/** * Copyright (c) 2015 - 2017, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "sdk_common.h" #if NRF_MODULE_ENABLED(SPI) #define ENABLED_SPI_COUNT (SPI0_ENABLED+SPI1_ENABLED+SPI2_ENABLED) #if ENABLED_SPI_COUNT #include "nrf_drv_spi.h" #include "nrf_drv_common.h" #include "nrf_gpio.h" #include "nrf_assert.h" #include "app_util_platform.h" #define NRF_LOG_MODULE_NAME "SPI" #if SPI_CONFIG_LOG_ENABLED #define NRF_LOG_LEVEL SPI_CONFIG_LOG_LEVEL #define NRF_LOG_INFO_COLOR SPI_CONFIG_INFO_COLOR #define NRF_LOG_DEBUG_COLOR SPI_CONFIG_DEBUG_COLOR #else //SPI_CONFIG_LOG_ENABLED #define NRF_LOG_LEVEL 0 #endif //SPI_CONFIG_LOG_ENABLED #include "nrf_log.h" #ifndef SPIM_PRESENT // Make sure SPIx_USE_EASY_DMA is 0 for nRF51 (if a common // "nrf_drv_config.h" file is provided for nRF51 and nRF52). #undef SPI0_USE_EASY_DMA #define SPI0_USE_EASY_DMA 0 #undef SPI1_USE_EASY_DMA #define SPI1_USE_EASY_DMA 0 #undef SPI2_USE_EASY_DMA #define SPI2_USE_EASY_DMA 0 #endif #ifndef SPI0_USE_EASY_DMA #define SPI0_USE_EASY_DMA 0 #endif #ifndef SPI1_USE_EASY_DMA #define SPI1_USE_EASY_DMA 0 #endif #ifndef SPI2_USE_EASY_DMA #define SPI2_USE_EASY_DMA 0 #endif // This set of macros makes it possible to exclude parts of code when one type // of supported peripherals is not used. #if ((NRF_MODULE_ENABLED(SPI0) && SPI0_USE_EASY_DMA) || \ (NRF_MODULE_ENABLED(SPI1) && SPI1_USE_EASY_DMA) || \ (NRF_MODULE_ENABLED(SPI2) && SPI2_USE_EASY_DMA)) #define SPIM_IN_USE #endif #if ((NRF_MODULE_ENABLED(SPI0) && !SPI0_USE_EASY_DMA) || \ (NRF_MODULE_ENABLED(SPI1) && !SPI1_USE_EASY_DMA) || \ (NRF_MODULE_ENABLED(SPI2) && !SPI2_USE_EASY_DMA)) #define SPI_IN_USE #endif #if defined(SPIM_IN_USE) && defined(SPI_IN_USE) // SPIM and SPI combined #define CODE_FOR_SPIM(code) if (p_instance->use_easy_dma) { code } #define CODE_FOR_SPI(code) else { code } #elif defined(SPIM_IN_USE) && !defined(SPI_IN_USE) // SPIM only #define CODE_FOR_SPIM(code) { code } #define CODE_FOR_SPI(code) #elif !defined(SPIM_IN_USE) && defined(SPI_IN_USE) // SPI only #define CODE_FOR_SPIM(code) #define CODE_FOR_SPI(code) { code } #else #error "Wrong configuration." #endif #ifdef SPIM_IN_USE #define END_INT_MASK NRF_SPIM_INT_END_MASK #endif // Control block - driver instance local data. typedef struct { nrf_drv_spi_evt_handler_t handler; void * p_context; nrf_drv_spi_evt_t evt; // Keep the struct that is ready for event handler. Less memcpy. nrf_drv_state_t state; volatile bool transfer_in_progress; // [no need for 'volatile' attribute for the following members, as they // are not concurrently used in IRQ handlers and main line code] uint8_t ss_pin; uint8_t orc; uint8_t bytes_transferred; #if NRF_MODULE_ENABLED(SPIM_NRF52_ANOMALY_109_WORKAROUND) uint8_t tx_length; uint8_t rx_length; #endif bool tx_done : 1; bool rx_done : 1; bool abort : 1; } spi_control_block_t; static spi_control_block_t m_cb[ENABLED_SPI_COUNT]; #if NRF_MODULE_ENABLED(PERIPHERAL_RESOURCE_SHARING) #define IRQ_HANDLER_NAME(n) irq_handler_for_instance_##n #define IRQ_HANDLER(n) static void IRQ_HANDLER_NAME(n)(void) #if NRF_MODULE_ENABLED(SPI0) IRQ_HANDLER(0); #endif #if NRF_MODULE_ENABLED(SPI1) IRQ_HANDLER(1); #endif #if NRF_MODULE_ENABLED(SPI2) IRQ_HANDLER(2); #endif static