/** * Copyright (c) 2016 - 2017, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "sdk_common.h" #if NRF_MODULE_ENABLED(CLOCK) #include "nrf_drv_clock.h" #include "nrf_error.h" #include "app_util_platform.h" #ifdef SOFTDEVICE_PRESENT #include "softdevice_handler.h" #include "nrf_sdm.h" #include "nrf_soc.h" #endif #define NRF_LOG_MODULE_NAME "CLOCK" #if CLOCK_CONFIG_LOG_ENABLED #define NRF_LOG_LEVEL CLOCK_CONFIG_LOG_LEVEL #define NRF_LOG_INFO_COLOR CLOCK_CONFIG_INFO_COLOR #define NRF_LOG_DEBUG_COLOR CLOCK_CONFIG_DEBUG_COLOR #define EVT_TO_STR(event) (event == NRF_CLOCK_EVENT_HFCLKSTARTED ? "NRF_CLOCK_EVENT_HFCLKSTARTED" : \ (event == NRF_CLOCK_EVENT_LFCLKSTARTED ? "NRF_CLOCK_EVENT_LFCLKSTARTED" : \ (event == NRF_CLOCK_EVENT_DONE ? "NRF_CLOCK_EVENT_DONE" : \ (event == NRF_CLOCK_EVENT_CTTO ? "NRF_CLOCK_EVENT_CTTO" : "UNKNOWN EVENT")))) #else //CLOCK_CONFIG_LOG_ENABLED #define EVT_TO_STR(event) "" #define NRF_LOG_LEVEL 0 #endif //CLOCK_CONFIG_LOG_ENABLED #include "nrf_log.h" #include "nrf_log_ctrl.h" /* Validate configuration */ INTERRUPT_PRIORITY_VALIDATION(CLOCK_CONFIG_IRQ_PRIORITY); /*lint -save -e652 */ #define NRF_CLOCK_LFCLK_RC CLOCK_LFCLKSRC_SRC_RC #define NRF_CLOCK_LFCLK_Xtal CLOCK_LFCLKSRC_SRC_Xtal #define NRF_CLOCK_LFCLK_Synth CLOCK_LFCLKSRC_SRC_Synth /*lint -restore */ #if (CLOCK_CONFIG_LF_SRC == NRF_CLOCK_LFCLK_RC) && !defined(SOFTDEVICE_PRESENT) #define CALIBRATION_SUPPORT 1 #else #define CALIBRATION_SUPPORT 0 #endif typedef enum { CAL_STATE_IDLE, CAL_STATE_CT, CAL_STATE_HFCLK_REQ, CAL_STATE_CAL, CAL_STATE_ABORT, } nrf_drv_clock_cal_state_t; /**@brief CLOCK control block. */ typedef struct { bool module_initialized; /*< Indicate the state of module */ volatile bool hfclk_on; /*< High-frequency clock state. */ volatile bool lfclk_on; /*< Low-frequency clock state. */ volatile uint32_t hfclk_requests; /*< High-frequency clock request counter. */ volatile nrf_drv_clock_handler_item_t * p_hf_head; volatile uint32_t lfclk_requests; /*< Low-frequency clock request counter. */ volatile nrf_drv_clock_handler_item_t * p_lf_head; #if CALIBRATION_SUPPORT nrf_drv_clock_handler_item_t cal_hfclk_started_handler_item; nrf_drv_clock_event_handler_t cal_done_handler; volatile nrf_drv_clock_cal_state_t cal_state; #endif // CALIBRATION_SUPPORT } nrf_drv_clock_cb_t; static nrf_drv_clock_cb_t m_clock_cb; /**@brief Function for starting LFCLK. This function will return immediately without waiting for start. */ static void lfclk_start(void) { nrf_clock_event_clear(NRF_CLOCK_EVENT_LFCLKSTARTED); nrf_clock_int_enable(NRF_CLOCK_INT_LF_STARTED_MASK); nrf_clock_task_trigger(NRF_CLOCK_TASK_LFCLKSTART); } /**@brief Function for stopping LFCLK and calibration (if it was set