x1,0x1)/.../\EFI\COOL.EFI

e Tools specify internal boot options, which are part of bootloader vault, and therefore take file paths relative
to 0C/Tools directory. Example: CleanNvram.efi.

26

10.3 DataHub Properties

1. PlatformName
Type: plist string
Failsafe: Not installed
Description: Sets name in gEfiMiscSubClassGuid. Value found on Macs is platform in ASCII.

2. SystemProductName
Type: plist string
Failsafe: Not installed
Description: Sets Model in gEfiMiscSubClassGuid. Value found on Macs is equal to SMBIOS SystemProductName
in Unicode.

J. SystemSerialNumber
Type: plist string
Failsafe: Not installed
Description: Sets SystemSerialNumber in gEfiMiscSubClassGuid. Value found on Macs is equal to SMBIOS
SystemSerialNumber in Unicode.

4. SystemUUID
Type: plist string, GUID
Failsafe: Not installed
Description: Sets system-id in gEfiMiscSubClassGuid. Value found on Macs is equal to SMBIOS SystemUUID.

5. BoardProduct
Type: plist string
Failsafe: Not installed
Description: Sets board-id in gEfiMiscSubClassGuid. Value found on Macs is equal to SMBIOS BoardProduct
in ASCIIL.

6. BoardRevision
Type: plist data, 1 byte
Failsafe: 0
Description: Sets board-rev in gEfiMiscSubClassGuid. Value found on Macs seems to correspond to internal
board revision (e.g. 01).

7. StartupPowerEvents
Type: plist integer, 64-bit
Failsafe: 0
Description: Sets StartupPowerEvents in gEfiMiscSubClassGuid. Value found on Macs is power management
state bitmask, normally 0. Known bits read by X86PlatformPlugin.kext:

e 0x00000001 — Shutdown cause was a PWROK event (Same as GEN_PMCON_2 bit 0)

e 0x00000002 — Shutdown cause was a SYS_PWROK event (Same as GEN_PMCON_2 bit 1)

e 0x00000004 — Shutdown cause was a THRMTRIP# event (Same as GEN_PMCON_2 bit 3)

e 0x00000008 — Rebooted due to a SYS_RESET# event (Same as GEN_PMCON_2 bit 4)

¢ 0x00000010 — Power Failure (Same as GEN_PMCON_3 bit 1 PWR_FLR)

e 0x00000020 — Loss of RTC Well Power (Same as GEN_PMCON_3 bit 2 RTC_PWR_STS)

e 0x00000040 — General Reset Status (Same as GEN_PMCON_3 bit 9 GEN_RST_STS)

o Oxffffff80 — SUS Well Power Loss (Same as GEN_PMCON_3 bit 14)

e 0x00010000 — Wake cause was a ME Wake event (Same as PRSTS bit 0, ME_WAKE_STS)

¢ 0x00020000 — Cold Reboot was ME Induced event (Same as PRSTS bit 1 ME_HRST_COLD_STS)
e 0x00040000 — Warm Reboot was ME Induced event (Same as PRSTS bit 2 ME_HRST_WARM_STS)
e 0x00080000 — Shutdown was ME Induced event (Same as PRSTS bit 3 ME_HOST_PWRDN)

e 0x00100000 — Global reset ME Wachdog Timer event (Same as PRSTS bit 6)

e 0x00200000 — Global reset PowerManagment Wachdog Timer event (Same as PRSTS bit 15)

8. InitialTSC
Type: plist integer, 64-bit
Failsafe: 0
Description: Sets InitialTSC in gEfiProcessorSubClassGuid. Sets initial TSC value, normally 0.

32

9.

10.

11.

12.

13.

14.

FSBFrequency

Type: plist integer, 64-bit

Failsafe: Automatic

Description: Sets FSBFrequency in gEfiProcessorSubClassGuid.

Sets CPU FSB frequency. This value equals to CPU nominal frequency divided by CPU maximum bus ratio and
is specified in Hz. Refer to MSR_NEHALEM_PLATFORM_INFO (CEh) MSR value to determine maximum bus ratio on

modern Intel CPUs.

Note: This value is not used on Skylake and newer but is still provided to follow suit.