nrf_drv_irq_handler_t const m_irq_handlers[ENABLED_SPI_COUNT] = { #if NRF_MODULE_ENABLED(SPI0) IRQ_HANDLER_NAME(0), #endif #if NRF_MODULE_ENABLED(SPI1) IRQ_HANDLER_NAME(1), #endif #if NRF_MODULE_ENABLED(SPI2) IRQ_HANDLER_NAME(2), #endif }; #else #define IRQ_HANDLER(n) void SPI##n##_IRQ_HANDLER(void) #endif // NRF_MODULE_ENABLED(PERIPHERAL_RESOURCE_SHARING) ret_code_t nrf_drv_spi_init(nrf_drv_spi_t const * const p_instance, nrf_drv_spi_config_t const * p_config, nrf_drv_spi_evt_handler_t handler, void * p_context) { ASSERT(p_config); spi_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx]; ret_code_t err_code; if (p_cb->state != NRF_DRV_STATE_UNINITIALIZED) { err_code = NRF_ERROR_INVALID_STATE; NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); return err_code; } #if NRF_MODULE_ENABLED(PERIPHERAL_RESOURCE_SHARING) if (nrf_drv_common_per_res_acquire(p_instance->p_registers, m_irq_handlers[p_instance->drv_inst_idx]) != NRF_SUCCESS) { err_code = NRF_ERROR_BUSY; NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); return err_code; } #endif p_cb->handler = handler; p_cb->p_context = p_context; uint32_t mosi_pin; uint32_t miso_pin; // Configure pins used by the peripheral: // - SCK - output with initial value corresponding with the SPI mode used: // 0 - for modes 0 and 1 (CPOL = 0), 1 - for modes 2 and 3 (CPOL = 1); // according to the reference manual guidelines this pin and its input // buffer must always be connected for the SPI to work. if (p_config->mode <= NRF_DRV_SPI_MODE_1) { nrf_gpio_pin_clear(p_config->sck_pin); } else { nrf_gpio_pin_set(p_config->sck_pin); } nrf_gpio_cfg(p_config->sck_pin, NRF_GPIO_PIN_DIR_OUTPUT, NRF_GPIO_PIN_INPUT_CONNECT, NRF_GPIO_PIN_NOPULL, NRF_GPIO_PIN_S0S1, NRF_GPIO_PIN_NOSENSE); // - MOSI (optional) - output with initial value 0, if (p_config->mosi_pin != NRF_DRV_SPI_PIN_NOT_USED) { mosi_pin = p_config->mosi_pin; nrf_gpio_pin_clear(mosi_pin); nrf_gpio_cfg_output(mosi_pin); } else { mosi_pin = NRF_SPI_PIN_NOT_CONNECTED; } // - MISO (optional) - input, if (p_config->miso_pin != NRF_DRV_SPI_PIN_NOT_USED) { miso_pin = p_config->miso_pin; nrf_gpio_cfg_input(miso_pin, NRF_GPIO_PIN_NOPULL); } else { miso_pin = NRF_SPI_PIN_NOT_CONNECTED; } // - Slave Select (optional) - output with initial value 1 (inactive). if (p_config->ss_pin != NRF_DRV_SPI_PIN_NOT_USED) { nrf_gpio_pin_set(p_config->ss_pin); nrf_gpio_cfg_output(p_config->ss_pin); } m_cb[p_instance->drv_inst_idx].ss_pin = p_config->ss_pin; CODE_FOR_SPIM ( NRF_SPIM_Type * p_spim = (NRF_SPIM_Type *)p_instance->p_registers; nrf_spim_pins_set(p_spim, p_config->sck_pin, mosi_pin, miso_pin); nrf_spim_frequency_set(p_spim, (nrf_spim_frequency_t)p_config->frequency); nrf_spim_configure(p_spim, (nrf_spim_mode_t)p_config->mode, (nrf_spim_bit_order_t)p_config->bit_order); nrf_spim_orc_set(p_spim, p_config->orc); if (p_cb->handler) { nrf_spim_int_enable(p_spim, END_INT_MASK); } nrf_spim_enable(p_spim); ) CODE_FOR_SPI ( NRF_SPI_Type * p_spi = p_instance->p_registers; nrf_spi_pins_set(p_spi, p_config->sck_pin, mosi_pin, miso_pin); nrf_spi_frequency_set(p_spi, (nrf_spi_frequency_t)p_config->frequency); nrf_spi_configure(p_spi, (nrf_spi_mode_t)p_config->mode, (nrf_spi_bit_order_t)p_config->bit_order); m_cb[p_instance->drv_inst_idx].orc = p_config->orc; if (p_cb->handler) { nrf_spi_int_enable(p_spi, NRF_SPI_INT_READY_MASK); } nrf_spi_enable(p_spi); ) if (p_cb->handler) { nrf_drv_common_irq_enable(p_instance->irq, p_config->irq_priority); } p_cb->transfer_in_progress = false; p_cb->state = NRF_DRV_STATE_INITIALIZED; NRF_LOG_INFO("Init\r\n"); err_code = NRF_SUCCESS; NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); return err_code; } void nrf_drv_spi_uninit(nrf_drv_spi_t const * const p_instance) { spi_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx]; ASSERT(p_cb->state != NRF_DRV_STATE_UNINITIALIZED); if (p_cb->handler) { nrf_drv_common_irq_disable(p_instance->irq); } #define DISABLE_ALL 0xFFFFFFFF CODE_FOR_SPIM ( NRF_SPIM_Type * p_spim = (NRF_SPIM_Type *)p_instance->p_registers; if (p_cb->handler) { nrf_spim_int_disable(p_spim, DISABLE_ALL); if (p_cb->transfer_in_progress) { // Ensure that SPI is not performing any transfer. nrf_spim_task_trigger(p_spim, NRF_SPIM_TASK_STOP); while (!nrf_spim_event_check(p_spim, NRF_SPIM_EVENT_STOPPED)) {} p_cb->transfer_in_progress = false; } } nrf_spim_disable(p_spim); ) CODE_FOR_SPI ( NRF_SPI_Type * p_spi = p_instance->p_registers; if (p_cb->handler) { nrf_spi_int_disable(p_spi, DISABLE_ALL); } nrf_spi_disable(p_spi); ) #undef DISABLE_ALL #if NRF_MODULE_ENABLED(PERIPHERAL_RESOURCE_SHARING) nrf_drv_common_per_res_release(p_instance->p_registers); #endif p_cb->state = NRF_DRV_STATE_UNINITIALIZED; } ret_code_t nrf_drv_spi_transfer(nrf_drv_spi_t const * const p_instance, uint8_t const * p_tx_buffer, uint8_t tx_buffer_length, uint8_t * p_rx_buffer, uint8_t rx_buffer_length) { nrf_drv_spi_xfer_desc_t xfer_desc; xfer_desc.p_tx_buffer = p_tx_buffer; xfer_desc.p_rx_buffer = p_rx_buffer; xfer_desc.tx_length = tx_buffer_length; xfer_desc.rx_length = rx_buffer_length; NRF_LOG_INFO("Transfer tx_len:%d, rx_len:%d.\r\n", tx_buffer_length, rx_buffer_length); NRF_LOG_DEBUG("Tx data:\r\n"); NRF_LOG_HEXDUMP_DEBUG((uint8_t *)p_tx_buffer, tx_buffer_length * sizeof(p_tx_buffer)); return nrf_drv_spi_xfer(p_instance, &xfer_desc, 0); } static void finish_transfer(spi_control_block_t * p_cb) { // If Slave Select signal is used, this is the time to deactivate it. if (p_cb->ss_pin != NRF_DRV_SPI_PIN_NOT_USED) { nrf_gpio_pin_set(p_cb->ss_pin); } // By clearing this flag before calling the handler we allow subsequent // transfers to be started directly from the handler function. p_cb->transfer_in_progress = false; p_cb->evt.type = NRF_DRV_SPI_EVENT_DONE; NRF_LOG_INFO("Transfer rx_len:%d.\r\n", p_cb->evt.data.done.rx_length); NRF_LOG_DEBUG("Rx data:\r\n"); NRF_LOG_HEXDUMP_DEBUG((uint8_t *)p_cb->evt.data.done.p_rx_buffer, p_cb->evt.data.done.rx_length * sizeof(p_cb->evt.data.done.p_rx_buffer)); p_cb->handler(&p_cb->evt, p_cb->p_context); } #ifdef SPI_IN_USE // This function is called from IRQ handler or, in blocking mode, directly // from the 'nrf_drv_spi_transfer' function. // It returns true as long as the transfer should be continued, otherwise (when // there is nothing more to send/receive) it returns false. static bool transfer_byte(NRF_SPI_Type * p_spi, spi_control_block_t * p_cb) { // Read the data byte received in this transfer