/** * Copyright (c) 2016 - 2017, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "sdk_common.h" #if NRF_MODULE_ENABLED(NRF_DRV_CSENSE) #include "nrf_drv_csense.h" #include "nrf_peripherals.h" #include "nrf_gpio.h" #include "app_error.h" #include "app_util_platform.h" #include "nrf_assert.h" #include "string.h" #include #if defined(__CORTEX_M) && (__CORTEX_M < 4) #ifndef ARM_MATH_CM0PLUS #define ARM_MATH_CM0PLUS #endif /*lint -save -e689 */ #include "arm_math.h" /*lint -restore */ #endif #if USE_COMP #include "nrf_drv_comp.h" #include "nrf_drv_ppi.h" #include "nrf_drv_timer.h" #endif //USE_COMP #if USE_COMP == 0 #ifdef ADC_PRESENT #include "nrf_drv_adc.h" /** * @defgroup adc_defines ADC defines to count input voltage. * @{ */ #define ADC_RES_10BIT 1024 #define ADC_INPUT_PRESCALER 3 #define ADC_REF_VBG_VOLTAGE 1.2 /* @} */ /* ADC channel used to call conversion. */ static nrf_drv_adc_channel_t adc_channel = NRF_DRV_ADC_DEFAULT_CHANNEL(0); #elif defined(SAADC_PRESENT) #include "nrf_drv_saadc.h" /** * @defgroup saadc_defines SAADC defines to count input voltage. * @{ */ #define SAADC_RES_10BIT 1024 #define SAADC_INPUT_PRESCALER 3 #define SAADC_REF_VBG_VOLTAGE 0.6 /* @} */ /* SAADC channel used to call conversion. */ static nrf_saadc_channel_config_t saadc_channel = NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN0); #endif //ADC_PRESENT #endif //USE_COMP #if USE_COMP /* Number of channels required by PPI. */ #define PPI_REQUIRED_CHANNELS 3 /* Array of PPI channels. */ static nrf_ppi_channel_t m_ppi_channels[PPI_REQUIRED_CHANNELS]; /** * @defgroup timer_instances Timer instances. * @{ */ static const nrf_drv_timer_t m_timer0 = NRF_DRV_TIMER_INSTANCE(TIMER0_FOR_CSENSE); static const nrf_drv_timer_t m_timer1 = NRF_DRV_TIMER_INSTANCE(TIMER1_FOR_CSENSE); /* @} */ #endif //USE_COMP /* Configuration of the capacitive sensor module. */ typedef struct { volatile nrf_drv_state_t module_state; /**< State of the module. */ nrf_drv_csense_event_handler_t event_handler; /**< Event handler for capacitor sensor events. */ uint16_t analog_values[MAX_ANALOG_INPUTS]; /**< Array containing analog values measured on the corresponding COMP/ADC channel. */ volatile bool busy; /**< Indicates state of module - busy if there are ongoing conversions. */ volatile uint8_t cur_chann_idx; /**< Current channel to be read if enabled. */ volatile uint8_t adc_channels_input_mask; /**< Enabled channels. */ uint8_t output_pin; /**< Pin to generate signal charging capacitors. */ uint8_t channels_to_read; /**< Mask of channels remaining to be read in the current measurement. */ volatile bool timers_powered_on; /**< Flag to indicate if timers were already started. */ }csense_t; static csense_t m_csense; /** * @brief Function for determining the next analog channel to be read. */ __STATIC_INLINE void calculate_next_channel(void) { m_csense.cur_chann_idx = 31 - __CLZ(m_csense.channels_to_read); } /** * @brief Function for handling conversion values. * * @param[in] val Value received from ADC or COMP. */ static void conversion_handler(uint16_t val) { nrf_drv_csense_evt_t event_struct; #if USE_COMP == 0 nrf_gpio_pin_set(m_csense.output_pin); #endif //USE_COMP m_csense.analog_values[m_csense.cur_chann_idx] = val; event_struct.read_value = val; event_struct.analog_channel = m_csense.cur_chann_idx; m_csense.channels_to_read &= ~(1UL< 0) // Start new conversion. { ret_code_t err_code; calculate_next_channel(); err_code = nrf_drv_csense_sample(); if(err_code != NRF_SUCCESS) { return; } } } #if USE_COMP /** * @brief Timer0 interrupt handler. * * @param[in] event_type Timer event. * @param[in] p_context General purpose parameter set during initialization of * the timer. This parameter can be used to pass * additional information to the handler function, for * example, the timer ID. */ static void counter_compare_handler(nrf_timer_event_t event_type, void* p_context) { if(event_type == NRF_TIMER_EVENT_COMPARE0) { uint16_t val = nrf_drv_timer_capture_get(&m_timer1, NRF_TIMER_CC_CHANNEL1); nrf_drv_timer_pause(&m_timer1); nrf_drv_timer_clear(&m_timer1); /* Handle finished measurement. */ conversion_handler(val); } } /** * @brief Dummy handler. * * @param[in] event_type Timer event. * @param[in] p_context General purpose parameter set during initialization of * the timer. This parameter can be used to pass * additional information to the handler function, for * example, the timer ID. */ static void dummy_handler(nrf_timer_event_t event_type, void* p_context){} /** * @brief Function for initializing timers. * * @retval NRF_ERROR_INTERNAL If there were error initializing timers. * @retval NRF_SUCCESS If timers were initialized successfully. */ static ret_code_t timer_init(void) { ret_code_t err_code; //set first timer in timer mode to get period of relaxation oscillator nrf_drv_timer_config_t timer_config = NRF_DRV_TIMER_DEFAULT_CONFIG; timer_config.mode = NRF_TIMER_MODE_TIMER; err_code = nrf_drv_timer_init(&m_timer1, &timer_config, dummy_handler); if (err_code != NRF_SUCCESS) { return NRF_ERROR_INTERNAL; } //set second timer in counter mode and generate event on tenth period timer_config.mode = NRF_TIMER_MODE_COUNTER; err_code = nrf_drv_timer_init(&m_timer0, &timer_config, counter_compare_handler); if (err_code != NRF_SUCCESS) { return NRF_ERROR_INTERNAL; } nrf_drv_timer_extended_compare(&m_timer0, NRF_TIMER_CC_CHANNEL0, MEASUREMENT_PERIOD, (nrf_timer_short_mask_t)(NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK | NRF_TIMER_SHORT_COMPARE0_STOP_MASK), true); return NRF_SUCCESS; } /** * @brief Function for initializing and enabling PPI channels. * * @retval NRF_ERROR_INTERNAL If there were error initializing or enabling PPI channels. * @retval NRF_SUCCESS If PPI channels were initialized and enabled successfully. */ static ret_code_t ppi_init(void) { ret_code_t err_code; uint8_t i; err_code = nrf_drv_ppi_init(); if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_MODULE_ALREADY_INITIALIZED)) { return NRF_ERROR_INTERNAL; } for(i = 0; i < PPI_REQUIRED_CHANNELS ; i++) { err_code = nrf_drv_ppi_channel_alloc(&m_ppi_channels[i]); if (NRF_SUCCESS != err_code) { return NRF_ERROR_INTERNAL; } } err_code = nrf_drv_ppi_channel_assign(m_ppi_channels[0], nrf_drv_comp_event_address_get(NRF_COMP_EVENT_CROSS), nrf_drv_timer_task_address_get(&m_timer0, NRF_TIMER_TASK_COUNT)); if (NRF_SUCCESS != err_code) { return NRF_ERROR_INTERNAL; } err_code = nrf_drv_ppi_channel_assign(m_ppi_channels[1], nrf_drv_timer_event_address_get(&m_timer0, NRF_TIMER_EVENT_COMPARE0), nrf_drv_timer_task_address_get(&m_timer1, NRF_TIMER_TASK_CAPTURE1)); if (NRF_SUCCESS != err_code) { return NRF_ERROR_INTERNAL; } err_code = nrf_drv_ppi_channel_fork_assign(m_ppi_channels[1], nrf_drv_comp_task_address_get(NRF_COMP_TASK_STOP)); if (NRF_SUCCESS != err_code) { return NRF_ERROR_INTERNAL; } err_code = nrf_drv_ppi_channel_assign(m_ppi_channels[2], nrf_drv_comp_event_address_get(NRF_COMP_EVENT_READY), nrf_drv_timer_task_address_get(&m_timer0, NRF_TIMER_TASK_CLEAR)); if (NRF_SUCCESS != err_code) { return NRF_ERROR_INTERNAL; } err_code = nrf_drv_ppi_channel_fork_assign(m_ppi_channels[2], nrf_drv_timer_task_address_get(&m_timer1, NRF_TIMER_TASK_CLEAR)); if (NRF_SUCCESS != err_code) { return NRF_ERROR_INTERNAL; } for(i = 0; i < PPI_REQUIRED_CHANNELS ; i++) { err_code = nrf_drv_ppi_channel_enable(m_ppi_channels[i]); if (NRF_SUCCESS != err_code) { return NRF_ERROR_INTERNAL; } } return NRF_SUCCESS; } /** * @brief Dummy handler for COMP events. * * @param[in] event COMP event. */ static void comp_event_handler(nrf_comp_event_t event){} /** * @brief Function for initializing COMP module in relaxation oscillator mode. * * @note The frequency of the oscillator depends on threshold voltages, current source and capacitance of pad and can be calculated as f_OSC = I_SOURCE / (2C·(VUP-VDOWN) ). * * @retval NRF_ERROR_INTERNAL If there were error while initializing COMP driver. * @retval NRF_SUCCESS If the COMP driver initialization was successful. */ static ret_code_t comp_init(void) { ret_code_t err_code; nrf_drv_comp_config_t m_comp_config = NRF_DRV_COMP_DEFAULT_CONFIG(NRF_COMP_INPUT_0); /* Workaround for Errata 12 "COMP: Reference ladder is not correctly calibrated" found at the Errata document for your device located at https://infocenter.nordicsemi.com/ */ *(volatile uint32_t *)0x40013540 = (*(volatile uint32_t *)0x10000324 & 0x00001F00) >> 8; m_comp_config.isource = NRF_COMP_ISOURCE_Ien10uA; err_code = nrf_drv_comp_init(&m_comp_config, comp_event_handler); if(err_code != NRF_SUCCESS) { return NRF_ERROR_INTERNAL; } return NRF_SUCCESS; } #endif //USE_COMP #if USE_COMP == 0 #ifdef ADC_PRESENT /** * @brief ADC handler. * * @param[in] p_event Pointer to analog-to-digital converter driver event. */ void adc_handler(nrf_drv_adc_evt_t const * p_event) { nrf_gpio_pin_set(m_csense.output_pin); uint16_t val; val = (uint16_t)(p_event->data.sample.sample * ADC_REF_VBG_VOLTAGE * 1000 * ADC_INPUT_PRESCALER / ADC_RES_10BIT); conversion_handler(val); } /** * @brief Function for initializing ADC. */ static ret_code_t adc_init(void) { ret_code_t err_code; adc_channel.config.config.input = NRF_ADC_CONFIG_SCALING_INPUT_ONE_THIRD; nrf_drv_adc_config_t adc_config = NRF_DRV_ADC_DEFAULT_CONFIG; err_code = nrf_drv_adc_init(&adc_config, adc_handler); if(err_code != NRF_SUCCESS) { return NRF_ERROR_INTERNAL; } nrf_gpio_pin_set(m_csense.output_pin); return NRF_SUCCESS; } #elif defined(SAADC_PRESENT) /** * @brief SAADC handler. * * @param[in] p_event Pointer to analog-to-digital converter driver event. */ void saadc_handler(nrf_drv_saadc_evt_t const * p_event) { nrf_gpio_pin_set(m_csense.output_pin); uint16_t val; (void)nrf_drv_saadc_buffer_convert(p_event->data.done.p_buffer, 1); val = (uint16_t)(*p_event->data.done.p_buffer * SAADC_REF_VBG_VOLTAGE * 1000 * SAADC_INPUT_PRESCALER / SAADC_RES_10BIT); conversion_handler(val); } /** * @brief Function for initializing SAADC. */ static ret_code_t saadc_init(void) { ret_code_t err_code; static nrf_saadc_value_t saadc_value; saadc_channel.gain = NRF_SAADC_GAIN1_3; err_code = nrf_drv_saadc_init(NULL, saadc_handler); if (err_code != NRF_SUCCESS) { return NRF_ERROR_INTERNAL; } nrf_gpio_pin_set(m_csense.output_pin); err_code = nrf_drv_saadc_channel_init(0, &saadc_channel); if (err_code != NRF_SUCCESS) { return NRF_ERROR_INTERNAL; } err_code = nrf_drv_saadc_buffer_convert(&saadc_value, 1); if (err_code != NRF_SUCCESS) { return