/* * Copyright (c) 2006-2018, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes */ #include #include /* days per month -- nonleap! */ const short __spm[13] = { 0, (31), (31+28), (31+28+31), (31+28+31+30), (31+28+31+30+31), (31+28+31+30+31+30), (31+28+31+30+31+30+31), (31+28+31+30+31+30+31+31), (31+28+31+30+31+30+31+31+30), (31+28+31+30+31+30+31+31+30+31), (31+28+31+30+31+30+31+31+30+31+30), (31+28+31+30+31+30+31+31+30+31+30+31), }; static long int timezone; static const char days[] = "Sun Mon Tue Wed Thu Fri Sat "; static const char months[] = "Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec "; /* seconds per day */ #define SPD 24*60*60 int __isleap(int year) { /* every fourth year is a leap year except for century years that are * not divisible by 400. */ /* return (year % 4 == 0 && (year % 100 != 0 || year % 400 == 0)); */ return (!(year % 4) && ((year % 100) || !(year % 400))); } struct tm *gmtime_r(const time_t *timep, struct tm *r) { time_t i; register time_t work = *timep % (SPD); r->tm_sec = work % 60; work /= 60; r->tm_min = work % 60; r->tm_hour = work / 60; work = *timep / (SPD); r->tm_wday = (4 + work) % 7; for (i = 1970;; ++i) { register time_t k = __isleap(i) ? 366 : 365; if (work >= k) work -= k; else break; } r->tm_year = i - 1900; r->tm_yday = work; r->tm_mday = 1; if (__isleap(i) && (work > 58)) { if (work == 59) r->tm_mday = 2; /* 29.2. */ work -= 1; } for (i = 11; i && (__spm[i] > work); --i) ; r->tm_mon = i; r->tm_mday += work - __spm[i]; return r; } struct tm* localtime_r(const time_t* t, struct tm* r) { time_t tmp; struct timezone tz = {0}; gettimeofday(0, &tz); timezone = tz.tz_minuteswest * 60L; tmp = *t + timezone; return gmtime_r(&tmp, r); } struct tm* localtime(const time_t* t) { static struct tm tmp; return localtime_r(t, &tmp); } time_t mktime(struct tm * const t) { register time_t day; register time_t i; register time_t years = t->tm_year - 70; if (t->tm_sec > 60) { t->tm_min += t->tm_sec / 60; t->tm_sec %= 60; } if (t->tm_min > 60) { t->tm_hour += t->tm_min / 60; t->tm_min %= 60; } if (t->tm_hour > 24) { t->tm_mday += t->tm_hour / 24; t->tm_hour %= 24; } if (t->tm_mon > 12) { t->tm_year += t->tm_mon / 12; t->tm_mon %= 12; } while (t->tm_mday > __spm[1 + t->tm_mon]) { if (t->tm_mon == 1 && __isleap(t->tm_year + 1900)) { --t->tm_mday; } t->tm_mday -= __spm[t->tm_mon]; ++t->tm_mon; if (t->tm_mon > 11) { t->tm_mon = 0; ++t->tm_year; } } if (t->tm_year < 70) return (time_t) -1; /* Days since 1970 is 365 * number of years + number of leap years since 1970 */ day = years * 365 + (years + 1) / 4; /* After 2100 we have to substract 3 leap years for every 400 years This is not intuitive. Most mktime implementations do not support dates after 2059, anyway, so we might leave this out for it's bloat. */ if (years >= 131) { years -= 131; years /= 100; day -= (years >> 2) * 3 + 1; if ((years &= 3) == 3) years--; day -= years; } day += t->tm_yday = __spm[t->tm_mon] + t->tm_mday - 1 + (__isleap(t->tm_year + 1900) & (t->tm_mon > 1)); /* day is now the number of days since 'Jan 1 1970' */ i = 7; t->tm_wday = (day + 4) % i; /* Sunday=0, Monday=1, ..., Saturday=6 */ i = 24; day *= i; i = 60; return ((day + t->tm_hour) * i + t->tm_min) * i + t->tm_sec; } static void num2str(char *c, int i) { c[0] = i / 10 + '0'; c[1] = i % 10 + '0'; } char *asctime_r(const struct tm *t, char *buf) { /* "Wed Jun 30 21:49:08 1993\n" */ *(int*) buf = *(int*) (days + (t->tm_wday << 2)); *(int*) (buf + 4) = *(int*) (months + (t->tm_mon << 2)); num2str(buf + 8, t->tm_mday); if (buf[8] == '0') buf[8] = ' '; buf[10] = ' '; num2str(buf + 11, t->tm_hour); buf[13] = ':'; num2str(buf + 14, t->tm_min); buf[16] = ':'; num2str(buf + 17, t->tm_sec); buf[19] = ' '; num2str(buf + 20, (t->tm_year + 1900) / 100); num2str(buf + 22, (t->tm_year + 1900) % 100); buf[24] = '\n'; return buf; } char *asctime(const struct tm *timeptr) { static char buf[25]; return asctime_r(timeptr, buf); } char *ctime(const time_t *timep) { return asctime(localtime(timep)); } #ifdef RT_USING_DEVICE int gettimeofday(struct timeval *tp, void *ignore) { time_t time; rt_device_t device; device = rt_device_find("rtc"); if (device != RT_NULL) { rt_device_control(device, RT_DEVICE_CTRL_RTC_GET_TIME, &time); if (tp != RT_NULL) { tp->tv_sec = time; tp->tv_usec = 0; } return time; } return 0; } #endif #ifndef _gettimeofday /* Dummy function when hardware do not have RTC */ int _gettimeofday( struct timeval *tv, void *ignore) { tv->tv_sec = 0; // convert to seconds tv->tv_usec = 0; // get remaining microseconds return 0; // return non-zero for error } #endif /** * Returns the current time. * * @param time_t * t the timestamp pointer, if not used, keep NULL. * * @return time_t return timestamp current. * */ /* for IAR 6.2 later Compiler */ #if defined (__IAR_SYSTEMS_ICC__) && (__VER__) >= 6020000 #pragma module_name = "?time" time_t (__time32)(time_t *t) /* Only supports 32-bit timestamp */ #else time_t time(time_t *t) #endif { time_t time_now = 0; #ifdef RT_USING_RTC static rt_device_t device = RT_NULL; /* optimization: find rtc device only first. */ if (device == RT_NULL) { device = rt_device_find("rtc"); } /* read timestamp from RTC device. */ if (device != RT_NULL) { if (rt_device_open(device, 0) == RT_EOK) { rt_device_control(device, RT_DEVICE_CTRL_RTC_GET_TIME, &time_now); rt_device_close(device); } } #endif /* RT_USING_RTC */ /* if t is not NULL, write timestamp to *t */ if (t != RT_NULL) { *t = time_now; } return time_now; } RT_WEAK clock_t clock(void) { return rt_tick_get(); }