/////////////////////////////////////////////////////////////////////// // File: thresholder.cpp // Description: Base API for thresholding images in tesseract. // Author: Ray Smith // // (C) Copyright 2008, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // /////////////////////////////////////////////////////////////////////// #include "otsuthr.h" #include "thresholder.h" #include "tprintf.h" // for tprintf #if defined(USE_OPENCL) # include "openclwrapper.h" // for OpenclDevice #endif #include #include // for uint32_t #include #include namespace tesseract { ImageThresholder::ImageThresholder() : pix_(nullptr) , image_width_(0) , image_height_(0) , pix_channels_(0) , pix_wpl_(0) , scale_(1) , yres_(300) , estimated_res_(300) { SetRectangle(0, 0, 0, 0); } ImageThresholder::~ImageThresholder() { Clear(); } // Destroy the Pix if there is one, freeing memory. void ImageThresholder::Clear() { pix_.destroy(); } // Return true if no image has been set. bool ImageThresholder::IsEmpty() const { return pix_ == nullptr; } // SetImage makes a copy of all the image data, so it may be deleted // immediately after this call. // Greyscale of 8 and color of 24 or 32 bits per pixel may be given. // Palette color images will not work properly and must be converted to // 24 bit. // Binary images of 1 bit per pixel may also be given but they must be // byte packed with the MSB of the first byte being the first pixel, and a // one pixel is WHITE. For binary images set bytes_per_pixel=0. void ImageThresholder::SetImage(const unsigned char *imagedata, int width, int height, int bytes_per_pixel, int bytes_per_line) { int bpp = bytes_per_pixel * 8; if (bpp == 0) { bpp = 1; } Image pix = pixCreate(width, height, bpp == 24 ? 32 : bpp); l_uint32 *data = pixGetData(pix); int wpl = pixGetWpl(pix); switch (bpp) { case 1: for (int y = 0; y < height; ++y, data += wpl, imagedata += bytes_per_line) { for (int x = 0; x < width; ++x) { if (imagedata[x / 8] & (0x80 >> (x % 8))) { CLEAR_DATA_BIT(data, x); } else { SET_DATA_BIT(data, x); } } } break; case 8: // Greyscale just copies the bytes in the right order. for (int y = 0; y < height; ++y, data += wpl, imagedata += bytes_per_line) { for (int x = 0; x < width; ++x) { SET_DATA_BYTE(data, x, imagedata[x]); } } break; case 24: // Put the colors in the correct places in the line buffer. for (int y = 0; y < height; ++y, imagedata += bytes_per_line) { for (int x = 0; x < width; ++x, ++data) { SET_DATA_BYTE(data, COLOR_RED, imagedata[3 * x]); SET_DATA_BYTE(data, COLOR_GREEN, imagedata[3 * x + 1]); SET_DATA_BYTE(data, COLOR_BLUE, imagedata[3 * x + 2]); } } break; case 32: // Maintain byte order consistency across different endianness. for (int y = 0; y < height; ++y, imagedata += bytes_per_line, data += wpl) { for (int x = 0; x < width; ++x) { data[x] = (imagedata[x * 4] << 24) | (imagedata[x * 4 + 1] << 16) | (imagedata[x * 4 + 2] << 8) | imagedata[x * 4 + 3]; } } break; default: tprintf("Cannot convert RAW image to Pix with bpp = %d\n", bpp); } SetImage(pix); pix.destroy(); } // Store the coordinates of the rectangle to process for later use. // Doesn't actually do any thresholding. void ImageThresholder::SetRectangle(int left, int top, int width, int height) { rect_left_ = left; rect_top_ = top; rect_width_ = width; rect_height_ = height; } // Get enough parameters to be able to rebuild bounding boxes in the // original image (not just within the rectangle). // Left and top are enough with top-down coordinates, but // the height of the rectangle and the image are needed for bottom-up. void ImageThresholder::GetImageSizes(int *left, int *top, int *width, int *height, int *imagewidth, int *imageheight) { *left = rect_left_; *top = rect_top_; *width = rect_width_; *height = rect_height_; *imagewidth = image_width_; *imageheight = image_height_; } // Pix vs raw, which to use? Pix is the preferred input for efficiency, // since raw buffers are copied. // SetImage for Pix clones its input, so the source pix may be pixDestroyed // immediately after, but may not go away until after the Thresholder has // finished with it. void ImageThresholder::SetImage(const Image pix) { if (pix_ != nullptr) { pix_.destroy(); } Image src = pix; int depth; pixGetDimensions(src, &image_width_, &image_height_, &depth); // Convert the image as necessary so it is one of binary, plain RGB, or // 8 bit with no colormap. Guarantee that we always end up with our own copy, // not just a clone of the input. if (pixGetColormap(src)) { Image tmp = pixRemoveColormap(src, REMOVE_CMAP_BASED_ON_SRC); depth = pixGetDepth(tmp); if (depth > 1 && depth < 8) { pix_ = pixConvertTo8(tmp, false); tmp.destroy(); } else { pix_ = tmp; } } else if (depth > 1 && depth < 8) { pix_ = pixConvertTo8(src, false); } else { pix_ = src.copy(); } depth = pixGetDepth(pix_); pix_channels_ = depth / 8; pix_wpl_ = pixGetWpl(pix_); scale_ = 1; estimated_res_ = yres_ = pixGetYRes(pix_); Init(); } std::tuple ImageThresholder::Threshold( ThresholdMethod method) { Image pix_binary = nullptr; Image pix_thresholds = nullptr; if (pix_channels_ == 0) { // We have a binary image, but it still has to be copied, as this API // allows the caller to modify the output. Image original = GetPixRect(); pix_binary = original.copy(); original.destroy(); return std::make_tuple(false, nullptr, pix_binary, nullptr); } auto pix_grey = GetPixRectGrey(); int r; if (method == ThresholdMethod::Sauvola) { r = pixSauvolaBinarizeTiled(pix_grey, 25, 0.40, 300, 300, (PIX**)pix_thresholds, (PIX**)pix_binary); } else { // AdaptiveOtsu. r = pixOtsuAdaptiveThreshold(pix_grey, 300, 300, 0, 0, 0.1, (PIX**)pix_thresholds, (PIX**)pix_binary); } bool ok = (r == 0); return std::make_tuple(ok, pix_grey, pix_binary, pix_thresholds); } // Threshold the source image as efficiently as possible to the output Pix. // Creates a Pix and sets pix to point to the resulting pointer. // Caller must use pixDestroy to free the created Pix. /// Returns false on error. bool ImageThresholder::ThresholdToPix(Image *pix) { if (image_width_ > INT16_MAX || image_height_ > INT16_MAX) { tprintf("Image too large: (%d, %d)\n", image_width_, image_height_); return false; } if (pix_channels_ == 0) { // We have a binary image, but it still has to be copied, as this API // allows the caller to modify the output. Image original = GetPixRect(); *pix = original.copy(); original.destroy(); } else { OtsuThresholdRectToPix(pix_, pix); } return true; } // Gets a pix that contains an 8 bit threshold value at each pixel. The // returned pix may be an integer reduction of the binary image such that // the scale factor may be inferred from the ratio of the sizes, even down // to the extreme of a 1x1 pixel thresholds image. // Ideally the 8 bit threshold should be the exact threshold used to generate // the binary image in ThresholdToPix, but this is not a hard constraint. // Returns nullptr if the input is binary. PixDestroy after use. Image ImageThresholder::GetPixRectThresholds() { if (IsBinary()) { return nullptr; } Image pix_grey = GetPixRectGrey(); int width = pixGetWidth(pix_grey); int height = pixGetHeight(pix_grey); std::vector thresholds; std::vector hi_values; OtsuThreshold(pix_grey, 0, 