NRF_ERROR_INTERNAL; } nrf_saadc_disable(); return NRF_SUCCESS; } #endif //ADC_PRESENT #endif //USE_COMP ret_code_t nrf_drv_csense_init(nrf_drv_csense_config_t const * p_config, nrf_drv_csense_event_handler_t event_handler) { ASSERT(m_csense.module_state == NRF_DRV_STATE_UNINITIALIZED); ASSERT(p_config->output_pin <= NUMBER_OF_PINS); ret_code_t err_code; if(p_config == NULL) { return NRF_ERROR_INVALID_PARAM; } if(event_handler == NULL) { return NRF_ERROR_INVALID_PARAM; } m_csense.busy = false; #if USE_COMP == 0 m_csense.output_pin = p_config->output_pin; nrf_gpio_cfg_output(m_csense.output_pin); nrf_gpio_pin_set(m_csense.output_pin); #endif //COMP_PRESENT m_csense.event_handler = event_handler; #if USE_COMP err_code = comp_init(); if(err_code != NRF_SUCCESS) { return err_code; } err_code = timer_init(); if(err_code != NRF_SUCCESS) { return err_code; } err_code = ppi_init(); if(err_code != NRF_SUCCESS) { return err_code; } #else #ifdef ADC_PRESENT err_code = adc_init(); if(err_code != NRF_SUCCESS) { return err_code; } #elif defined(SAADC_PRESENT) err_code = saadc_init(); if(err_code != NRF_SUCCESS) { return err_code; } #endif //ADC_PRESENT #endif //USE_COMP m_csense.module_state = NRF_DRV_STATE_INITIALIZED; return NRF_SUCCESS; } ret_code_t nrf_drv_csense_uninit(void) { ASSERT(m_csense.module_state != NRF_DRV_STATE_UNINITIALIZED); nrf_drv_csense_channels_disable(0xFF); #if USE_COMP ret_code_t err_code; uint8_t i; nrf_drv_timer_uninit(&m_timer0); nrf_drv_timer_uninit(&m_timer1); nrf_drv_comp_uninit(); for(i =0; i < 3; i++) { err_code = nrf_drv_ppi_channel_free(m_ppi_channels[i]); if(err_code != NRF_SUCCESS) { return err_code; } } err_code = nrf_drv_ppi_uninit(); if(err_code != NRF_SUCCESS) { return err_code; } #else #ifdef ADC_PRESENT nrf_drv_adc_uninit(); #elif defined(SAADC_PRESENT) nrf_drv_saadc_uninit(); #endif //ADC_PRESENT #endif //USE_COMP m_csense.module_state = NRF_DRV_STATE_UNINITIALIZED; memset((void*)&m_csense, 0, sizeof(m_csense)); return NRF_SUCCESS; } void nrf_drv_csense_channels_enable(uint8_t channels_mask) { ASSERT(m_csense.module_state != NRF_DRV_STATE_UNINITIALIZED); m_csense.busy = true; m_csense.module_state = NRF_DRV_STATE_POWERED_ON; m_csense.adc_channels_input_mask |= channels_mask; m_csense.busy = false; } void nrf_drv_csense_channels_disable(uint8_t channels_mask) { ASSERT(m_csense.module_state == NRF_DRV_STATE_POWERED_ON); m_csense.adc_channels_input_mask &= ~channels_mask; if(m_csense.adc_channels_input_mask == 0) { m_csense.module_state = NRF_DRV_STATE_INITIALIZED; } } uint16_t nrf_drv_csense_channel_read(uint8_t csense_channel) { return m_csense.analog_values[csense_channel]; } ret_code_t nrf_drv_csense_sample(void) { ASSERT(m_csense.module_state == NRF_DRV_STATE_POWERED_ON); if(m_csense.adc_channels_input_mask != 0) { if(m_csense.channels_to_read == 0) { #if USE_COMP == 0 && defined(SAADC_PRESENT) nrf_saadc_enable(); #endif if(nrf_drv_csense_is_busy() == true) { return NRF_ERROR_BUSY; } m_csense.busy = true; m_csense.channels_to_read = m_csense.adc_channels_input_mask; calculate_next_channel(); } #if USE_COMP if (!m_csense.timers_powered_on) { nrf_drv_timer_enable(&m_timer0); nrf_drv_timer_enable(&m_timer1); m_csense.timers_powered_on = true; } else { nrf_drv_timer_resume(&m_timer0); nrf_drv_timer_resume(&m_timer1); } nrf_drv_comp_pin_select((nrf_comp_input_t)m_csense.cur_chann_idx); nrf_drv_comp_start(0, 0); #else ret_code_t err_code; #ifdef ADC_PRESENT adc_channel.config.config.ain = (nrf_adc_config_input_t)(1<