
OpenCore

Reference Manual (0.6.1
:::
.2)

[2020.09.16]

Copyright ©2018-2020 vit9696

Failsafe: All zero
Description: Match table signature to be equal to this value unless all zero.

In the majority of the cases ACPI patches are not useful and harmful:

• Avoid renaming devices with ACPI patches. This may fail or perform improper renaming of unrelated devices
(e.g. EC and EC0), be unnecessary, or even fail to rename devices in select tables. For ACPI consistency it is much
safer to rename devices at I/O Registry level, as done by WhateverGreen.

• Avoid
:::
Try

::
to

::::::
avoid patching _OSI to support a higher level of feature sets unless absolutely required

::::::::
whenever

:::::::
possible. Commonly this enables a number of hacks on APTIO firmwares, which result in the need to add more
patches. Modern firmwares generally do not need it at all, and those that do are fine with much smaller patches.
::::::::
However,

::::::
laptop

::::::::
vendors

::::::
usually

::::
rely

:::
on

::::
this

:::::::
method

:::
to

:::::::::
determine

::::
the

::::::::::
availability

::
of

:::::::::
functions

:::
like

::::::::
modern

::::
I2C

:::::
input

::::::::
support,

:::::::
thermal

:::::::::::
adjustment

:::
and

:::::::
custom

:::::::
feature

:::::::::
additions.

:

•
:::::
Avoid

::::::::
patching

::::::::::
embedded

:::::::::
controller

:::::
event

:::::
_Qxx

:::
just

:::
for

::::::::
enabling

::::::::::
brightness

:::::
keys.

::::
The

::::::::::::
conventional

:::::::
process

:::
to

:::
find

:::::
these

:::::
keys

:::::::
usually

:::::::
involves

::::::::
massive

:::::::::::
modification

:::
on

::::::
DSDT

::::
and

:::::::
SSDTs

::::
and

:::
the

::::::
debug

::::
kext

::
is
::::
not

::::::
stable

:::
on

:::::
newer

::::::::
systems.

::::::
Please

:::::::
switch

::
to

:::::::
built-in

::::::::::
brightness

:::
key

:::::::::
discovery

::
of

:
VoodooPS2

::::::
instead.

:

• Try to avoid hacky changes like renaming _PRW or _DSM whenever possible.

Several cases, where patching actually does make sense, include:

• Refreshing HPET (or another device) method header to avoid compatibility checks by _OSI on legacy hardware.
_STA method with if ((OSFL () == Zero)) { If (HPTE) ... Return (Zero) content may be forced to
always return 0xF by replacing A0 10 93 4F 53 46 4C 00 with A4 0A 0F A3 A3 A3 A3 A3.

• To provide custom method implementation with in an SSDT, for instance, to report functional key presses on
a laptop

:::::
inject

:::::::::
shutdown

:::
fix

:::
on

::::::
certain

::::::::::
computers, the original method can be replaced with a dummy name by

patching _Q11
::::
PTS with XQ11

::::
ZPTS

:::
and

:::::::
adding

:
a
::::::::
callback

::
to

::::::::
original

:::::::
method.

Tianocore AcpiAml.h source file may help understanding ACPI opcodes.

Note: Patches of different Find and Replace lengths are unsupported as they may corrupt ACPI tables and make
you system unstable due to area relocation. If you need such changes you may utilise “proxy” patching or NOP the
remaining area.

4.6 Quirks Properties
1. FadtEnableReset

Type: plist boolean
Failsafe: false
Description: Provide reset register and flag in FADT table to enable reboot and shutdown.

Mainly required on legacy hardware and few laptops. Can also fix power-button shortcuts. Not recommended
unless required.

2. NormalizeHeaders
Type: plist boolean
Failsafe: false
Description: Cleanup ACPI header fields to workaround macOS ACPI implementation bug causing boot crashes.
Reference: Debugging AppleACPIPlatform on 10.13 by Alex James aka theracermaster. The issue is fixed in
macOS Mojave (10.14).

3. RebaseRegions
Type: plist boolean
Failsafe: false
Description: Attempt to heuristically relocate ACPI memory regions. Not recommended.

ACPI tables are often generated dynamically by underlying firmware implementation. Among the position-
independent code, ACPI tables may contain physical addresses of MMIO areas used for device configuration,
usually grouped in regions (e.g. OperationRegion). Changing firmware settings or hardware configuration,
upgrading or patching the firmware inevitably leads to changes in dynamically generated ACPI code, which
sometimes lead to the shift of the addresses in aforementioned OperationRegion constructions.

13

https://github.com/acidanthera/WhateverGreen
https://github.com/acidanthera/VoodooPS2
https://github.com/acidanthera/audk/blob/master/MdePkg/Include/IndustryStandard/AcpiAml.h
https://alextjam.es/debugging-appleacpiplatform/

10. MaxKernel
Type: plist string
Failsafe: Empty string
Description: Patches data on specified macOS version or older.

Note: Refer to Add MaxKernel description for matching logic.

11. MinKernel
Type: plist string
Failsafe: Empty string
Description: Patches data on specified macOS version or newer.

Note: Refer to Add MaxKernel description for matching logic.

12. Replace
Type: plist data
Failsafe: Empty data
Description: Replacement data of one or more bytes.

13. ReplaceMask
Type: plist data
Failsafe: Empty data
Description: Data bitwise mask used during replacement. Allows fuzzy replacement by updating masked (set
to non-zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

14. Skip
Type: plist integer
Failsafe: 0
Description: Number of found occurrences to be skipped before replacement is done.

