/** * Copyright (c) 2015 - 2017, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include "ant_bpwr_simulator.h" #include "app_util.h" #include "nordic_common.h" #define POWER_MIN 0 #define POWER_MAX 2000 #define POWER_INCR 10 #define CADENCE_MIN 0 #define CADENCE_MAX (UINT8_MAX - 1) #define CADENCE_INCR 1 #define PEDAL_MIN 0 #define PEDAL_MAX 100 #define PEDAL_INCR 1 #define TORQUE_PERIOD 774 #define SIMULATOR_TIME_INCREMENT BPWR_MSG_PERIOD #define TORQUE_INCR 10 void ant_bpwr_simulator_init(ant_bpwr_simulator_t * p_simulator, ant_bpwr_simulator_cfg_t const * p_config, bool auto_change) { p_simulator->p_profile = p_config->p_profile; p_simulator->_cb.auto_change = auto_change; p_simulator->_cb.tick_incr = 0; p_simulator->_cb.power_sensorsim_cfg.min = POWER_MIN; p_simulator->_cb.power_sensorsim_cfg.max = POWER_MAX; p_simulator->_cb.power_sensorsim_cfg.incr = POWER_INCR; p_simulator->_cb.power_sensorsim_cfg.start_at_max = false; p_simulator->_cb.cadence_sensorsim_cfg.min = CADENCE_MIN; p_simulator->_cb.cadence_sensorsim_cfg.max = CADENCE_MAX; p_simulator->_cb.cadence_sensorsim_cfg.incr = CADENCE_INCR; p_simulator->_cb.cadence_sensorsim_cfg.start_at_max = false; p_simulator->_cb.pedal_sensorsim_cfg.min = PEDAL_MIN; p_simulator->_cb.pedal_sensorsim_cfg.max = PEDAL_MAX; p_simulator->_cb.pedal_sensorsim_cfg.incr = PEDAL_INCR; p_simulator->_cb.pedal_sensorsim_cfg.start_at_max = false; p_simulator->p_profile->BPWR_PROFILE_pedal_power.differentiation = 0x01; // right sensorsim_init(&(p_simulator->_cb.power_sensorsim_state), &(p_simulator->_cb.power_sensorsim_cfg)); sensorsim_init(&(p_simulator->_cb.cadence_sensorsim_state), &(p_simulator->_cb.cadence_sensorsim_cfg)); sensorsim_init(&(p_simulator->_cb.pedal_sensorsim_state), &(p_simulator->_cb.pedal_sensorsim_cfg)); } void ant_bpwr_simulator_one_iteration(ant_bpwr_simulator_t * p_simulator, ant_bpwr_evt_t event) { switch (event) { case ANT_BPWR_PAGE_16_UPDATED: if (p_simulator->_cb.auto_change) { UNUSED_PARAMETER(sensorsim_measure(&(p_simulator->_cb.power_sensorsim_state), &(p_simulator->_cb.power_sensorsim_cfg))); UNUSED_PARAMETER(sensorsim_measure(&(p_simulator->_cb.cadence_sensorsim_state), &(p_simulator->_cb.cadence_sensorsim_cfg))); UNUSED_PARAMETER(sensorsim_measure(&(p_simulator->_cb.pedal_sensorsim_state), &(p_simulator->_cb.pedal_sensorsim_cfg))); } p_simulator->p_profile->BPWR_PROFILE_instantaneous_power = p_simulator->_cb.power_sensorsim_state.current_val; p_simulator->p_profile->BPWR_PROFILE_accumulated_power += p_simulator->_cb.power_sensorsim_state.current_val; if (p_simulator->p_profile->BPWR_PROFILE_accumulated_power == UINT16_MAX) { p_simulator->p_profile->BPWR_PROFILE_accumulated_power = 0; } p_simulator->p_profile->BPWR_PROFILE_instantaneous_cadence = p_simulator->_cb.cadence_sensorsim_state.current_val; p_simulator->p_profile->BPWR_PROFILE_pedal_power.distribution = p_simulator->_cb.pedal_sensorsim_state.current_val; p_simulator->p_profile->BPWR_PROFILE_power_update_event_count++; break; case ANT_BPWR_PAGE_17_UPDATED: if (p_simulator->_cb.auto_change) { UNUSED_PARAMETER(sensorsim_measure(&(p_simulator->_cb.cadence_sensorsim_state), &(p_simulator->_cb.cadence_sensorsim_cfg))); } p_simulator->p_profile->BPWR_PROFILE_instantaneous_cadence = p_simulator->_cb.cadence_sensorsim_state.current_val; p_simulator->p_profile->BPWR_PROFILE_wheel_period += TORQUE_PERIOD; p_simulator->_cb.tick_incr += SIMULATOR_TIME_INCREMENT; p_simulator->p_profile->BPWR_PROFILE_wheel_tick += p_simulator->_cb.tick_incr / (TORQUE_PERIOD * 16); p_simulator->_cb.tick_incr = p_simulator->_cb.tick_incr % (TORQUE_PERIOD * 16); p_simulator->p_profile->BPWR_PROFILE_wheel_accumulated_torque += TORQUE_INCR; p_simulator->p_profile->BPWR_PROFILE_wheel_update_event_count++; break; case ANT_BPWR_PAGE_18_UPDATED: if (p_simulator->_cb.auto_change) { UNUSED_PARAMETER(sensorsim_measure(&(p_simulator->_cb.cadence_sensorsim_state), &(p_simulator->_cb.cadence_sensorsim_cfg))); } p_simulator->p_profile->BPWR_PROFILE_instantaneous_cadence = p_simulator->_cb.cadence_sensorsim_state.current_val; p_simulator->p_profile->BPWR_PROFILE_crank_period = TORQUE_PERIOD; p_simulator->_cb.tick_incr += SIMULATOR_TIME_INCREMENT; p_simulator->p_profile->BPWR_PROFILE_crank_tick += p_simulator->_cb.tick_incr / (TORQUE_PERIOD * 16); p_simulator->_cb.tick_incr = p_simulator->_cb.tick_incr % (TORQUE_PERIOD * 16); p_simulator->p_profile->BPWR_PROFILE_crank_accumulated_torque += TORQUE_INCR; p_simulator->p_profile->BPWR_PROFILE_crank_update_event_count++; break; default: break; } } void ant_bpwr_simulator_increment(ant_bpwr_simulator_t * p_simulator) { if (!p_simulator->_cb.auto_change) { sensorsim_increment(&(p_simulator->_cb.power_sensorsim_state), &(p_simulator->_cb.power_sensorsim_cfg)); sensorsim_increment(&(p_simulator->_cb.cadence_sensorsim_state), &(p_simulator->_cb.cadence_sensorsim_cfg)); sensorsim_increment(&(p_simulator->_cb.pedal_sensorsim_state), &(p_simulator->_cb.pedal_sensorsim_cfg)); } } void ant_bpwr_simulator_decrement(ant_bpwr_simulator_t * p_simulator) { if (!p_simulator->_cb.auto_change) { sensorsim_decrement(&(p_simulator->_cb.power_sensorsim_state), &(p_simulator->_cb.power_sensorsim_cfg)); sensorsim_decrement(&(p_simulator->_cb.cadence_sensorsim_state), &(p_simulator->_cb.cadence_sensorsim_cfg)); sensorsim_decrement(&(p_simulator->_cb.pedal_sensorsim_state), &(p_simulator->_cb.pedal_sensorsim_cfg)); } }