提交 6fe2afed 编写于 作者: N nongli1031@gmail.com

for rt-thread 1.1.0


git-svn-id: https://rt-thread.googlecode.com/svn/trunk@2372 bbd45198-f89e-11dd-88c7-29a3b14d5316
上级 2cdbbf8b
......@@ -11,7 +11,7 @@
* Date Author Notes
* 2006-08-23 Bernard first implementation
*
* 2011-12-17 nl1031 for MicroBlaze
* 2011-12-17 nl1031 for MacroBlaze
*
*/
......@@ -48,6 +48,9 @@ XGpio gpio_output; /* The driver instance for GPIO Device configured as O/P */
XUartLite uart_lite; /* Instance of the UartLite device */
XIntc int_ctl; /* The instance of the Interrupt Controller */
static rt_uint32_t led_data;
static int cnt;
static void rt_hw_board_led_init(void);
......@@ -58,6 +61,7 @@ static void rt_hw_board_led_init()
{
rt_uint32_t status;
led_data = 0;
cnt = 0;
status = XGpio_Initialize(&gpio_output, LEDS_DEVICE_ID);
if (status != XST_SUCCESS)
{
......@@ -96,17 +100,19 @@ void rt_hw_board_led_off(rt_uint32_t led)
XGpio_DiscreteWrite(&gpio_output, 1, led_data);
}
void rt_hw_led_flash(void)
{
rt_uint32_t i;
volatile rt_uint32_t i;
rt_hw_board_led_off(1);
for (i = 0; i < 20000; i++) ;
for (i = 0; i < 20000; i ++);
rt_hw_board_led_on(1);
for (i = 0; i < 20000; i++) ;
for (i = 0; i < 20000; i ++);
}
#ifdef RT_USING_CONSOLE
/*
......@@ -124,6 +130,7 @@ void rt_hw_console_output(const char* str)
{
/* Transmit Character */
XUartLite_SendByte(STDOUT_BASEADDRESS, *str);
if (*str == '\n')
XUartLite_SendByte(STDOUT_BASEADDRESS, '\r');
......@@ -147,6 +154,7 @@ static void rt_hw_console_init()
}
#endif
void rt_hw_timer_handler(void)
{
rt_uint32_t csr;
......@@ -157,26 +165,26 @@ void rt_hw_timer_handler(void)
if (csr & XTC_CSR_INT_OCCURED_MASK)
{
rt_tick_increase();
XTmrCtr_WriteReg(timer.BaseAddress, TIMER_CNTR_0, XTC_TCSR_OFFSET, csr | XTC_CSR_INT_OCCURED_MASK);
}
}
/*
*********************************************************************************************************
* rt_intc_init()
*
* Description: This function intializes the interrupt controller by registering the appropriate handler
* functions and enabling interrupts.
*
* Arguments : None
*
* Returns : None
*********************************************************************************************************
*/
void rt_intc_init(void)
/*
*********************************************************************************************************
* rt_intc_init()
*
* Description: This function intializes the interrupt controller by registering the appropriate handler
* functions and enabling interrupts.
*
* Arguments : None
*
* Returns : None
*********************************************************************************************************
*/
void rt_intc_init (void)
{
XStatus status;
......@@ -185,32 +193,34 @@ void rt_intc_init(void)
status = XIntc_Initialize(&int_ctl, XPAR_INTC_0_DEVICE_ID);
/* install interrupt handler */
rt_hw_interrupt_install(XPAR_INTC_0_TMRCTR_0_VEC_ID, (rt_isr_handler_t) rt_hw_timer_handler, RT_NULL);
rt_hw_interrupt_install(XPAR_INTC_0_TMRCTR_0_VEC_ID, (rt_isr_handler_t)rt_hw_timer_handler, RT_NULL);
rt_hw_interrupt_umask(XPAR_INTC_0_TMRCTR_0_VEC_ID);
XIntc_Start(&int_ctl, XIN_REAL_MODE);
}
void rt_tmr_init(void)
void rt_tmr_init (void)
{
rt_uint32_t ctl;
XStatus status;
status = XTmrCtr_Initialize(&timer, XPAR_AXI_TIMER_0_DEVICE_ID);
status = XTmrCtr_Initialize(&timer,XPAR_AXI_TIMER_0_DEVICE_ID);
XTmrCtr_WriteReg(timer.BaseAddress, TIMER_CNTR_0, XTC_TLR_OFFSET, PIV);
ctl = XTC_CSR_ENABLE_TMR_MASK | XTC_CSR_ENABLE_INT_MASK | XTC_CSR_AUTO_RELOAD_MASK | XTC_CSR_DOWN_COUNT_MASK;
XTmrCtr_WriteReg(timer.BaseAddress, TIMER_CNTR_0, XTC_TCSR_OFFSET, ctl);
}
/**
* This function will initial SPARTAN 6 LX9 board.
*/
void rt_hw_board_init()
{
microblaze_disable_icache();
microblaze_disable_dcache();
/* init hardware console */
rt_hw_console_init();
......@@ -223,4 +233,5 @@ void rt_hw_board_init()
/* timer init */
rt_tmr_init();
}
......@@ -13,6 +13,7 @@
#define __BOARD_H__
#define MCK 50000000
void rt_hw_board_led_on(rt_uint32_t);
void rt_hw_board_led_off(rt_uint32_t);
......