7.8 Quirks Properties
1. AppleCpuPmCfgLock

Type: plist boolean
Failsafe: false
Requirement: 10.6 (64-bit)

::::
10.4

Description: Disables PKG_CST_CONFIG_CONTROL (0xE2) MSR modification in AppleIntelCPUPowerManage-
ment.kext, commonly causing early kernel panic, when it is locked from writing.

Certain firmwares lock PKG_CST_CONFIG_CONTROL MSR register. To check its state one can use bundled
VerifyMsrE2 tool. Select firmwares have this register locked on some cores only.

As modern firmwares provide CFG Lock setting, which allows configuring PKG_CST_CONFIG_CONTROL MSR register
lock, this option should be avoided whenever possible. For several APTIO firmwares not displaying CFG Lock
setting in the GUI it is possible to access the option directly:

(a) Download UEFITool and IFR-Extractor.
(b) Open your firmware image in UEFITool and find CFG Lock unicode string. If it is not present, your firmware

may not have this option and you should stop.
(c) Extract the Setup.bin PE32 Image Section (the one UEFITool found) through Extract Body menu option.
(d) Run IFR-Extractor on the extracted file (e.g. ./ifrextract Setup.bin Setup.txt).
(e) Find CFG Lock, VarStoreInfo (VarOffset/VarName): in Setup.txt and remember the offset right after

it (e.g. 0x123).
(f) Download and run Modified GRUB Shell compiled by brainsucker or use a newer version by datasone.
(g) Enter setup_var 0x123 0x00 command, where 0x123 should be replaced by your actual offset, and reboot.

Warning: Variable offsets are unique not only to each motherboard but even to its firmware version. Never ever
try to use an offset without checking.

2. AppleXcpmCfgLock
Type: plist boolean
Failsafe: false
Requirement: 10.8 (not required for older)

27

https://github.com/LongSoft/UEFITool/releases
https://github.com/LongSoft/Universal-IFR-Extractor/releases
http://brains.by/posts/bootx64.7z
https://geektimes.com/post/258090
https://github.com/datasone/grub-mod-setup_var
https://github.com/datasone

Description: Disables PKG_CST_CONFIG_CONTROL (0xE2) MSR modification in XNU kernel, commonly causing
early kernel panic, when it is locked from writing (XCPM power management).

Note: This option should be avoided whenever possible. See AppleCpuPmCfgLock description for more details.

3. AppleXcpmExtraMsrs
Type: plist boolean
Failsafe: false
Requirement: 10.8 (not required for older)
Description: Disables multiple MSR access critical for select CPUs, which have no native XCPM support.

This is normally used in conjunction with Emulate section on Haswell-E, Broadwell-E, Skylake-SP, and similar
CPUs. More details on the XCPM patches are outlined in acidanthera/bugtracker#365.

Note: Additional not provided patches will be required for Ivy Bridge or Pentium CPUs. It is recommended to
use AppleIntelCpuPowerManagement.kext for the former.

4. AppleXcpmForceBoost
Type: plist boolean
Failsafe: false
Requirement: 10.8 (not required for older)
Description: Forces maximum performance in XCPM mode.

This patch writes 0xFF00 to MSR_IA32_PERF_CONTROL (0x199), effectively setting maximum multiplier for all the
time.

Note: While this may increase the performance, this patch is strongly discouraged on all systems but those
explicitly dedicated to scientific or media calculations. In general only certain Xeon models benefit from the
patch.

5. CustomSMBIOSGuid
Type: plist boolean
Failsafe: false
Requirement: 10.6 (64-bit)

::::
10.4

Description: Performs GUID patching for UpdateSMBIOSMode Custom mode. Usually relevant for Dell laptops.

6. DisableIoMapper
Type: plist boolean
Failsafe: false
Requirement: 10.8 (not required for older)
Description: Disables IOMapper support in XNU (VT-d), which may conflict with the firmware implementation.

Note: This option is a preferred alternative to deleting DMAR ACPI table and disabling VT-d in firmware preferences,
which does not break VT-d support in other systems in case they need it.

7. DisableLinkeditJettison
Type: plist boolean
Failsafe: false
Requirement: 11.0
Description: Disables __LINKEDIT jettison code.

This option lets Lilu.kext and possibly some others function in macOS Big Sur with best performance without
keepsyms=1 boot argument.

8. DisableRtcChecksum
Type: plist boolean
Failsafe: false
Requirement: 10.6 (64-bit)

::::
10.4

Description: Disables primary checksum (0x58-0x59) writing in AppleRTC.

Note 1 : This option will not protect other areas from being overwritten, see RTCMemoryFixup kernel extension
if this is desired.

Note 2 : This option will not protect areas from being overwritten at firmware stage (e.g. macOS bootloader), see
AppleRtc

::::::::::::
AppleRtcRam protocol description if this is desired.

28

https://github.com/acidanthera/bugtracker/issues/365
https://github.com/acidanthera/RTCMemoryFixup

9. DummyPowerManagement
Type: plist boolean
Failsafe: false
Requirement: 10.6 (64-bit)

::::
10.4

Description: Disables AppleIntelCpuPowerManagement.

Note: This option is a preferred alternative to NullCpuPowerManagement.kext for CPUs without native power
management driver in macOS.

10. ExternalDiskIcons
Type: plist boolean
Failsafe: false
Requirement: 10.6 (64-bit)

::::
10.4

Description: Apply icon type patches to AppleAHCIPort.kext to force internal disk icons for all AHCI disks.

Note: This option should be avoided whenever possible. Modern firmwares usually have compatible AHCI
controllers.