ARTFrequency

Type: plist integer, 64-bit

Failsafe: Not-installedAutomatic

Description: Sets ARTFrequency in gEfiProcessorSubClassGuid. Sets-

This value contains CPU ART frequency, Skylake-also known as crystal clock frequency. Its existence is exclusive
to Skylake generation and newer. The value is specified in Hz, and is normally 24 MHz for client Intel segment,
25 MHz for server Intel segment, and 19.2 MHz for Intel Atom CPUs. macOS till 10.15 inclusive assumes 24
MHz by default.

DevicePathsSupported

Type: plist integer, 32-bit

Failsafe: Not installed

Description: Sets DevicePathsSupported in gEfiMiscSubClassGuid. Must be set to 1 for AppleACPIPlat-
form.kext to append SATA device paths to Boot#### and efi-boot-device-data variables. Set to 1 on all
modern Macs.

SmcRevision

Type: plist data, 6 bytes

Failsafe: Not installed

Description: Sets REV in gEfiMiscSubClassGuid. Custom property read by VirtualSMC or FakeSMC to generate
SMC REV key.

SmcBranch

Type: plist data, 8 bytes

Failsafe: Not installed

Description: Sets RBr in gEfiMiscSubClassGuid. Custom property read by VirtualSMC or FakeSMC to generate
SMC RBr key.

SmcPlatform

Type: plist data, 8 bytes

Failsafe: Not installed

Description: Sets RP1t in gEfiMiscSubClassGuid. Custom property read by VirtualSMC or FakeSMC to
generate SMC RP1t key.

10.4 PlatformNVRAM Properties

1.

BID

Type: plist string

Failsafe: Not installed

Description: Specifies the value of NVRAM variable 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_BID.

ROM

Type: plist data, 6 bytes

Failsafe: Not installed

Description: Specifies the values of NVRAM variables 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14 :HW_ROM and
4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14 :ROM.

MLB
Type: plist string
Failsafe: Not installed

33

11 UEFI

11.1 Introduction

UEFT (Unified Extensible Firmware Interface) is a specification that defines a software interface between an operating
system and platform firmware. This section allows to load additional UEFI modules and/or apply tweaks for the onboard
firmware. To inspect firmware contents, apply modifications and perform upgrades UEFITooll and supplementary
utilities can be used.

11.2 Properties

1. ConnectDrivers
Type: plist boolean
Failsafe: false
Description: Perform UEFT controller connection after driver loading. This option is useful for loading filesystem
drivers, which usually follow UEFT driver model, and may not start by themselves. While effective, this option is
not necessary with e.g. APFS loader driver, and may slightly slowdown the boot.

2. Drivers
Type: plist array
Failsafe: None
Description: Load selected drivers from 0C/Drivers directory.

Designed to be filled with string filenames meant to be loaded as UEFI drivers. Depending on the firmware a
different set of drivers may be required. Loading an incompatible driver may lead your system to unbootable
state or even cause permanent firmware damage. Some of the known drivers include:

e |ApfsDriverLoader|— APFS file system bootstrap driver adding the support of embedded APFS drivers in
bootable APFS containers in UEFI firmwares.

e AppleGenericInput|— user input driver adding the support of AppleKeyMapAggregator protocols on top
of different UEFI input protocols. Additionally resolves mouse input issues on select firmwares. This is an
alternative to UsbKbDxe, which may work better or worse depending on the firmware.
e FwRuntimeServices|— OC_FIRMWARE_RUNTIME protocol implementation that increases the security of Open-
Core and Lilu by supporting read-only and write-only NVRAM variables. Some quirks, like RequestBootVarRouting,
require this driver for proper function. Due to the nature of being a runtime driver, i.e. functioning in
parallel with the target operating system, it cannot be implemented within OpenCore itself.

v o W o 1V] A

o [EnhancedFatDxe| — FAT filesystem driver from FatPkg. This driver is embedded in all UEFI firmwares,
and cannot be used from OpenCore. It is known that multiple firmwares have a bug in their FAT support
implementation, which leads to corrupted filesystems on write attempt. Embedding this driver within the
firmware may be required in case writing to EFI partition is needed during the boot process.

e NvmExpressDxe — NVMe support driver from MdeModulePkg. This driver is included in most firmwares
starting with Broadwell generation. For Haswell and earlier embedding it within the firmware may be more
favourable in case a NVMe SSD drive is installed.