......@@ -16,6 +16,7 @@
/* Tick per Second*/
#define RT_TICK_PER_SECOND 100
/* SECTION: RT_DEBUG */
/* Thread Debug*/
/* #define RT_THREAD_DEBUG */
......@@ -88,6 +89,7 @@
#define FINSH_THREAD_STACK_SIZE 8192
#define RT_USING_TC
/* SECTION: a runtime libc library */
/* a runtime libc library*/
/* #define RT_USING_NEWLIB */
......
......@@ -25,6 +25,7 @@ extern void finsh_system_init(void);
extern void rt_hw_led_flash(void);
/*@{*/
#ifdef __CC_ARM
extern int Image$$RW_IRAM1$$ZI$$Limit;
......@@ -69,7 +70,8 @@ void rtthread_startup(void)
#elif __ICCARM__
rt_system_heap_init(__segment_end("HEAP"), (void*)0x204000);
#else
rt_system_heap_init((void*) &__bss_end, (void*) (&__bss_end + 0x4000));
rt_system_heap_init((void*)&__bss_end, (void*)(&__bss_end+0x4000));
#endif
#endif
......@@ -104,10 +106,10 @@ void rtthread_startup(void)
rt_system_scheduler_start();
/* never reach here */
return;
return ;
}
int main(void)
int main (void)
{
/* invoke rtthread_startup */
rtthread_startup();
......
......@@ -131,7 +131,7 @@ int _tc_thread_delete()
tc_cleanup(_tc_cleanup);
thread_delete_init();
return 25;
return 27;
}
FINSH_FUNCTION_EXPORT(_tc_thread_delete, a thread delete example);
#else
......
......@@ -6,8 +6,8 @@ static struct rt_thread thread2;
static char thread1_stack[THREAD_STACK_SIZE];
static char thread2_stack[THREAD_STACK_SIZE];
static rt_uint32_t t1_count = 0;
static rt_uint32_t t2_count = 0;
volatile static rt_uint32_t t1_count = 0;
volatile static rt_uint32_t t2_count = 0;
static void thread1_entry(void* parameter)
{
while (1)
......@@ -65,8 +65,12 @@ static void _tc_cleanup()
/* unlock scheduler */
rt_exit_critical();
rt_kprintf("t1_count=%d t2_count=%d\n",t1_count,t2_count);
if (t1_count / t2_count != 2)
tc_stat(TC_STAT_END | TC_STAT_FAILED);
else
tc_done(TC_STAT_PASSED);
}
int _tc_thread_same_priority()
......
......@@ -44,7 +44,6 @@ rt_hw_interrupt_disable:
RTSD r15, 8
AND r0, r0, r0
.end rt_hw_interrupt_disable
/*
......@@ -57,7 +56,6 @@ rt_hw_interrupt_disable:
rt_hw_interrupt_enable:
RTSD r15, 8
MTS rMSR, r5 /* Move the saved status from r5 into rMSR */
.end rt_hw_interrupt_enable
/*
......@@ -83,7 +81,7 @@ rt_hw_context_switch:
BNEI r3, rt_hw_context_switch_ie /*if IE bit set,should be use RTID (return from interrupt). */
LWI r3, r1, STACK_RMSR
MTS RMSR, r3
MTS RMSR,r3
POP_ALL
ADDIK r1, r1, STACK_SIZE
RTSD r15, 8
......@@ -93,13 +91,12 @@ rt_hw_context_switch_ie:
LWI r3, r1, STACK_RMSR
ANDNI r3, r3, IE_BIT /* clear IE bit, prevent interrupt occur immediately*/
MTS RMSR, r3
MTS RMSR,r3
LWI r3, r1, STACK_R03
POP_ALL
ADDIK r1, r1, STACK_SIZE
RTID r14, 0 /* IE bit will be set automatically */
AND r0, r0, r0
.end rt_hw_context_switch
/*
......@@ -113,7 +110,7 @@ rt_hw_context_switch_to:
LWI r1, r5, 0 /* get new task stack pointer */
LWI r3, r1, STACK_RMSR
ANDNI r3, r3, IE_BIT /* clear IE bit, prevent interrupt occur immediately*/
MTS RMSR, r3
MTS RMSR,r3
POP_ALL
ADDIK r1, r1, STACK_SIZE
RTID r14, 0 /* IE bit will be set automatically */
......@@ -141,15 +138,15 @@ rt_hw_context_switch_interrupt:
LA r3, r0, rt_interrupt_from_thread /* set rt_interrupt_from_thread */
SWI r5, r3, 0 /* rt_interrupt_from_thread = from */
_reswitch:
LA r3, r0, rt_interrupt_to_thread/* set rt_interrupt_to_thread */
LA r3, r0, rt_interrupt_to_thread /* set rt_interrupt_to_thread */
SWI r6, r3, 0 /* rt_interrupt_to_thread = to */
RTSD r15, 8
AND r0, r0, r0
.end rt_hw_context_switch_interrupt
.globl _interrupt_handler
.section .text
.align 2
.ent _interrupt_handler
.type _interrupt_handler, @function