11. IncreasePciBarSize
Type: plist boolean
Failsafe: false
Requirement: 10.10
Description: Increases 32-bit PCI bar size in IOPCIFamily from 1 to 4 GBs.

Note: This option should be avoided whenever possible. In general the necessity of this option means misconfigured
or broken firmware.

12. LapicKernelPanic
Type: plist boolean
Failsafe: false
Requirement: 10.6 (64-bit)
Description: Disables kernel panic on LAPIC interrupts.

13. PanicNoKextDump
Type: plist boolean
Failsafe: false
Requirement: 10.13 (not required for older)
Description: Prevent kernel from printing kext dump in the panic log preventing from observing panic details.
Affects 10.13 and above.

14. PowerTimeoutKernelPanic
Type: plist boolean
Failsafe: false
Requirement: 10.15 (not required for older)
Description: Disables kernel panic on setPowerState timeout.

An additional security measure was added to macOS Catalina (10.15) causing kernel panic on power change
timeout for Apple drivers. Sometimes it may cause issues on misconfigured hardware, notably digital audio, which
sometimes fails to wake up. For debug kernels setpowerstate_panic=0 boot argument should be used, which is
otherwise equivalent to this quirk.

15. ThirdPartyDrives
Type: plist boolean
Failsafe: false
Requirement: 10.6 (64-bit, not required for older)
Description: Apply vendor patches to IOAHCIBlockStorage.kext to enable native features for third-party drives,
such as TRIM on SSDs or hibernation support on 10.15 and newer.

Note: This option may be avoided on user preference. NVMe SSDs are compatible without the change. For AHCI
SSDs on modern macOS version there is a dedicated built-in utility called trimforce. Starting from 10.15 this
utility creates EnableTRIM variable in APPLE_BOOT_VARIABLE_GUID namespace with 01 00 00 00 value.

16. XhciPortLimit

29

Type: plist boolean
Failsafe: false
Requirement: 10.11 (not required for older)
Description: Patch various kexts (AppleUSBXHCI.kext, AppleUSBXHCIPCI.kext, IOUSBHostFamily.kext) to
remove USB port count limit of 15 ports.

Note: This option should be avoided whenever possible. USB port limit is imposed by the amount of used bits in
locationID format and there is no possible way to workaround this without heavy OS modification. The only valid
solution is to limit the amount of used ports to 15 (discarding some). More details can be found on AppleLife.ru.

7.9 Scheme Properties
These properties are particularly relevant for older macOS operating systems. For more details on how to install and
troubleshoot such macOS installation refer to Legacy Apple OS.

1. FuzzyMatch
Type: plist boolean
Failsafe: false
Description: Use kernelcache with different checksums when available.

On macOS 10.6 and earlier kernelcache filename has a checksum, which essentially is adler32 from SMBIOS
product name and EfiBoot device path. On certain firmwares EfiBoot device path differs between UEFI and
macOS due to ACPI or hardware specifics, rendering kernelcache checksum as always different.

This setting allows matching the latest kernelcache with a suitable architecture when the kernelcache without
suffix is unavailable, improving macOS 10.6 boot performance on several platforms.

2. KernelArch
Type: plist string
Failsafe: Auto
Description: Prefer specified kernel architecture (Auto, i386, i386-user32, x86_64) when available.

On macOS 10.7 and earlier XNU kernel can boot with architectures different from the usual x86_64. This setting
will use the specified architecture to boot macOS when it is supported by the macOS and the configuration:

• Auto — Choose the preferred architecture automatically.
• i386 — Use i386 (32-bit) kernel when available.
• i386-user32 — Use i386 (32-bit) kernel when available and force the use of 32-bit userspace on 64-bit

capable processors. On macOS 64-bit capable processors are assumed to support SSSE3. This is not the case
for older 64-bit capable Pentium processors, which cause some applications to crash on macOS 10.6. The
behaviour corresponds to -legacy kernel boot argument.

• x86_64 — Use x86_64 (64-bit) kernel when available.

Below is the algorithm determining the kernel architecture.

(a) arch argument in image arguments (e.g. when launched via UEFI Shell) or in boot-args variable overrides
any compatibility checks and forces the specified architecture, completing this algorithm.

(b) OpenCore build architecture restricts capabilities to i386 and i386-user32 mode for the 32-bit firmware
variant.

(c) Determined EfiBoot version restricts architecture choice:
• 10.4-10.5 — i386 or i386-user32
• 10.6 -10.7 — i386, i386-user32, or x86_64
•

::::
10.7

::
—

:::::
i386

::
or

:::::::
x86_64

• 10.8 or newer — x86_64
(d) If KernelArch is set to Auto and SSSE3 is not supported by the CPU, capabilities are restricted to

i386-user32 if supported by EfiBoot.
(e) Board identifier (from SMBIOS) based on EfiBoot version disables x86_64 support on an unsupported model

if any i386 variant is supported. Auto is not consulted here as the list is not overridable in EfiBoot.
(f) KernelArch restricts the support to the explicitly specified architecture (when not set to Auto) if the

architecture remains present in the capabilities.
(g) The best supported architecture is chosen in this order: x86_64, i386, i386-user32.

30

https://applelife.ru/posts/550233

Unlike macOS 10.7, where select boards identifiers are treated as the i386 only machines, and macOS 10.5 or
earlier, where x86_64 is not supported by the macOS kernel, macOS 10.6 is very special. The architecture choice
on macOS 10.6 depends on many factors including not only the board identifier, but also macOS product type
(client vs server), macOS point release, and RAM amount. The detection of them all is complicated and not
practical, because several point releases had genuine bugs and failed to properly perform the server detection
in the first place. For this reason OpenCore on macOS 10.6 will fallback to x86_64 architecture whenever it is
supported by the board at all, just like on macOS 10.7. As a reference here is the 64-bit Mac model compatibility
corresponding to actual EfiBoot behaviour on macOS 10.6.8 and 10.7.5.