e [UsbKbDxe — USB keyboard driver adding the support of AppleKeyMapAggregator protocols on top of a
custom USB keyboard driver implementation. This is an alternative to AptioInputFix, which may work
better or worse depending on the firmware.

e VirtualSmc/— UEFI SMC driver, required for proper FileVault 2 functionality and potentially other macOS
specifics. An alternative, named SMCHelper, is not compatible with VirtualSmc and OpenCore, which
is unaware of its specific interfaces. In case FakeSMC kernel extension is used, manual NVRAM variable
addition may be needed and VirtualSmc driver should still be used.

e VBoxHfs| — HFS file system driver with bless support. This driver is an alternative to a closed source

HFSP1lus driver commonly found in Apple firmwares. While it is feature complete, it is approximately 3 times

slower and is yet to undergo a security audit.

38

https://uefi.org/specifications
https://github.com/LongSoft/UEFITool/releases
https://github.com/acidanthera/AppleSupportPkg
https://github.com/acidanthera/AppleSupportPkg
https://github.com/acidanthera/AppleSupportPkg
https://github.com/acidanthera/audk
https://github.com/acidanthera/audk
https://github.com/acidanthera/AppleSupportPkg
https://github.com/acidanthera/VirtualSMC
https://github.com/acidanthera/AppleSupportPkg

e XhciDxe| — XHCI USB controller support driver from MdeModulePkg. This driver is included in most
firmwares starting with Sandy Bridge generation. For earlier firmwares or legacy systems it may be used to
support external USB 3.0 PCI cards.

To compile the drivers from UDK (EDK II) use the same command you do normally use for OpenCore compilation,
but choose a corresponding package:

git clone https://github.com/acidanthera/audk UDK

cd UDK

source edksetup.sh

make -C BaseTools

build -a X64 -b RELEASE -t XCODE5 -p FatPkg/FatPkg.dsc

build -a X64 -b RELEASE -t XCODE5 -p MdeModulePkg/MdeModulePkg.dsc

Protocols

Type: plist dict

Failsafe: None

Description: Force builtin versions of select protocols described in [Protocols Properties| section below.

Note: all protocol instances are installed prior to driver loading.

Quirks

Type: plist dict

Failsafe: None

Description: Apply individual firmware quirks described in [Quirks Properties| section below.

11.3 Protocols Properties

1.

AppleBootPolicy

Type: plist boolean

Failsafe: false

Description: Reinstalls Apple Boot Policy protocol with a builtin version. This may be used to ensure APFS
compatibility on VMs or legacy Macs.

AppleEvent
Type: plist boolean
Description: Reinstalls Apple Event protocol with a builtin version. This may be used to ensure File Vault 2

AppleImageConversion
Type: plist boolean

Description: Reinstalls Apple Image Conversion protocol with a builtin version.

AppleKeyMa
Type: plist boolean

Description: Reinstalls Apple Key Map protocols with builtin versions.

AppleUserInterfaceTheme
Type: plist boolean

Description: Reinstalls Apple User Interface Theme protocol with a builtin version.

ConsoleControl

Type: plist boolean

Failsafe: false

Description: Replaces Console Control protocol with a builtin version.

macOS bootloader requires console control protocol for text output, which some firmwares miss. This option
is required to be set when the protocol is already available in the firmware, and other console control options

39

https://github.com/acidanthera/audk

are used, such as IgnoreTextInGraphics, SanitiseClearScreen, and sometimes ConsoleBehaviourOs with
ConsoleBehaviourUi).

7. DataHub
Type: plist boolean
Failsafe: false
Description: Reinstalls Data Hub protocol with a builtin version. This will drop all previous properties if the
protocol was already installed.

8. DeviceProperties
Type: plist boolean
Failsafe: false
Description: Reinstalls Device Property protocol with a builtin version. This will drop all previous properties if
it was already installed. This may be used to ensure full compatibility on VMs or legacy Macs.

9. FirmwareVolume

Type: plist boolean
Description: Forcibly wraps Firmware Volume protocols or installs new to support custom cursor images for
File Vault 2. Should be set to true to ensure File Vault 2 compatibility on everything but VMs and legacy Macs.