and store it in RX buffer, // if needed. volatile uint8_t rx_data = nrf_spi_rxd_get(p_spi); if (p_cb->bytes_transferred < p_cb->evt.data.done.rx_length) { p_cb->evt.data.done.p_rx_buffer[p_cb->bytes_transferred] = rx_data; } ++p_cb->bytes_transferred; // Check if there are more bytes to send or receive and write proper data // byte (next one from TX buffer or over-run character) to the TXD register // when needed. // NOTE - we've already used 'p_cb->bytes_transferred + 1' bytes from our // buffers, because we take advantage of double buffering of TXD // register (so in effect one byte is still being transmitted now); // see how the transfer is started in the 'nrf_drv_spi_transfer' // function. uint16_t bytes_used = p_cb->bytes_transferred + 1; if (p_cb->abort) { if (bytes_used < p_cb->evt.data.done.tx_length) { p_cb->evt.data.done.tx_length = bytes_used; } if (bytes_used < p_cb->evt.data.done.rx_length) { p_cb->evt.data.done.rx_length = bytes_used; } } if (bytes_used < p_cb->evt.data.done.tx_length) { nrf_spi_txd_set(p_spi, p_cb->evt.data.done.p_tx_buffer[bytes_used]); return true; } else if (bytes_used < p_cb->evt.data.done.rx_length) { nrf_spi_txd_set(p_spi, p_cb->orc); return true; } return (p_cb->bytes_transferred < p_cb->evt.data.done.tx_length || p_cb->bytes_transferred < p_cb->evt.data.done.rx_length); } static void spi_xfer(NRF_SPI_Type * p_spi, spi_control_block_t * p_cb, nrf_drv_spi_xfer_desc_t const * p_xfer_desc) { p_cb->bytes_transferred = 0; nrf_spi_int_disable(p_spi, NRF_SPI_INT_READY_MASK); nrf_spi_event_clear(p_spi, NRF_SPI_EVENT_READY); // Start the transfer by writing some byte to the TXD register; // if TX buffer is not empty, take the first byte from this buffer, // otherwise - use over-run character. nrf_spi_txd_set(p_spi, (p_xfer_desc->tx_length > 0 ? p_xfer_desc->p_tx_buffer[0] : p_cb->orc)); // TXD register is double buffered, so next byte to be transmitted can // be written immediately, if needed, i.e. if TX or RX transfer is to // be more that 1 byte long. Again - if there is something more in TX // buffer send it, otherwise use over-run character. if (p_xfer_desc->tx_length > 1) { nrf_spi_txd_set(p_spi, p_xfer_desc->p_tx_buffer[1]); } else if (p_xfer_desc->rx_length > 1) { nrf_spi_txd_set(p_spi, p_cb->orc); } // For blocking mode (user handler not provided) wait here for READY // events (indicating that the byte from TXD register was transmitted // and a new incoming byte was moved to the RXD register) and continue // transaction until all requested bytes are transferred. // In non-blocking mode - IRQ service routine will do this stuff. if (p_cb->handler) { nrf_spi_int_enable(p_spi, NRF_SPI_INT_READY_MASK); } else { do { while (!nrf_spi_event_check(p_spi, NRF_SPI_EVENT_READY)) {} nrf_spi_event_clear(p_spi, NRF_SPI_EVENT_READY); NRF_LOG_DEBUG("SPI: Event: NRF_SPI_EVENT_READY.