Model 10.6 (minimal) 10.6 (client) 10.6 (server) 10.7 (any)
Macmini 4,x (Mid 2010) 5,x (Mid 2011) 4,x (Mid 2010) 3,x (Early 2009)
MacBook Unsupported Unsupported Unsupported 5,x (2009/09)
MacBookAir Unsupported Unsupported Unsupported 2,x (Late 2008)
MacBookPro 4,x (Early 2008) 8,x (Early 2011) 8,x (Early 2011) 3,x (Mid 2007)
iMac 8,x (Early 2008) 12,x (Mid 2011) 12,x (Mid 2011) 7,x (Mid 2007)
MacPro 3,x (Early 2008) 5,x (Mid 2010) 3,x (Early 2008) 3,x (Early 2008)
Xserve 2,x (Early 2008) 2,x (Early 2008) 2,x (Early 2008) 2,x (Early 2008)

Note: 3+2 and 6+4 hotkeys to choose the preferred architecture are unsupported due to being handled by EfiBoot
and thus being hard to properly detect.

3. KernelCache
Type: plist string
Failsafe: Auto
Description: Prefer specified kernel cache type (Auto, Cacheless, Mkext, Prelinked) when available.

Different variants of macOS support different kernel caching variants designed to improve boot performance. This
setting allows to prevent using faster kernel caching variants if slower variants are available for debugging and
stability reasons. I.e. by specifying Mkext one will disable Prelinked for e.g. 10.6 but not 10.7.

The list of available kernel caching types and its current support in OpenCore is listed below.

macOS i386 NC i386 MK i386 PK x86_64 NC x86_64 MK x86_64 PK x86_64 KC
10.4 NO

::::
YES

:
NO

::::
YES

:
(V1) NO

::::
(V1)

:
— — — —

10.5 NO
::::
YES

:
NO

::::
YES

:
(V1) NO

::::
(V1)

:
— — — —

10.6 NO
::::
YES

:
NO

::::
YES

:
(V2) NO

::::
(V2)

:
YES YES (V2) YES

::::
(V2)

:
—

10.7 NO
::::
YES

:
— NO

::::
(V3)

:
YES — YES

::::
(V3)

:
—

10.8-10.9 — — — YES — YES
::::
(V3)

:
—

10.10-10.15 — — — — — YES
::::
(V3)

:
—

11.0+ — — — — — YES
::::
(V3)

:
YES

31

• GSTT — GoptStop
• HDA — AudioDxe
• KKT — KeyTester
• MMDD — MmapDump
• OCPAVP — PavpProvision
• OCRST — ResetSystem
• OCUI — OpenCanopy
• OC — OpenCore main
• VMOPT — VerifyMemOpt

Libraries:

• AAPL — OcDebugLogLib, Apple EfiBoot logging
• OCABC — OcAfterBootCompatLib
• OCAE — OcAppleEventLib
• OCAK — OcAppleKernelLib
• OCAU — OcAudioLib
• OCAV — OcAppleImageVerificationLib
• OCA —- OcAcpiLib
• OCBP — OcAppleBootPolicyLib
• OCB — OcBootManagementLib
• OCCL — OcAppleChunkListLib
• OCCPU — OcCpuLib
• OCC — OcConsoleLib
•

::::
OCDC

::
—

:::::::::::::::::::::
OcDriverConnectionLib

:

• OCDH — OcDataHubLib
• OCDI — OcAppleDiskImageLib
• OCFSQ — OcFileLib, UnblockFs quirk
• OCFS — OcFileLib
• OCFV — OcFirmwareVolumeLib
• OCHS — OcHashServicesLib
• OCI4 — OcAppleImg4Lib
• OCIC — OcImageConversionLib
• OCII — OcInputLib
• OCJS — OcApfsLib
• OCKM — OcAppleKeyMapLib
• OCL — OcDebugLogLib
• OCMCO — OcMachoLib
• OCME — OcHeciLib
• OCMM — OcMemoryLib
• OCPI — OcFileLib, partition info
• OCPNG — OcPngLib
• OCRAM — OcAppleRamDiskLib
• OCRTC — OcRtcLib
• OCSB — OcAppleSecureBootLib
• OCSMB — OcSmbiosLib
• OCSMC — OcSmcLib
• OCST — OcStorageLib
• OCS — OcSerializedLib
• OCTPL — OcTemplateLib
• OCUC — OcUnicodeCollationLib
• OCUT — OcAppleUserInterfaceThemeLib
• OCXML — OcXmlLib

8.5 Security Properties
1. AllowNvramReset

Type: plist boolean
Failsafe: false

39

• OC_SCAN_ALLOW_DEVICE_SATA
• OC_SCAN_ALLOW_DEVICE_SASEX
• OC_SCAN_ALLOW_DEVICE_SCSI
• OC_SCAN_ALLOW_DEVICE_NVME

14. SecureBootModel
Type: plist string
Failsafe: Default
Description: Apple Secure Boot hardware model.

Sets Apple Secure Boot hardware model and policy. Specifying this value defines which operating systems will be
bootable. Operating systems shipped before the specified model was released will not boot. Valid values:

