/********************************************************************** * File: coutln.h (Formerly: coutline.c) * Description: Code for the C_OUTLINE class. * Author: Ray Smith * Created: Mon Oct 07 16:01:57 BST 1991 * * (C) Copyright 1991, Hewlett-Packard Ltd. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. * **********************************************************************/ #ifndef COUTLN_H #define COUTLN_H #include "crakedge.h" #include "mod128.h" #include "bits16.h" #include "rect.h" #include "blckerr.h" #include "scrollview.h" class DENORM; #define INTERSECTING MAX_INT16//no winding number //mask to get step #define STEP_MASK 3 enum C_OUTLINE_FLAGS { COUT_INVERSE //White on black blob }; // Simple struct to hold the 3 values needed to compute a more precise edge // position and direction. The offset_numerator is the difference between the // grey threshold and the mean pixel value. pixel_diff is the difference between // the pixels in the edge. Consider the following row of pixels: p1 p2 p3 p4 p5 // Say the image was thresholded at threshold t, making p1, p2, p3 black // and p4, p5 white (p1, p2, p3 < t, and p4, p5 >= t), but suppose that // max(p[i+1] - p[i]) is p3 - p2. Then the extrapolated position of the edge, // based on the maximum gradient, is at the crack between p2 and p3 plus the // offset (t - (p2+p3)/2)/(p3 - p2). We store the pixel difference p3-p2 // denominator in pixel_diff and the offset numerator, relative to the original // binary edge (t - (p2+p3)/2) - (p3 -p2) in offset_numerator. // The sign of offset_numerator and pixel_diff are manipulated to ensure // that the pixel_diff, which will be used as a weight, is always positive. // The direction stores the quantized feature direction for the given step // computed from the edge gradient. (Using binary_angle_plus_pi.) // If the pixel_diff is zero, it means that the direction of the gradient // is in conflict with the step direction, so this step is to be ignored. struct EdgeOffset { inT8 offset_numerator; uinT8 pixel_diff; uinT8 direction; }; class DLLSYM C_OUTLINE; //forward declaration struct Pix; ELISTIZEH (C_OUTLINE) class DLLSYM C_OUTLINE:public ELIST_LINK { public: C_OUTLINE() { //empty constructor steps = NULL; offsets = NULL; } C_OUTLINE( //constructor CRACKEDGE *startpt, //from edge detector ICOORD bot_left, //bounding box //length of loop ICOORD top_right, inT16 length); C_OUTLINE(ICOORD startpt, //start of loop DIR128 *new_steps, //steps in loop inT16 length); //length of loop //outline to copy C_OUTLINE(C_OUTLINE *srcline, FCOORD rotation); //and rotate // Build a fake outline, given just a bounding box and append to the list. static void FakeOutline(const TBOX& box, C_OUTLINE_LIST* outlines); ~C_OUTLINE () { //destructor if (steps != NULL) free_mem(steps); steps = NULL; delete [] offsets; } BOOL8 flag( //test flag C_OUTLINE_FLAGS mask) const { //flag to test return flags.bit (mask); } void set_flag( //set flag value C_OUTLINE_FLAGS mask, //flag to test BOOL8 value) { //value to set flags.set_bit (mask, value); } C_OUTLINE_LIST *child() { //get child list return &children; } //access function const TBOX &bounding_box() const { return box; } void set_step( //set a step inT16 stepindex, //index of step inT8 stepdir) { //chain code int shift = stepindex%4 * 2; uinT8 mask = 3 << shift; steps[stepindex/4] = ((stepdir << shift) & mask) | (steps[stepindex/4] & ~mask); //squeeze 4 into byte } void set_step( //set a step inT16 stepindex, //index of step DIR128 stepdir) { //direction //clean it inT8 chaindir = stepdir.get_dir() >> (DIRBITS - 2); //difference set_step(stepindex, chaindir); //squeeze 4 into byte } inT32 pathlength() const { //get path length return stepcount; } // Return step at a given index as a DIR128. DIR128 step_dir(int index) const { return DIR128((inT16)(((steps[index/4] >> (index%4 * 2)) & STEP_MASK) << (DIRBITS - 2))); } // Return the step vector for the given outline position. ICOORD step(int index) const { // index of step return step_coords[chain_code(index)]; } // get start position const ICOORD &start_pos() const { return start; } // Returns the position at the given index on the outline. // NOT to be used lightly, as it has to iterate the outline to find out. ICOORD position_at_index(int index) const { ICOORD pos = start; for (int i = 0; i < index; ++i) pos += step(i); return pos; } // Returns the sub-pixel accurate position given the integer position pos // at the given index on the outline. pos may be a return value of // position_at_index, or computed by repeatedly adding step to the // start_pos() in the usual way. FCOORD sub_pixel_pos_at_index(const ICOORD& pos, int index) const { const ICOORD& step_to_next(step(index)); FCOORD f_pos(pos.x() + step_to_next.x() / 2.0f, pos.y() + step_to_next.y() / 