\r\n"); } while (transfer_byte(p_spi, p_cb)); if (p_cb->ss_pin != NRF_DRV_SPI_PIN_NOT_USED) { nrf_gpio_pin_set(p_cb->ss_pin); } } } #endif // SPI_IN_USE #ifdef SPIM_IN_USE __STATIC_INLINE void spim_int_enable(NRF_SPIM_Type * p_spim, bool enable) { if (!enable) { nrf_spim_int_disable(p_spim, END_INT_MASK); } else { nrf_spim_int_enable(p_spim, END_INT_MASK); } } __STATIC_INLINE void spim_list_enable_handle(NRF_SPIM_Type * p_spim, uint32_t flags) { if (NRF_DRV_SPI_FLAG_TX_POSTINC & flags) { nrf_spim_tx_list_enable(p_spim); } else { nrf_spim_tx_list_disable(p_spim); } if (NRF_DRV_SPI_FLAG_RX_POSTINC & flags) { nrf_spim_rx_list_enable(p_spim); } else { nrf_spim_rx_list_disable(p_spim); } } static ret_code_t spim_xfer(NRF_SPIM_Type * p_spim, spi_control_block_t * p_cb, nrf_drv_spi_xfer_desc_t const * p_xfer_desc, uint32_t flags) { ret_code_t err_code; // EasyDMA requires that transfer buffers are placed in Data RAM region; // signal error if they are not. if ((p_xfer_desc->p_tx_buffer != NULL && !nrf_drv_is_in_RAM(p_xfer_desc->p_tx_buffer)) || (p_xfer_desc->p_rx_buffer != NULL && !nrf_drv_is_in_RAM(p_xfer_desc->p_rx_buffer))) { p_cb->transfer_in_progress = false; err_code = NRF_ERROR_INVALID_ADDR; NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); return err_code; } #if NRF_MODULE_ENABLED(SPIM_NRF52_ANOMALY_109_WORKAROUND) p_cb->tx_length = 0; p_cb->rx_length = 0; #endif nrf_spim_tx_buffer_set(p_spim, p_xfer_desc->p_tx_buffer, p_xfer_desc->tx_length); nrf_spim_rx_buffer_set(p_spim, p_xfer_desc->p_rx_buffer, p_xfer_desc->rx_length); nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_END); spim_list_enable_handle(p_spim, flags); if (!(flags & NRF_DRV_SPI_FLAG_HOLD_XFER)) { nrf_spim_task_trigger(p_spim, NRF_SPIM_TASK_START); } #if NRF_MODULE_ENABLED(SPIM_NRF52_ANOMALY_109_WORKAROUND) if (flags & NRF_DRV_SPI_FLAG_HOLD_XFER) { nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_STARTED); p_cb->tx_length = p_xfer_desc->tx_length; p_cb->rx_length = p_xfer_desc->rx_length; nrf_spim_tx_buffer_set(p_spim, p_xfer_desc->p_tx_buffer, 0); nrf_spim_rx_buffer_set(p_spim, p_xfer_desc->p_rx_buffer, 0); nrf_spim_int_enable(p_spim, NRF_SPIM_INT_STARTED_MASK); } #endif if (!p_cb->handler) { while (!nrf_spim_event_check(p_spim, NRF_SPIM_EVENT_END)){} if (p_cb->ss_pin != NRF_DRV_SPI_PIN_NOT_USED) { nrf_gpio_pin_set(p_cb->ss_pin); } } else { spim_int_enable(p_spim, !(flags & NRF_DRV_SPI_FLAG_NO_XFER_EVT_HANDLER)); } err_code = NRF_SUCCESS; NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); return err_code; } #endif ret_code_t nrf_drv_spi_xfer(nrf_drv_spi_t const * const p_instance, nrf_drv_spi_xfer_desc_t const * p_xfer_desc, uint32_t flags) { spi_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx]; ASSERT(p_cb->state != NRF_DRV_STATE_UNINITIALIZED); ASSERT(p_xfer_desc->p_tx_buffer != NULL || p_xfer_desc->tx_length == 0); ASSERT(p_xfer_desc->p_rx_buffer != NULL || p_xfer_desc->rx_length == 0); ret_code_t err_code = NRF_SUCCESS; if (p_cb->transfer_in_progress) { err_code = NRF_ERROR_BUSY; NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); return err_code; } else { if (p_cb->handler && !