• Default — Recent available model, currently set to j137.
• Disabled — No model, Secure Boot will be disabled.
• j137 — iMacPro1,1 (December 2017) minimum macOS 10.13.2 (17C2111)
• j680 — MacBookPro15,1 (July 2018) minimum macOS 10.13.6 (17G2112)
• j132 — MacBookPro15,2 (July 2018) minimum macOS 10.13.6 (17G2112)
• j174 — Macmini8,1 (October 2018) minimum macOS 10.14 (18A2063)
• j140k — MacBookAir8,1 (October 2018) minimum macOS 10.14.1 (18B2084)
• j780 — MacBookPro15,3 (May 2019) minimum macOS 10.14.5 (18F132)
• j213 — MacBookPro15,4 (July 2019) minimum macOS 10.14.5 (18F2058)
• j140a — MacBookAir8,2 (July 2019) minimum macOS 10.14.5 (18F2058)
• j152f — MacBookPro16,1 (November 2019) minimum macOS 10.15.1 (19B2093)
• j160 — MacPro7,1 (December 2019) minimum macOS 10.15.1 (19B88)
• j230k — MacBookAir9,1 (March 2020) minimum macOS 10.15.3 (19D2064)
• j214k — MacBookPro16,2 (May 2020) minimum macOS 10.15.4 (19E2269)
• j223 — MacBookPro16,3 (May 2020) minimum macOS 10.15.4 (19E2265)
• j215 — MacBookPro16,4 (June 2020) minimum macOS 10.15.5 (19F96)
• j185 — iMac20,1 (August 2020) minimum macOS 10.15.6 (19G2005)
• j185f — iMac20,2 (August 2020) minimum macOS 10.15.6 (19G2005)

PlatformInfo and SecureBootModel are independent, allowing to enabling Apple Secure Boot with any SMBIOS.
Setting SecureBootModel to any valid value but Disabled is equivalent to Medium Security of Apple Secure
Boot. To achieve Full Security one will need to also specify ApECID value.

Enabling Apple Secure Boot is more demanding to incorrect configurations, buggy macOS installations, and
unsupported setups. Things to keep in mind:

(a) Just like on T2 Macs you will not be able to install any unsigned kernel drivers and several signed kernel
drivers including NVIDIA Web Drivers.

(b) The list of cached drivers may be different, resulting in the need to change the list of Added or Forced kernel
drivers. For example, IO80211Family cannot be injected in this case.

(c) System volume alterations on operating systems with sealing, like macOS 11, may result in the operating
system being unbootable. Do not try to disable system volume encryption unless you disable Apple Secure
Boot.

(d) If your platform requires certain settings, but they were not enabled, because the obvious issues did not
trigger before, you may get boot failure. Be extra careful with IgnoreInvalidFlexRatio or HashServices.

(e) Operating systems released before Apple Secure Boot landed (e.g. macOS 10.12 or earlier) will still boot
until UEFI Secure Boot is enabled. This is so, because from Apple Secure Boot point they are treated as
incompatible and are assumed to be handled by the firmware just like Microsoft Windows is.

(f) On older CPUs (e.g. before Sandy Bridge) enabling Apple Secure Boot might cause slightly slower loading
by up to 1 second.

(g) Since Default value will increase with time to support the latest major release operating system, it is not
recommended to use ApECID and Default value together.

Sometimes the already installed operating system may have outdated Apple Secure Boot manifests on the
Preboot partition causing boot failure. If you see the “OCB: Apple Secure Boot prohibits this boot entry,
enforcing!” message, it is likely the case. When this happens you can either reinstall the operating system
or copy the manifests (files with .im4m extension, like boot.efi.j137.im4m) from /usr/standalone/i386 to
/Volumes/Preboot/<UUID>/System/Library/CoreServices. Here <UUID> is your system volume identifier.

:::
On

44

https://support.apple.com/en-us/HT208330

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_BID
Hardware BoardProduct (e.g. Mac-35C1E88140C3E6CF). Not present on real Macs, but used to avoid extra
parsing of SMBIOS tables, especially in boot.efi.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_MLB
Hardware BoardSerialNumber. Override for MLB. Present on newer Macs (2013+ at least).

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_ROM
Hardware ROM. Override for ROM. Present on newer Macs (2013+ at least).

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:prev-lang:kbd
ASCII string defining default keyboard layout. Format is lang-COUNTRY:keyboard, e.g. ru-RU:252 for Russian
locale and ABC keyboard. Also accepts short forms: ru:252 or ru:0 (U.S. keyboard, compatible with 10.9). Full
decoded keyboard list from AppleKeyboardLayouts-L.dat can be found here. Using non-latin keyboard on 10.14
will not enable ABC keyboard, unlike previous and subsequent macOS versions, and is thus not recommended in
case you need 10.14.

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:security-mode
ASCII string defining FireWire security mode. Legacy, can be found in IOFireWireFamily source code in
IOFireWireController.cpp. It is recommended not to set this variable, which may speedup system startup. Setting
to full is equivalent to not setting the variable and none disables FireWire security.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:UIScale
One-byte data defining boot.efi user interface scaling. Should be 01 for normal screens and 02 for HiDPI
screens.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:DefaultBackgroundColor
Four-byte BGRA data defining boot.efi user interface background colour. Standard colours include BF BF BF
00 (Light Gray) and 00 00 00 00 (Syrah Black). Other colours may be set at user’s preference.