10. HashServices

Type: plist boolean

Description: Forcibly reinstalls Hash Services protocols with builtin versions. Should be set to true to ensure
File Vault 2 compatibility on platforms providing broken SHA-1 hashing. Can be diagnosed by invalid cursor
size with UIScale set to 02, in general platforms prior to APTIO V_ (Haswell and older) are affected.

11. UnicodeCollation

Type: plist boolean

Description: Forcibly reinstalls unicode collation services with builtin version. Should be set to true to ensure
UEFT Shell compatibility on platforms providing broken unicode collation. In general legacy Insyde and APTIO
platforms on Ivy Bridge and earlier are affected.

11.4 Quirks Properties

1. AvoidHighAlloc
Type: plist boolean
Failsafe: false
Description: Advises allocators to avoid allocations above first 4 GBs of RAM.

This is a workaround for select board firmwares, namely GA-Z77P-D3 (rev. 1.1), failing to properly access higher
memory in UEFI Boot Services. On these boards this quirk is required for booting entries that need to allocate
large memory chunks, such as macOS DMG recovery entries. On unaffected boards it may cause boot failures,
and thus strongly not recommended. For known issues refer to acidanthera/bugtracker#449.

2. ExitBootServicesDelay
Type: plist integer
Failsafe: 0
Description: Adds delay in microseconds after EXIT_BOOT_SERVICES event.

This is a very ugly quirk to circumvent "Still waiting for root device" message on select APTIO IV firmwares,
namely ASUS Z87-Pro, when using FileVault 2 in particular. It seems that for some reason they execute code
in parallel to EXIT_BOOT_SERVICES, which results in SATA controller being inaccessible from macOS. A better
approach should be found in some future. Expect 3-5 seconds to be enough in case the quirk is needed.

3. IgnoreInvalidFlexRatio
Type: plist boolean
Failsafe: false

40

https://github.com/acidanthera/bugtracker/issues/449

Description: Select firmwares, namely APTIO IV, may contain invalid values in MSR_FLEX_RATIO (0x194) MSR
register. These values may cause macOS boot failure on Intel platforms.

Note: While the option is not supposed to induce harm on unaffected firmwares, its usage is not recommended
when it is not required.

4. IgnoreTextInGraphics
Type: plist boolean
Failsafe: false
Description: Select firmwares output text onscreen in both graphics and text mode. This is normally unexpected,
because random text may appear over graphical images and cause Ul corruption. Setting this option to true will
discard all text output when console control is in mode different from Text.

Note: While the option is not supposed to induce harm on unaffected firmwares, its usage is not recommended
when it is not required. This option may hide onscreen error messages. ConsoleControl may need to be set to
true for this to work.

5. ReplaceTabWithSpace
Type: plist boolean
Description: Some firmwares do not print_tab characters or even everything that follows them, causing
difficulties or inability to use the UEFI Shell builtin text editor to edit property lists and other documents.

Note: ConsoleControl may need to be set to true for this to work.

6. ProvideConsoleGop
Type: plist boolean
Failsafe: false
Description: macOS bootloader requires GOP (Graphics Output Protocol) to be present on console handle.
This option will install it if missing.

7. ReleaseUsbOwnership
Type: plist boolean
Failsafe: false
Description: Attempt to detach USB controller ownership from the firmware driver. While most firmwares
manage to properly do that, or at least have an option for, select firmwares do not. As a result, operating system
may freeze upon boot. Not recommended unless required.

8. RequestBootVarRouting
Type: plist boolean
Failsafe: false
Description: Request redirectBoot prefixed variables from EFI_GLOBAL_VARIABLE_GUID to OC_VENDOR_VARIABLE_GUID.

This quirk requires 0C_FIRMWARE_RUNTIME protocol implemented in FwRuntimeServices.efi. The quirk lets
default boot entry preservation at times when firmwares delete incompatible boot entries. Simply said, you are
required to enable this quirk to be able to reliably use Startup Disk preference pane in a firmware that is not
compatible with macOS boot entries by design.

9. SanitiseClearScreen
Type: plist boolean
Failsafe: false
Description: Some firmwares reset screen resolution to a failsafe value (like 1024x768) on the attempts to clear
screen contents when large display (e.g. 2K or 4K) is used. This option attempts to apply a workaround.