up). */ static void lfclk_stop(void) { #if CALIBRATION_SUPPORT (void)nrf_drv_clock_calibration_abort(); #endif #ifdef SOFTDEVICE_PRESENT // If LFCLK is requested to stop while SD is still enabled, // it indicates an error in the application. // Enabling SD should increment the LFCLK request. ASSERT(!softdevice_handler_is_enabled()); #endif // SOFTDEVICE_PRESENT nrf_clock_task_trigger(NRF_CLOCK_TASK_LFCLKSTOP); while (nrf_clock_lf_is_running()) {} m_clock_cb.lfclk_on = false; } static void hfclk_start(void) { #ifdef SOFTDEVICE_PRESENT if (softdevice_handler_is_enabled()) { (void)sd_clock_hfclk_request(); return; } #endif // SOFTDEVICE_PRESENT nrf_clock_event_clear(NRF_CLOCK_EVENT_HFCLKSTARTED); nrf_clock_int_enable(NRF_CLOCK_INT_HF_STARTED_MASK); nrf_clock_task_trigger(NRF_CLOCK_TASK_HFCLKSTART); } static void hfclk_stop(void) { #ifdef SOFTDEVICE_PRESENT if (softdevice_handler_is_enabled()) { (void)sd_clock_hfclk_release(); return; } #endif // SOFTDEVICE_PRESENT nrf_clock_task_trigger(NRF_CLOCK_TASK_HFCLKSTOP); while (nrf_clock_hf_is_running(NRF_CLOCK_HFCLK_HIGH_ACCURACY)) {} m_clock_cb.hfclk_on = false; } bool nrf_drv_clock_init_check(void) { return m_clock_cb.module_initialized; } ret_code_t nrf_drv_clock_init(void) { ret_code_t err_code = NRF_SUCCESS; if (m_clock_cb.module_initialized) { err_code = NRF_ERROR_MODULE_ALREADY_INITIALIZED; } else { m_clock_cb.p_hf_head = NULL; m_clock_cb.hfclk_requests = 0; m_clock_cb.p_lf_head = NULL; m_clock_cb.lfclk_requests = 0; nrf_drv_common_power_clock_irq_init(); #ifdef SOFTDEVICE_PRESENT if (!softdevice_handler_is_enabled()) #endif { nrf_clock_lf_src_set((nrf_clock_lfclk_t)CLOCK_CONFIG_LF_SRC); } #if CALIBRATION_SUPPORT m_clock_cb.cal_state = CAL_STATE_IDLE; #endif m_clock_cb.module_initialized = true; } NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); return err_code; } void nrf_drv_clock_uninit(void) { ASSERT(m_clock_cb.module_initialized); nrf_drv_common_clock_irq_disable(); nrf_clock_int_disable(0xFFFFFFFF); lfclk_stop(); hfclk_stop(); m_clock_cb.module_initialized = false; NRF_LOG_INFO("Uninitialized.\r\n"); } static void item_enqueue(nrf_drv_clock_handler_item_t ** p_head, nrf_drv_clock_handler_item_t * p_item) { nrf_drv_clock_handler_item_t * p_next = *p_head; while(p_next) { if(p_next == p_item) { return; } p_next = p_next->p_next; } p_item->p_next = (*p_head ? *p_head : NULL); *p_head = p_item; } static nrf_drv_clock_handler_item_t * item_dequeue(nrf_drv_clock_handler_item_t ** p_head) { nrf_drv_clock_handler_item_t * p_item = *p_head; if (p_item) { *p_head = p_item->p_next; } return p_item; } void nrf_drv_clock_lfclk_request(nrf_drv_clock_handler_item_t * p_handler_item) { ASSERT(m_clock_cb.module_initialized); if (m_clock_cb.lfclk_on) { if (p_handler_item) { p_handler_item->event_handler(NRF_DRV_CLOCK_EVT_LFCLK_STARTED); } CRITICAL_REGION_ENTER(); ++(m_clock_cb.lfclk_requests); CRITICAL_REGION_EXIT(); } else { CRITICAL_REGION_ENTER(); if (p_handler_item) { item_enqueue((nrf_drv_clock_handler_item_t **)&m_clock_cb.p_lf_head, p_handler_item); } if (m_clock_cb.lfclk_requests == 0) { lfclk_start(); } ++(m_clock_cb.lfclk_requests); CRITICAL_REGION_EXIT(); } ASSERT(m_clock_cb.lfclk_requests > 0); } void nrf_drv_clock_lfclk_release(void) { ASSERT(m_clock_cb.module_initialized); ASSERT(m_clock_cb.lfclk_requests > 0); CRITICAL_REGION_ENTER(); --(m_clock_cb.lfclk_requests); if (m_clock_cb.lfclk_requests == 0) { lfclk_stop(); } CRITICAL_REGION_EXIT(); } bool nrf_drv_clock_lfclk_is_running(void) { ASSERT(m_clock_cb.module_initialized); #ifdef SOFTDEVICE_PRESENT if (softdevice_handler_is_enabled()) { return true; } #endif // SOFTDEVICE_PRESENT return nrf_clock_lf_is_running(); } void nrf_drv_clock_hfclk_request(nrf_drv_clock_handler_item_t * p_handler_item) { ASSERT(m_clock_cb.module_initialized); if (m_clock_cb.hfclk_on) { if (p_handler_item) { p_handler_item->event_handler(NRF_DRV_CLOCK_EVT_HFCLK_STARTED); } CRITICAL_REGION_ENTER(); ++(m_clock_cb.hfclk_requests); CRITICAL_REGION_EXIT(); } else { CRITICAL_REGION_ENTER(); if (p_handler_item) { item_enqueue((nrf_drv_clock_handler_item_t **)&m_clock_cb.p_hf_head, p_handler_item); } if (m_clock_cb.hfclk_requests == 0) { hfclk_start(); } ++(m_clock_cb.hfclk_requests); CRITICAL_REGION_EXIT(); } ASSERT(m_clock_cb.hfclk_requests > 0); } void nrf_drv_clock_hfclk_release(void) { ASSERT(m_clock_cb.module_initialized); ASSERT(m_clock_cb.hfclk_requests > 0); CRITICAL_REGION_ENTER(); --(m_clock_cb.hfclk_requests); if (m_clock_cb.hfclk_requests == 0) { hfclk_stop(); } CRITICAL_REGION_EXIT(); } bool nrf_drv_clock_hfclk_is_running(void) { ASSERT(m_clock_cb.module_initialized); #ifdef SOFTDEVICE_PRESENT if (softdevice_handler_is_enabled()) { uint32_t is_running; UNUSED_VARIABLE(sd_clock_hfclk_is_running(&is_running)); return (is_running ? true : false); } #endif // SOFTDEVICE_PRESENT return nrf_clock_hf_is_running(NRF_CLOCK_HFCLK_HIGH_ACCURACY); } #if CALIBRATION_SUPPORT static void clock_calibration_hf_started(nrf_drv_clock_evt_type_t event) { if (m_clock_cb.cal_state == CAL_STATE_ABORT) { nrf_drv_clock_hfclk_release(); m_clock_cb.cal_state = CAL_STATE_IDLE; if (m_clock_cb.cal_done_handler) { m_clock_cb.cal_done_handler(NRF_DRV_CLOCK_EVT_CAL_ABORTED); } } else { nrf_clock_event_clear(NRF_CLOCK_EVENT_DONE); nrf_clock_int_enable(NRF_CLOCK_INT_DONE_MASK); m_clock_cb.cal_state = CAL_STATE_CAL; nrf_clock_task_trigger(NRF_CLOCK_TASK_CAL); } } #endif // CALIBRATION_SUPPORT ret_code_t nrf_drv_clock_calibration_start(uint8_t interval, nrf_drv_clock_event_handler_t handler) { ret_code_t err_code = NRF_SUCCESS; #if CALIBRATION_SUPPORT ASSERT(m_clock_cb.cal_state == CAL_STATE_IDLE); if (m_clock_cb.lfclk_on == false) { err_code = NRF_ERROR_INVALID_STATE; } else if (m_clock_cb.cal_state == CAL_STATE_IDLE) { m_clock_cb.cal_done_handler = handler; m_clock_cb.cal_hfclk_started_handler_item.event_handler = clock_calibration_hf_started; if (interval == 0) { m_clock_cb.cal_state = CAL_STATE_HFCLK_REQ; nrf_drv_clock_hfclk_request(&m_clock_cb.cal_hfclk_started_handler_item); } else { m_clock_cb.cal_state = CAL_STATE_CT; nrf_clock_cal_timer_timeout_set(interval); nrf_clock_event_clear(NRF_CLOCK_EVENT_CTTO); nrf_clock_int_enable(NRF_CLOCK_INT_CTTO_MASK); nrf_clock_task_trigger(NRF_CLOCK_TASK_CTSTART); } } else { err_code = NRF_ERROR_BUSY; } NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); return err_code; #else err_code = NRF_ERROR_FORBIDDEN; NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); return err_code; #endif // CALIBRATION_SUPPORT } ret_code_t nrf_drv_clock_calibration_abort(void) { ret_code_t err_code = NRF_SUCCESS; #if CALIBRATION_SUPPORT CRITICAL_REGION_ENTER(); switch (m_clock_cb.cal_state) { case CAL_STATE_CT: nrf_clock_int_disable(NRF_CLOCK_INT_CTTO_MASK); nrf_clock_task_trigger(NRF_CLOCK_TASK_CTSTOP); m_clock_cb.cal_state = CAL_STATE_IDLE; if (m_clock_cb.cal_done_handler) { m_clock_cb.cal_done_handler(NRF_DRV_CLOCK_EVT_CAL_ABORTED); } break; case CAL_STATE_HFCLK_REQ: /* fall through. */ case CAL_STATE_CAL: m_clock_cb.cal_state = CAL_STATE_ABORT; break; default: break; } CRITICAL_REGION_EXIT(); NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); return err_code; #else err_code = NRF_ERROR_FORBIDDEN; NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); return err_code; #endif // CALIBRATION_SUPPORT } ret_code_t nrf_drv_clock_is_calibrating(bool * p_is_calibrating) { ret_code_t err_code = NRF_SUCCESS; #if CALIBRATION_SUPPORT ASSERT(m_clock_cb.module_initialized); *p_is_calibrating = (m_clock_cb.cal_state != CAL_STATE_IDLE); NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); return err_code; #else err_code = NRF_ERROR_FORBIDDEN; NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); return err_code; #endif // CALIBRATION_SUPPORT } __STATIC_INLINE void clock_clk_started_notify(nrf_drv_clock_evt_type_t evt_type) { nrf_drv_clock_handler_item_t **p_head; if (evt_type == NRF_DRV_CLOCK_EVT_HFCLK_STARTED) { p_head = (nrf_drv_clock_handler_item_t **)&m_clock_cb.p_hf_head; } else { p_head = (nrf_drv_clock_handler_item_t **)&m_clock_cb.p_lf_head; } while (1) { nrf_drv_clock_handler_item_t * p_item = item_dequeue(p_head); if (!p_item) { break; } p_item->event_handler(evt_type); } } #if NRF_DRV_COMMON_POWER_CLOCK_ISR void nrf_drv_clock_onIRQ(void) #else void POWER_CLOCK_IRQHandler(void) #endif { if (nrf_clock_event_check(NRF_CLOCK_EVENT_HFCLKSTARTED)) { nrf_clock_event_clear(NRF_CLOCK_EVENT_HFCLKSTARTED); NRF_LOG_DEBUG("Event: %s.