9.5 Other Variables
The following variables may be useful for certain configurations or troubleshooting:

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:boot-args
Kernel arguments, used to pass configuration to Apple kernel and drivers. There are many arguments, which
may be found by looking for the use of PE_parse_boot_argn function in the kernel or driver code. Some of the
known boot arguments include:
– acpi_layer=0xFFFFFFFF
– acpi_level=0xFFFF5F (implies ACPI_ALL_COMPONENTS)
–

:::::::::
arch=i386

:::::
(force

::::::
kernel

:::::::::::
architecture

::
to

:::::
i386

:
,
:::
see

:::::::::::
KernelArch

:
)
:

– batman=VALUE (AppleSmartBatteryManager debug mask)
– batman-nosmc=1 (disable AppleSmartBatteryManager SMC interface)
– cpus=VALUE (maximum number of CPUs used)
– debug=VALUE (debug mask)
– io=VALUE (IOKit debug mask)
– keepsyms=1 (show panic log debug symbols)
– kextlog=VALUE (kernel extension loading debug mask)
– nv_disable=1 (disables NVIDIA GPU acceleration)
– nvda_drv=1 (legacy way to enable NVIDIA web driver, removed in 10.12)
– npci=0x2000 (legacy, disables kIOPCIConfiguratorPFM64)
– lapic_dont_panic=1
– slide=VALUE (manually set KASLR slide)
– smcdebug=VALUE (AppleSMC debug mask)
– -amd_no_dgpu_accel (alternative to WhateverGreen’s -radvesa for new GPUs)
– -nehalem_error_disable
– -no_compat_check (disable model checking

::
on

::::::
10.7+)

– -s (single mode)
– -v (verbose mode)
– -x (safe mode)

There are multiple external places summarising macOS argument lists: example 1, example 2.
• 7C436110-AB2A-4BBB-A880-FE41995C9F82:bootercfg

Booter arguments, similar to boot-args but for boot.efi. Accepts a set of arguments, which are hexadecimal
64-bit values with or without 0x. At different stages boot.efi will request different debugging (logging) modes

48

https://github.com/acidanthera/OpenCorePkg/tree/master/Utilities/AppleKeyboardLayouts
https://opensource.apple.com/source/IOFireWireFamily/IOFireWireFamily-473/IOFireWireFamily.kmodproj/IOFireWireController.cpp.auto.html
https://github.com/acpica/acpica/blob/master/source/include/acoutput.h
https://www.insanelymac.com/forum/topic/260539-1068-officially-released/?do=findComment&comment=1707972
https://github.com/acidanthera/WhateverGreen
https://osxeon.wordpress.com/2015/08/10/boot-argument-options-in-os-x
https://superuser.com/questions/255176/is-there-a-list-of-available-boot-args-for-darwin-os-x

(e.g. after ExitBootServices it will only print to serial). Several booter arguments control whether these requests
will succeed. The list of known requests is covered below:

– 0x00 – INIT.
– 0x01 – VERBOSE (e.g. -v, force console logging).
– 0x02 – EXIT.
– 0x03 – RESET:OK.
– 0x04 – RESET:FAIL (e.g. unknown board-id, hibernate mismatch, panic loop, etc.).
– 0x05 – RESET:RECOVERY.
– 0x06 – RECOVERY.
– 0x07 – REAN:START.
– 0x08 – REAN:END.
– 0x09 – DT (can no longer log to DeviceTree).
– 0x0A – EXITBS:START (forced serial only).
– 0x0B – EXITBS:END (forced serial only).
– 0x0C – UNKNOWN.

In 10.15 debugging support was mostly broken before 10.15.4 due to some kind of refactoring and introduction
of a new debug protocol. Some of the arguments and their values below may not be valid for versions prior to
10.15.4. The list of known arguments is covered below:

– boot-save-log=VALUE — debug log save mode for normal boot.
∗ 0
∗ 1
∗ 2 — (default).
∗ 3
∗ 4 — (save to file).

– wake-save-log=VALUE — debug log save mode for hibernation wake.
∗ 0 — disabled.
∗ 1
∗ 2 — (default).
∗ 3 — (unavailable).
∗ 4 — (save to file, unavailable).

– breakpoint=VALUE — enables debug breaks (missing in production boot.efi).
∗ 0 — disables debug breaks on errors (default).
∗ 1 — enables debug breaks on errors.

– console=VALUE — enables console logging.
∗ 0 — disables console logging.
∗ 1 — enables console logging when debug protocol is missing (default).
∗ 2 — enables console logging unconditionally (unavailable).

– embed-log-dt=VALUE — enables DeviceTree logging.
∗ 0 — disables DeviceTree logging (default).
∗ 1 — enables DeviceTree logging.

– kc-read-size=VALUE — Chunk size used for buffered I/O from network or disk for prelinkedkernel reading
and related. Set to 1MB (0x100000) by default, can be tuned for faster booting.

– log-level=VALUE — log level bitmask.
∗ 0x01 — enables trace logging (default).

– serial=VALUE — enables serial logging.
∗ 0 — disables serial logging (default).
∗ 1 — enables serial logging for EXITBS:END onwards.
∗ 1

:
2 — enables serial logging for EXITBS:START onwards.

∗ 3 — enables serial logging when debug protocol is missing.
∗ 4 — enables serial logging unconditionally.

– timestamps=VALUE — enables timestamp logging.
∗ 0 — disables timestamp logging.
∗ 1 — enables timestamp logging (default).

– log=VALUE — deprecated starting from 10.15.
∗ 1 — AppleLoggingConOutOrErrSet/AppleLoggingConOutOrErrPrint (classical ConOut/StdErr)
∗ 2 — AppleLoggingStdErrSet/AppleLoggingStdErrPrint (StdErr or serial?)
∗ 4 — AppleLoggingFileSet/AppleLoggingFilePrint (BOOTER.LOG/BOOTER.OLD file on EFI partition)

49

https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/Protocol/AppleDebugLog.h

• TryOverwrite — Overwrite if new size is <= than the page-aligned original and there are no issues with
legacy region unlock. Create otherwise. Has issues with some firmwares.