0, width, height, thresholds, hi_values); pix_grey.destroy(); Image pix_thresholds = pixCreate(width, height, 8); int threshold = thresholds[0] > 0 ? thresholds[0] : 128; pixSetAllArbitrary(pix_thresholds, threshold); return pix_thresholds; } // Common initialization shared between SetImage methods. void ImageThresholder::Init() { SetRectangle(0, 0, image_width_, image_height_); } // Get a clone/copy of the source image rectangle. // The returned Pix must be pixDestroyed. // This function will be used in the future by the page layout analysis, and // the layout analysis that uses it will only be available with Leptonica, // so there is no raw equivalent. Image ImageThresholder::GetPixRect() { if (IsFullImage()) { // Just clone the whole thing. return pix_.clone(); } else { // Crop to the given rectangle. Box *box = boxCreate(rect_left_, rect_top_, rect_width_, rect_height_); Image cropped = pixClipRectangle(pix_, box, nullptr); boxDestroy(&box); return cropped; } } // Get a clone/copy of the source image rectangle, reduced to greyscale, // and at the same resolution as the output binary. // The returned Pix must be pixDestroyed. // Provided to the classifier to extract features from the greyscale image. Image ImageThresholder::GetPixRectGrey() { auto pix = GetPixRect(); // May have to be reduced to grey. int depth = pixGetDepth(pix); if (depth != 8) { if (depth == 24) { auto tmp = pixConvert24To32(pix); pix.destroy(); pix = tmp; } auto result = pixConvertTo8(pix, false); pix.destroy(); return result; } return pix; } // Otsu thresholds the rectangle, taking the rectangle from *this. void ImageThresholder::OtsuThresholdRectToPix(Image src_pix, Image *out_pix) const { std::vector thresholds; std::vector hi_values; int num_channels = OtsuThreshold(src_pix, rect_left_, rect_top_, rect_width_, rect_height_, thresholds, hi_values); // only use opencl if compiled w/ OpenCL and selected device is opencl #ifdef USE_OPENCL OpenclDevice od; if (num_channels == 4 && od.selectedDeviceIsOpenCL() && rect_top_ == 0 && rect_left_ == 0) { od.ThresholdRectToPixOCL((unsigned char *)pixGetData(src_pix), num_channels, pixGetWpl(src_pix) * 4, &thresholds[0], &hi_values[0], out_pix /*pix_OCL*/, rect_height_, rect_width_, rect_top_, rect_left_); } else { #endif ThresholdRectToPix(src_pix, num_channels, thresholds, hi_values, out_pix); #ifdef USE_OPENCL } #endif } /// Threshold the rectangle, taking everything except the src_pix /// from the class, using thresholds/hi_values to the output pix. /// NOTE that num_channels is the size of the thresholds and hi_values // arrays and also the bytes per pixel in src_pix. void ImageThresholder::ThresholdRectToPix(Image src_pix, int num_channels, const std::vector &thresholds, const std::vector &hi_values, Image *pix) const { *pix = pixCreate(rect_width_, rect_height_, 1); uint32_t *pixdata = pixGetData(*pix); int wpl = pixGetWpl(*pix); int src_wpl = pixGetWpl(src_pix); uint32_t *srcdata = pixGetData(src_pix); pixSetXRes(*pix, pixGetXRes(src_pix)); pixSetYRes(*pix, pixGetYRes(src_pix)); for (int y = 0; y < rect_height_; ++y) { const uint32_t *linedata = srcdata + (y + rect_top_) * src_wpl; uint32_t *pixline = pixdata + y * wpl; for (int x = 0; x < rect_width_; ++x) { bool white_result = true; for (int ch = 0; ch < num_channels; ++ch) { int pixel = GET_DATA_BYTE(linedata, (x + rect_left_) * num_channels + ch); if (hi_values[ch] >= 0 && (pixel > thresholds[ch]) == (hi_values[ch] == 0)) { white_result = false; break; } } if (white_result) { CLEAR_DATA_BIT(pixline, x); } else { SET_DATA_BIT(pixline, x); } } } } } // namespace tesseract.