2.0f); if (offsets != NULL && offsets[index].pixel_diff > 0) { float offset = offsets[index].offset_numerator; offset /= offsets[index].pixel_diff; if (step_to_next.x() != 0) f_pos.set_y(f_pos.y() + offset); else f_pos.set_x(f_pos.x() + offset); } return f_pos; } // Returns the step direction for the given index or -1 if there is none. int direction_at_index(int index) const { if (offsets != NULL && offsets[index].pixel_diff > 0) return offsets[index].direction; return -1; } // Returns the edge strength for the given index. // If there are no recorded edge strengths, returns 1 (assuming the image // is binary). Returns 0 if the gradient direction conflicts with the // step direction, indicating that this position could be skipped. int edge_strength_at_index(int index) const { if (offsets != NULL) return offsets[index].pixel_diff; return 1; } // Return the step as a chain code (0-3) related to the standard feature // direction of binary_angle_plus_pi by: // chain_code * 64 = feature direction. int chain_code(int index) const { // index of step return (steps[index / 4] >> (index % 4 * 2)) & STEP_MASK; } inT32 area() const; // Returns area of self and 1st level children. inT32 perimeter() const; // Total perimeter of self and 1st level children. inT32 outer_area() const; // Returns area of self only. inT32 count_transitions( //count maxima inT32 threshold); //size threshold BOOL8 operator< ( //containment test const C_OUTLINE & other) const; BOOL8 operator> ( //containment test C_OUTLINE & other) const { return other < *this; //use the < to do it } inT16 winding_number( //get winding number ICOORD testpt) const; //around this point //get direction inT16 turn_direction() const; void reverse(); //reverse direction void move( // reposition outline const ICOORD vec); // by vector // Returns true if *this and its children are legally nested. // The outer area of a child should have the opposite sign to the // parent. If not, it means we have discarded an outline in between // (probably due to excessive length). bool IsLegallyNested() const; // If this outline is smaller than the given min_size, delete this and // remove from its list, via *it, after checking that *it points to this. // Otherwise, if any children of this are too small, delete them. // On entry, *it must be an iterator pointing to this. If this gets deleted // then this is extracted from *it, so an iteration can continue. void RemoveSmallRecursive(int min_size, C_OUTLINE_IT* it); // Adds sub-pixel resolution EdgeOffsets for the outline if the supplied // pix is 8-bit. Does nothing otherwise. void ComputeEdgeOffsets(int threshold, Pix* pix); // Adds sub-pixel resolution EdgeOffsets for the outline using only // a binary image source. void ComputeBinaryOffsets(); // Renders the outline to the given pix, with left and top being // the coords of the upper-left corner of the pix. void render(int left, int top, Pix* pix) const; // Renders just the outline to the given pix (no fill), with left and top // being the coords of the upper-left corner of the pix. void render_outline(int left, int top, Pix* pix) const; #ifndef GRAPHICS_DISABLED void plot( //draw one ScrollView* window, //window to draw in ScrollView::Color colour) const; //colour to draw it // Draws the outline in the given colour, normalized using the given denorm, // making use of sub-pixel accurate information if available. void plot_normed(const DENORM& denorm, ScrollView::Color colour, ScrollView* window) const; #endif // GRAPHICS_DISABLED C_OUTLINE& operator=(const C_OUTLINE& source); static C_OUTLINE* deep_copy(const C_OUTLINE* src) { C_OUTLINE* outline = new C_OUTLINE; *outline = *src; return outline; } static ICOORD chain_step(int chaindir); // The maximum length of any outline. The stepcount is stored as 16 bits, // but it is probably not a good idea to increase this constant by much // and switch to 32 bits, as it plays an important role in keeping huge // outlines invisible, which prevents bad speed behavior. static const int kMaxOutlineLength = 16000; private: // Helper for ComputeBinaryOffsets. Increments pos, dir_counts, pos_totals // by the step, increment, and vertical step ? x : y position * increment // at step s Mod stepcount respectively. Used to add or subtract the // direction and position to/from accumulators of a small neighbourhood. void increment_step(int s, int increment, ICOORD* pos, int* dir_counts, int* pos_totals) const; int step_mem() const { return (stepcount+3) / 4; } TBOX box; // bounding box ICOORD start; // start coord inT16 stepcount; // no of steps BITS16 flags; // flags about outline uinT8 *steps; // step array EdgeOffset* offsets; // Higher precision edge. C_OUTLINE_LIST children; // child elements static ICOORD step_coords[4]; }; #endif