Note: ConsoleControl may need to be set to true for this to work. On all known affected systems ConsoleMode
had to be set to empty string for this to work.
10. ClearScreenOnModeSwitch

Type: plist boolean

Description: Some firmwares clear only part of screen when switching from graphics to text mode, leaving a

41

https://support.apple.com/HT202796

fragment of previously drawn image visible. This option fills the entire graphics screen with black color before
switching to text mode.

Note: ConsoleControl should be set to true for this to work.

42

o Watch Dog is disabled to prevent automatic reboot: Misc — Debug — DisableWatchDog = true.
o Boot Picker (entry selector) is enabled: Misc — Boot — ShowPicker = true.

If there is no obvious error, check the available hacks in Quirks sections one by one.
. How to customise boot entries?

OpenCore follows standard Apple Bless model and extracts the entry name from .contentDetails and
.disk_label.contentDetails files in the booter directory if present. These files contain an ASCII string
with an entry title, which may then be customised by the user.

. How to choose the default boot entry?

OpenCore uses the primary UEFT boot option to select the default entry. This choice can be altered from UEFT
Setup, with the macOS Startup Disk preference, or the Windows Boot Camp| Control Panel. Since choosing
OpenCore’s BOOTx64.EFI as a primary boot option limits this functionality in addition to several firmwares
deleting incompatible boot options, potentially including those created by macOS, you are strongly encouraged
to use the RequestBootVarRouting quirk, which will preserve your selection made in the operating system within
the OpenCore variable space. Note, that RequestBootVarRouting requires a separate driver for functioning.

. What is the simplest way to install macOS?

Copy online recovery image (*.dmg and *.chunklist files) to com.apple.recovery.boot directory on a FAT32
partition with OpenCore. Load OpenCore Boot Picker and choose the entry, it will have a (dmg) suffix. Custom
name may be created by providing .contentDetails file.

To download recovery online you may use teel-frem-macrecovery.py| tool from MacInfoPkg,
For offline installation refer to How to create a bootable installer for macOS article.
. Why do online recovery images (*.dng) fail to load?

This may be caused by missing HFS+ driver, as all presently known recovery volumes have HFS+ filesystem.
Another cause may be buggy firmware allocator, which can be worked around with AvoidHighAlloc UEFI quirk.

. Can I use this on Apple hardware or virtual machines?

Sure, most relatively modern Mac models including MacPro5,1 and virtual machines are fully supported. Even
though there are little to none specific details relevant to Mac hardware, some ongoing instructions can be found
in acidanthera/bugtracker#377.

. Why do Find&Replace patches must equal in length?

For machine code (x86 code) it is not possible to do such replacements due to [relative addressing. For ACPI
code this is risky, and is technically equivalent to ACPI table replacement, thus not implemented. More detailed
explanation can be found on AppleLife.ru.

. How can I migrate from AptioMemoryFix?

Behaviour similar to that of AptioMemoryFix can be obtained by installing FwRuntimeServices driver and
enabling the quirks listed below. Please note, that most of these are not necessary to be enabled. Refer to their
individual descriptions in this document for more details.

e ProvideConsoleGop (UEFI quirk)
¢ AvoidRuntimeDefrag

e DiscardHibernateMap

¢ EnableSafeModeSlide

e EnableWriteUnprotector

e ForceExitBootServices

¢ ProtectCsmRegion

e ProvideCustomSlide

e SetupVirtualMap

e ShrinkMemoryMap

45

https://support.apple.com/HT202796
https://support.apple.com/guide/bootcamp-control-panel/start-up-your-mac-in-windows-or-macos-bcmp29b8ac66/mac
https://github.com/acidanthera/MacInfoPkg/blob/master/macrecovery/macrecovery.py
https://github.com/acidanthera/MacInfoPkg/releases
https://support.apple.com/HT201372
https://github.com/acidanthera/bugtracker/issues/377
https://en.wikipedia.org/w/index.php?title=Relative_addressing
https://applelife.ru/posts/819790

	Introduction
	
	Generic Terms

	Installation and Upgrade
	Contribution
	Booter
	Introduction
	Properties
	Quirks Properties

	Block Properties
	Emulate Properties
	Patch Properties
	Entry Properties
	DataHub Properties
	PlatformNVRAM Properties
	UEFI
	Introduction
	Properties
	Protocols Properties
	Quirks Properties