(flags & (NRF_DRV_SPI_FLAG_REPEATED_XFER | NRF_DRV_SPI_FLAG_NO_XFER_EVT_HANDLER))) { p_cb->transfer_in_progress = true; } } p_cb->evt.data.done = *p_xfer_desc; p_cb->tx_done = false; p_cb->rx_done = false; p_cb->abort = false; if (p_cb->ss_pin != NRF_DRV_SPI_PIN_NOT_USED) { nrf_gpio_pin_clear(p_cb->ss_pin); } CODE_FOR_SPIM ( return spim_xfer(p_instance->p_registers, p_cb, p_xfer_desc, flags); ) CODE_FOR_SPI ( if (flags) { p_cb->transfer_in_progress = false; err_code = NRF_ERROR_NOT_SUPPORTED; } else { spi_xfer(p_instance->p_registers, p_cb, p_xfer_desc); } NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); return err_code; ) } void nrf_drv_spi_abort(nrf_drv_spi_t const * p_instance) { spi_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx]; ASSERT(p_cb->state != NRF_DRV_STATE_UNINITIALIZED); CODE_FOR_SPIM ( nrf_spim_task_trigger(p_instance->p_registers, NRF_SPIM_TASK_STOP); while (!nrf_spim_event_check(p_instance->p_registers, NRF_SPIM_EVENT_STOPPED)) {} p_cb->transfer_in_progress = false; ) CODE_FOR_SPI ( p_cb->abort = true; ) } #ifdef SPIM_IN_USE static void irq_handler_spim(NRF_SPIM_Type * p_spim, spi_control_block_t * p_cb) { #if NRF_MODULE_ENABLED(SPIM_NRF52_ANOMALY_109_WORKAROUND) if ((nrf_spim_int_enable_check(p_spim, NRF_SPIM_INT_STARTED_MASK)) && (nrf_spim_event_check(p_spim, NRF_SPIM_EVENT_STARTED)) ) { /* Handle first, zero-length, auxiliary transmission. */ nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_STARTED); nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_END); ASSERT(p_spim->TXD.MAXCNT == 0); p_spim->TXD.MAXCNT = p_cb->tx_length; ASSERT(p_spim->RXD.MAXCNT == 0); p_spim->RXD.MAXCNT = p_cb->rx_length; /* Disable STARTED interrupt, used only in auxiliary transmission. */ nrf_spim_int_disable(p_spim, NRF_SPIM_INT_STARTED_MASK); /* Start the actual, glitch-free transmission. */ nrf_spim_task_trigger(p_spim, NRF_SPIM_TASK_START); return; } #endif if (nrf_spim_event_check(p_spim, NRF_SPIM_EVENT_END)) { nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_END); ASSERT(p_cb->handler); NRF_LOG_DEBUG("SPIM: Event: NRF_SPIM_EVENT_END.\r\n"); finish_transfer(p_cb); } } uint32_t nrf_drv_spi_start_task_get(nrf_drv_spi_t const * p_instance) { NRF_SPIM_Type * p_spim = (NRF_SPIM_Type *)p_instance->p_registers; return nrf_spim_task_address_get(p_spim, NRF_SPIM_TASK_START); } uint32_t nrf_drv_spi_end_event_get(nrf_drv_spi_t const * p_instance) { NRF_SPIM_Type * p_spim = (NRF_SPIM_Type *)p_instance->p_registers; return nrf_spim_event_address_get(p_spim, NRF_SPIM_EVENT_END); } #endif // SPIM_IN_USE #ifdef SPI_IN_USE static void irq_handler_spi(NRF_SPI_Type * p_spi, spi_control_block_t * p_cb) { ASSERT(p_cb->handler); nrf_spi_event_clear(p_spi, NRF_SPI_EVENT_READY); NRF_LOG_DEBUG("SPI: Event: NRF_SPI_EVENT_READY.\r\n"); if (!transfer_byte(p_spi, p_cb)) { finish_transfer(p_cb); } } #endif // SPI_IN_USE #if NRF_MODULE_ENABLED(SPI0) IRQ_HANDLER(0) { spi_control_block_t * p_cb = &m_cb[SPI0_INSTANCE_INDEX]; #if SPI0_USE_EASY_DMA irq_handler_spim(NRF_SPIM0, p_cb); #else irq_handler_spi(NRF_SPI0, p_cb); #endif } #endif // NRF_MODULE_ENABLED(SPI0) #if NRF_MODULE_ENABLED(SPI1) IRQ_HANDLER(1) { spi_control_block_t * p_cb = &m_cb[SPI1_INSTANCE_INDEX]; #if SPI1_USE_EASY_DMA irq_handler_spim(NRF_SPIM1, p_cb); #else irq_handler_spi(NRF_SPI1, p_cb); #endif } #endif // NRF_MODULE_ENABLED(SPI1) #if NRF_MODULE_ENABLED(SPI2) IRQ_HANDLER(2) { spi_control_block_t * p_cb = &m_cb[SPI2_INSTANCE_INDEX]; #if SPI2_USE_EASY_DMA irq_handler_spim(NRF_SPIM2, p_cb); #else irq_handler_spi(NRF_SPI2, p_cb); #endif } #endif // NRF_MODULE_ENABLED(SPI2) #endif // ENABLED_SPI_COUNT #endif // NRF_MODULE_ENABLED(SPI)