• Create — Replace the tables with newly allocated EfiReservedMemoryType at AllocateMaxAddress without
any fallbacks.

• Overwrite — Overwrite existing gEfiSmbiosTableGuid and gEfiSmbiosTable3Guid data if it fits new size.
Abort with unspecified state otherwise.

• Custom —Write SMBIOS tables (gEfiSmbios(3)TableGuid) to gOcCustomSmbios(3)TableGuid to workaround
firmwares overwriting SMBIOS contents at ExitBootServices. Otherwise equivalent to Create. Requires
patching AppleSmbios.kext and AppleACPIPlatform.kext to read from another GUID: "EB9D2D31" -
"EB9D2D35" (in ASCII), done automatically by CustomSMBIOSGuid quirk.

Note: A side effect of using Custom approach is making SMBIOS updates exclusive to macOS, avoiding a collission
with existing Windows activation and custom OEM software but potentially breaking Apple-specific tools.

6. Generic
Type: plist dictonary
Description: Update all fields. This section is read only when Automatic is active.

7. DataHub
Type: plist dictonary
Optional: When Automatic is true
Description: Update Data Hub fields. This section is read only when Automatic is not active.

8. PlatformNVRAM
Type: plist dictonary
Optional: When Automatic is true
Description: Update platform NVRAM fields. This section is read only when Automatic is not active.

9. SMBIOS
Type: plist dictonary
Optional: When Automatic is true
Description: Update SMBIOS fields. This section is read only when Automatic is not active.

10.2 Generic Properties
1. SpoofVendor

Type: plist boolean
Failsafe: false
Description: Sets SMBIOS vendor fields to Acidanthera.

It is dangerous to use Apple in SMBIOS vendor fields for reasons given in SystemManufacturer description.
However, certain firmwares may not provide valid values otherwise, which could break some software.

2. AdviseWindows
Type: plist boolean
Failsafe: false
Description: Forces Windows support in FirmwareFeatures.

Added bits to FirmwareFeatures:

• FW_FEATURE_SUPPORTS_CSM_LEGACY_MODE (0x1) - Without this bit it is not possible to reboot to Windows
installed on a drive with EFI partition being not the first partition on the disk.

• FW_FEATURE_SUPPORTS_UEFI_WINDOWS_BOOT (0x20000000) - Without this bit it is not possible to reboot to
Windows installed on a drive with EFI partition being the first partition on the disk.

3.
::::::::::::::
ProcessorType

:::::
Type

:
:
::::::
plist

:::::::::
integer

:::::::
Failsafe

:
:
::::::::::
Automatic

::::::::::::
Description:

::::::
Refer

::
to

:::::::::
SMBIOS

::::::::::::::
ProcessorType.

:

4. SystemProductName
Type: plist string
Failsafe: MacPro6,1
Description: Refer to SMBIOS SystemProductName.

52

SMBIOS: System Enclosure or Chassis (Type 3) — Type
Description: Chassis type, refer to Table 17 — System Enclosure or Chassis Types for more details.

20. ChassisVersion
Type: plist string
Failsafe: OEM specified
SMBIOS: System Enclosure or Chassis (Type 3) — Version
Description: Should match BoardProduct.

21. ChassisSerialNumber
Type: plist string
Failsafe: OEM specified
SMBIOS: System Enclosure or Chassis (Type 3) — Version
Description: Should match SystemSerialNumber.

22. ChassisAssetTag
Type: plist string
Failsafe: OEM specified
SMBIOS: System Enclosure or Chassis (Type 3) — Asset Tag Number
Description: Chassis type name. Varies, could be empty or MacBook-Aluminum.

23. PlatformFeature
Type: plist integer, 32-bit
Failsafe: 0xFFFFFFFF
SMBIOS: APPLE_SMBIOS_TABLE_TYPE133 - PlatformFeature
Description: Platform features bitmask. Refer to AppleFeatures.h for more details. Use 0xFFFFFFFF value to
not provide this table.

24. SmcVersion
Type: plist data, 16 bytes
Failsafe: All zero
SMBIOS: APPLE_SMBIOS_TABLE_TYPE134 - Version
Description: ASCII string containing SMC version in upper case. Missing on T2 based Macs. Ignored when
zero.

25. FirmwareFeatures
Type: plist data, 8 bytes
Failsafe: 0
SMBIOS: APPLE_SMBIOS_TABLE_TYPE128 - FirmwareFeatures and ExtendedFirmwareFeatures
Description: 64-bit firmware features bitmask. Refer to AppleFeatures.h for more details. Lower 32 bits match
FirmwareFeatures. Upper 64 bits match ExtendedFirmwareFeatures.

26. FirmwareFeaturesMask
Type: plist data, 8 bytes
Failsafe: 0
SMBIOS: APPLE_SMBIOS_TABLE_TYPE128 - FirmwareFeaturesMask and ExtendedFirmwareFeaturesMask
Description: Supported bits of extended firmware features bitmask. Refer to AppleFeatures.h for more details.
Lower 32 bits match FirmwareFeaturesMask. Upper 64 bits match ExtendedFirmwareFeaturesMask.

27. ProcessorType
Type: plist integer, 16-bit
Failsafe: Automatic
SMBIOS: APPLE_SMBIOS_TABLE_TYPE131 - ProcessorType
Description: Combined of Processor Major and Minor types.

