/** * Copyright (c) 2016 - 2017, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "sdk_config.h" #if QSPI_ENABLED #include "nrf_drv_qspi.h" #include "nrf_drv_common.h" #include "nrf_gpio.h" #include "nrf_assert.h" /** * @brief Command byte used to read status register. * */ #define QSPI_STD_CMD_RDSR 0x05 /** * @brief Byte used to mask status register and retrieve the write-in-progess bit. * */ #define QSPI_MEM_STATUSREG_WIP_Pos 0x01 #define QSPI_WAIT_READY() do { \ while (!nrf_qspi_event_check(NRF_QSPI, NRF_QSPI_EVENT_READY)); \ } while(0) /** * @brief Control block - driver instance local data. * */ typedef struct { nrf_drv_qspi_handler_t handler; /**< Handler. */ nrf_drv_state_t state; /**< Driver state. */ volatile bool interrupt_driven; /**< Information if the current operation is performed and is interrupt-driven. */ void * p_context; /**< Driver context used in interrupt. */ } qspi_control_block_t; static qspi_control_block_t m_cb; static ret_code_t qspi_task_perform(nrf_qspi_task_t task) { // Wait for peripheral if (m_cb.interrupt_driven) { return NRF_ERROR_BUSY; } nrf_qspi_event_clear(NRF_QSPI, NRF_QSPI_EVENT_READY); if (m_cb.handler) { m_cb.interrupt_driven = true; nrf_qspi_int_enable(NRF_QSPI, NRF_QSPI_INT_READY_MASK); } nrf_qspi_task_trigger(NRF_QSPI, task); if (m_cb.handler == NULL) { QSPI_WAIT_READY(); } return NRF_SUCCESS; } static bool qspi_pins_configure(nrf_qspi_pins_t const * p_config) { // Check if the user set meaningful values to struct fields. If not, return false. if ((p_config->sck_pin == NRF_QSPI_PIN_NOT_CONNECTED) || (p_config->csn_pin == NRF_QSPI_PIN_NOT_CONNECTED) || (p_config->io0_pin == NRF_QSPI_PIN_NOT_CONNECTED) || (p_config->io1_pin == NRF_QSPI_PIN_NOT_CONNECTED)) { return false; } nrf_qspi_pins_set(NRF_QSPI, p_config); return true; } ret_code_t nrf_drv_qspi_init(nrf_drv_qspi_config_t const * p_config, nrf_drv_qspi_handler_t handler, void * p_context) { if (m_cb.state != NRF_DRV_STATE_UNINITIALIZED) { return NRF_ERROR_INVALID_STATE; } if (!qspi_pins_configure(&p_config->pins)) { return NRF_ERROR_INVALID_PARAM; } nrf_qspi_ifconfig0_set(NRF_QSPI, &p_config->prot_if); nrf_qspi_ifconfig1_set(NRF_QSPI, &p_config->phy_if); m_cb.interrupt_driven = false; m_cb.handler = handler; m_cb.p_context = p_context; /* QSPI interrupt is disabled because the device should be enabled in polling mode (wait for activate task event ready)*/ nrf_qspi_int_disable(NRF_QSPI, NRF_QSPI_INT_READY_MASK); if (handler) { nrf_drv_common_irq_enable(QSPI_IRQn, p_config->irq_priority); } m_cb.state = NRF_DRV_STATE_INITIALIZED; nrf_qspi_enable(NRF_QSPI); nrf_qspi_event_clear(NRF_QSPI, NRF_QSPI_EVENT_READY); nrf_qspi_task_trigger(NRF_QSPI, NRF_QSPI_TASK_ACTIVATE); // Waiting for the peripheral to activate QSPI_WAIT_READY(); return NRF_SUCCESS; } ret_code_t nrf_drv_qspi_cinstr_xfer(nrf_qspi_cinstr_conf_t const * p_config, void const * p_tx_buffer, void * p_rx_buffer) { ASSERT(m_cb.state != NRF_DRV_STATE_UNINITIALIZED); if (m_cb.interrupt_driven) { return NRF_ERROR_BUSY; } nrf_qspi_event_clear(NRF_QSPI, NRF_QSPI_EVENT_READY); /* In some cases, only opcode should be sent. To prevent execution, set function code is * surrounded by an if. */ if (p_tx_buffer) { nrf_qspi_cinstrdata_set(NRF_QSPI, p_config->length, p_tx_buffer); } nrf_qspi_int_disable(NRF_QSPI, NRF_QSPI_INT_READY_MASK); nrf_qspi_cinstr_transfer_start(NRF_QSPI, p_config); QSPI_WAIT_READY(); nrf_qspi_int_enable(NRF_QSPI, NRF_QSPI_INT_READY_MASK); if (p_rx_buffer) { nrf_qspi_cinstrdata_get(NRF_QSPI, p_config->length, p_rx_buffer); } return NRF_SUCCESS; } ret_code_t nrf_drv_qspi_cinstr_quick_send(uint8_t opcode, nrf_qspi_cinstr_len_t length, void const * p_tx_buffer) { nrf_qspi_cinstr_conf_t config = NRF_DRV_QSPI_DEFAULT_CINSTR(opcode, length); return nrf_drv_qspi_cinstr_xfer(&config, p_tx_buffer, NULL); } ret_code_t nrf_drv_qspi_mem_busy_check(void) { ret_code_t ret_code; uint8_t status_value = 0; nrf_qspi_cinstr_conf_t config = NRF_DRV_QSPI_DEFAULT_CINSTR(QSPI_STD_CMD_RDSR, NRF_QSPI_CINSTR_LEN_2B); ret_code = nrf_drv_qspi_cinstr_xfer(&config, &status_value, &status_value); if (ret_code != NRF_SUCCESS) { return ret_code; } if ((status_value & QSPI_MEM_STATUSREG_WIP_Pos) != 0x00) { return NRF_ERROR_BUSY; } return NRF_SUCCESS; } void nrf_drv_qspi_uninit(void) { ASSERT(m_cb.state != NRF_DRV_STATE_UNINITIALIZED); nrf_qspi_int_disable(NRF_QSPI, NRF_QSPI_INT_READY_MASK); nrf_qspi_disable(NRF_QSPI); nrf_drv_common_irq_disable(QSPI_IRQn); nrf_qspi_event_clear(NRF_QSPI, NRF_QSPI_EVENT_READY); m_cb.state = NRF_DRV_STATE_UNINITIALIZED; } ret_code_t nrf_drv_qspi_write(void const * p_tx_buffer, size_t tx_buffer_length, uint32_t dst_address) { ASSERT(m_cb.state != NRF_DRV_STATE_UNINITIALIZED); ASSERT(p_tx_buffer != NULL); if (!nrf_drv_is_in_RAM(p_tx_buffer)) { return NRF_ERROR_INVALID_ADDR; } nrf_qspi_write_buffer_set(NRF_QSPI, p_tx_buffer, tx_buffer_length, dst_address); return qspi_task_perform(NRF_QSPI_TASK_WRITESTART); } ret_code_t nrf_drv_qspi_read(void * p_rx_buffer, size_t rx_buffer_length, uint32_t src_address) { ASSERT(m_cb.state != NRF_DRV_STATE_UNINITIALIZED); ASSERT(p_rx_buffer != NULL); if (!nrf_drv_is_in_RAM(p_rx_buffer)) { return NRF_ERROR_INVALID_ADDR; } nrf_qspi_read_buffer_set(NRF_QSPI, p_rx_buffer, rx_buffer_length, src_address); return qspi_task_perform(NRF_QSPI_TASK_READSTART); } ret_code_t nrf_drv_qspi_erase(nrf_qspi_erase_len_t length, uint32_t start_address) { ASSERT(m_cb.state != NRF_DRV_STATE_UNINITIALIZED); nrf_qspi_erase_ptr_set(NRF_QSPI, start_address, length); return qspi_task_perform(NRF_QSPI_TASK_ERASESTART); } ret_code_t nrf_drv_qspi_chip_erase(void) { return nrf_drv_qspi_erase(NRF_QSPI_ERASE_LEN_ALL, 0); } void QSPI_IRQHandler(void) { // Catch Event ready interrupts if (nrf_qspi_event_check(NRF_QSPI, NRF_QSPI_EVENT_READY)) { m_cb.interrupt_driven = false; nrf_qspi_event_clear(NRF_QSPI, NRF_QSPI_EVENT_READY); m_cb.handler(NRF_DRV_QSPI_EVENT_DONE, m_cb.p_context); } } #endif // QSPI_ENABLED