\r\n", (uint32_t)EVT_TO_STR(NRF_CLOCK_EVENT_HFCLKSTARTED)); nrf_clock_int_disable(NRF_CLOCK_INT_HF_STARTED_MASK); m_clock_cb.hfclk_on = true; clock_clk_started_notify(NRF_DRV_CLOCK_EVT_HFCLK_STARTED); } if (nrf_clock_event_check(NRF_CLOCK_EVENT_LFCLKSTARTED)) { nrf_clock_event_clear(NRF_CLOCK_EVENT_LFCLKSTARTED); NRF_LOG_DEBUG("Event: %s.\r\n", (uint32_t)EVT_TO_STR(NRF_CLOCK_EVENT_LFCLKSTARTED)); nrf_clock_int_disable(NRF_CLOCK_INT_LF_STARTED_MASK); m_clock_cb.lfclk_on = true; clock_clk_started_notify(NRF_DRV_CLOCK_EVT_LFCLK_STARTED); } #if CALIBRATION_SUPPORT if (nrf_clock_event_check(NRF_CLOCK_EVENT_CTTO)) { nrf_clock_event_clear(NRF_CLOCK_EVENT_CTTO); NRF_LOG_DEBUG("Event: %s.\r\n", (uint32_t)EVT_TO_STR(NRF_CLOCK_EVENT_CTTO)); nrf_clock_int_disable(NRF_CLOCK_INT_CTTO_MASK); nrf_drv_clock_hfclk_request(&m_clock_cb.cal_hfclk_started_handler_item); } if (nrf_clock_event_check(NRF_CLOCK_EVENT_DONE)) { nrf_clock_event_clear(NRF_CLOCK_EVENT_DONE); NRF_LOG_DEBUG("Event: %s.\r\n", (uint32_t)EVT_TO_STR(NRF_CLOCK_EVENT_DONE)); nrf_clock_int_disable(NRF_CLOCK_INT_DONE_MASK); nrf_drv_clock_hfclk_release(); bool aborted = (m_clock_cb.cal_state == CAL_STATE_ABORT); m_clock_cb.cal_state = CAL_STATE_IDLE; if (m_clock_cb.cal_done_handler) { m_clock_cb.cal_done_handler(aborted ? NRF_DRV_CLOCK_EVT_CAL_ABORTED : NRF_DRV_CLOCK_EVT_CAL_DONE); } } #endif // CALIBRATION_SUPPORT } #ifdef SOFTDEVICE_PRESENT void nrf_drv_clock_on_soc_event(uint32_t evt_id) { if (evt_id == NRF_EVT_HFCLKSTARTED) { clock_clk_started_notify(NRF_DRV_CLOCK_EVT_HFCLK_STARTED); } } void nrf_drv_clock_on_sd_enable(void) { CRITICAL_REGION_ENTER(); /* Make sure that nrf_drv_clock module is initialized */ if (!m_clock_cb.module_initialized) { (void)nrf_drv_clock_init(); } /* SD is one of the LFCLK requesters, but it will enable it by itself. */ ++(m_clock_cb.lfclk_requests); m_clock_cb.lfclk_on = true; CRITICAL_REGION_EXIT(); } void nrf_drv_clock_on_sd_disable(void) { /* Reinit interrupts */ ASSERT(m_clock_cb.module_initialized); nrf_drv_common_irq_enable(POWER_CLOCK_IRQn, CLOCK_CONFIG_IRQ_PRIORITY); /* SD leaves LFCLK enabled - disable it if it is no longer required. */ nrf_drv_clock_lfclk_release(); } #endif // SOFTDEVICE_PRESENT #undef NRF_CLOCK_LFCLK_RC #undef NRF_CLOCK_LFCLK_Xtal #undef NRF_CLOCK_LFCLK_Synth #endif // NRF_MODULE_ENABLED(CLOCK)