:::::::::
Automatic

:::::
value

::::::::::
generation

::::
tries

:::
to

:::::::
provide

:::::
most

::::::::
accurate

:::::
value

:::
for

:::
the

:::::::::
currently

:::::::
installed

::::::
CPU.

::::::
When

::::
this

::::
fails

:::::
please

:::::
make

:::::
sure

::
to

::::::
create

:::
an

:
issue

:::
and

:::::::
provide

:::::::
sysctl

:::::::::::::
machdep.cpu

:::
and

:
dmidecode

:::::::
output.

::::
For

:
a
::::
full

:::
list

:::
of

::::::::
available

::::::
values

::::
and

::::
their

::::::::::
limitations

:::::
(the

:::::
value

::::
will

::::
only

::::::
apply

::
if

:::
the

:::::
CPU

::::
core

::::::
count

:::::::::
matches)

::::
refer

:::
to

::::::
Apple

::::::::
SMBIOS

:::::::::
definitions

:::::::
header

:
here

:
.
:

28. MemoryFormFactor
Type: plist integer, 8-bit

58

https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/IndustryStandard/AppleFeatures.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/IndustryStandard/AppleFeatures.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/IndustryStandard/AppleFeatures.h
https://github.com/acidanthera/bugtracker/issues
https://github.com/acidanthera/dmidecode
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/IndustryStandard/AppleSmBios.h

Do you want to proceed? (Y/N): Y
OK; writing new GUID partition table (GPT) to \\.\physicaldrive0.
Disk synchronization succeeded! The computer should now use the new partition table.
The operation has completed successfully.

Listing 4: Relabeling Windows volume

How to choose Windows BOOTCAMP with custom NTFS drivers?

Third-party drivers providing NTFS support, such as NTFS-3G, Paragon NTFS, Tuxera NTFS or Seagate Paragon
Driver break certain macOS functionality, including Startup Disk preference pane normally used for operating system
selection. While the recommended option remains not to use such drivers as they commonly corrupt the filesystem, and
prefer the driver bundled with macOS with optional write support (command or GUI), there still exist vendor-specific
workarounds for their products: Tuxera, Paragon, etc.

12.4 Debugging
Similar to other projects working with hardware OpenCore supports auditing and debugging. The use of NOOPT or
DEBUG build modes instead of RELEASE can produce a lot more debug output. With NOOPT source level debugging with
GDB or IDA Pro is also available. For GDB check OpenCore Debug page. For IDA Pro you will need IDA Pro 7.3 or
newer, refer to Debugging the XNU Kernel with IDA Pro for more details.

To obtain the log during boot you can make the use of serial port debugging. Serial port debugging is enabled in Target,
e.g. 0xB for onscreen with serial. To initialise serial within OpenCore use SerialInit configuration option. For macOS
your best choice are CP2102-based UART devices. Connect motherboard TX to USB UART RX, and motherboard GND
to USB UART GND. Use screen utility to get the output, or download GUI software, such as CoolTerm.

Note: On several motherboards (and possibly USB UART dongles) PIN naming may be incorrect. It is very common
to have GND swapped with RX, thus you have to connect motherboard “TX” to USB UART GND, and motherboard “GND”
to USB UART RX.

Remember to enable COM port in firmware settings, and never use USB cables longer than 1 meter to avoid output
corruption. To additionally enable XNU kernel serial output you will need debug=0x8 boot argument.

12.5 Tips and Tricks
1. How to debug boot failure?

Normally it is enough to obtain the actual error message. For this ensure that:

• You have a DEBUG or NOOPT version of OpenCore.
• Logging is enabled (1) and shown onscreen (2): Misc → Debug → Target = 3.
• Logged messages from at least DEBUG_ERROR (0x80000000), DEBUG_WARN (0x00000002), and DEBUG_INFO

(0x00000040) levels are visible onscreen: Misc → Debug → DisplayLevel = 0x80000042.
• Critical error messages, like DEBUG_ERROR, stop booting: Misc → Security → HaltLevel = 0x80000000.
• Watch Dog is disabled to prevent automatic reboot: Misc → Debug → DisableWatchDog = true.
• Boot Picker (entry selector) is enabled: Misc → Boot → ShowPicker = true.

If there is no obvious error, check the available hacks in Quirks sections one by one. For early boot troubleshooting,
for instance, when OpenCore menu does not appear, using UEFI Shell (bundled with OpenCore) may help to
see early debug messages.

2. How to debug macOS boot failure?

• Refer to boot-args values like debug=0x100, keepsyms=1, -v, and similar.
• Do not forget about AppleDebug and ApplePanic properties.
• Take care of Booter, Kernel, and UEFI quirks.
• Consider using serial port to inspect early kernel boot failures. For this you may need debug=0x108,

serial=5, and msgbuf=1048576
::::
boot

:
arguments. Refer to the patches in Sample.plist when dying before

serial init.
• Always read the logs carefully.

78

https://www.tuxera.com/community/open-source-ntfs-3g
https://www.seagate.com/support/software/paragon
https://www.seagate.com/support/software/paragon
https://support.apple.com/HT202796
http://osxdaily.com/2013/10/02/enable-ntfs-write-support-mac-os-x
https://mounty.app
https://www.tuxera.com/products/tuxera-ntfs-for-mac/faq
https://kb.paragon-software.com/article/6604
https://github.com/acidanthera/OpenCorePkg/tree/master/Debug
https://www.hex-rays.com/products/ida/support/tutorials/index.shtml
https://freeware.the-meiers.org

	Quirks Properties
	Quirks Properties
	Scheme Properties
	Security Properties
	Other Variables
	Generic Properties
	Debugging
	Tips and Tricks