......@@ -169,7 +166,7 @@ _interrupt_handler:
BRLID r15, rt_interrupt_leave
AND r0, r0, r0
/*
/*
* if rt_thread_switch_interrupt_flag set, jump to
* rt_hw_context_switch_interrupt_do and don't return
*/
......@@ -181,7 +178,7 @@ _interrupt_handler:
LWI r3, r1, STACK_RMSR
ANDNI r3, r3, IE_BIT
MTS RMSR, r3
MTS RMSR,r3
POP_ALL
ADDIK r1, r1, STACK_SIZE
......@@ -207,7 +204,7 @@ rt_hw_context_switch_interrupt_do:
BNEI r3, return_with_ie /*if IE bit set,should be use RTID (return from interrupt). */
LWI r3, r1, STACK_RMSR
MTS RMSR, r3
MTS RMSR,r3
POP_ALL
ADDIK r1, r1, STACK_SIZE
RTSD r15, 8
......@@ -217,12 +214,12 @@ return_with_ie:
LWI r3, r1, STACK_RMSR
ANDNI r3, r3, IE_BIT /* clear IE bit, prevent interrupt occur immediately*/
MTS RMSR, r3
MTS RMSR,r3
LWI r3, r1, STACK_R03
POP_ALL
ADDIK r1, r1, STACK_SIZE
RTID r14, 0 /* IE bit will be set automatically */
AND r0, r0, r0
.end _interrupt_handler
.end _interrupt_handler
......@@ -58,7 +58,7 @@ static void rt_hw_serial_isr(void)
RT_ASSERT(serial != RT_NULL);
/* get generic device object */
device = (rt_device_t) serial;
device = (rt_device_t)serial;
/* disable interrupt */
level = rt_hw_interrupt_disable();
......@@ -71,14 +71,14 @@ static void rt_hw_serial_isr(void)
serial->rx_buffer[serial->save_index] = serial->hw_base->Rx_FIFO;
/* move to next position */
serial->save_index++;
serial->save_index ++;
if (serial->save_index >= RT_UART_RX_BUFFER_SIZE)
serial->save_index = 0;
/* if the next position is read index, discard this 'read char' */
if (serial->save_index == serial->read_index)
{
serial->read_index++;
serial->read_index ++;
if (serial->read_index >= RT_UART_RX_BUFFER_SIZE)
serial->read_index = 0;
}
......@@ -93,13 +93,14 @@ static void rt_hw_serial_isr(void)
}
static rt_err_t rt_serial_init(rt_device_t dev)
static rt_err_t rt_serial_init (rt_device_t dev)
{
struct rt_mb_uart_lite* serial = (struct rt_mb_uart_lite*) dev;
RT_ASSERT(serial != RT_NULL);
RT_ASSERT(serial->peripheral_id != XPAR_INTC_0_UARTLITE_1_VEC_ID);
RT_ASSERT(serial->peripheral_id != XPAR_UARTLITE_1_DEVICE_ID);
/* reset rx index */
serial->save_index = 0;
......@@ -113,7 +114,7 @@ static rt_err_t rt_serial_init(rt_device_t dev)
static rt_err_t rt_serial_open(rt_device_t dev, rt_uint16_t oflag)
{
struct rt_mb_uart_lite *serial = (struct rt_mb_uart_lite*) dev;
struct rt_mb_uart_lite *serial = (struct rt_mb_uart_lite*)dev;
RT_ASSERT(serial != RT_NULL);
if (dev->flag & RT_DEVICE_FLAG_INT_RX)
......@@ -122,7 +123,7 @@ static rt_err_t rt_serial_open(rt_device_t dev, rt_uint16_t oflag)
serial->hw_base->CTRL_REG = XUL_CR_ENABLE_INTR; /* enable interrupt */
/* install UART handler */
rt_hw_interrupt_install(serial->peripheral_id, (rt_isr_handler_t) rt_hw_serial_isr, RT_NULL);
rt_hw_interrupt_install(serial->peripheral_id, (rt_isr_handler_t)rt_hw_serial_isr, RT_NULL);
rt_hw_interrupt_umask(serial->peripheral_id);
}
......@@ -131,7 +132,7 @@ static rt_err_t rt_serial_open(rt_device_t dev, rt_uint16_t oflag)
static rt_err_t rt_serial_close(rt_device_t dev)
{
struct rt_mb_uart_lite *serial = (struct rt_mb_uart_lite*) dev;
struct rt_mb_uart_lite *serial = (struct rt_mb_uart_lite*)dev;
RT_ASSERT(serial != RT_NULL);
if (dev->flag & RT_DEVICE_FLAG_INT_RX)
......@@ -143,10 +144,10 @@ static rt_err_t rt_serial_close(rt_device_t dev)
return RT_EOK;
}
static rt_size_t rt_serial_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
static rt_size_t rt_serial_read (rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
rt_uint8_t* ptr;
struct rt_mb_uart_lite *serial = (struct rt_mb_uart_lite*) dev;
struct rt_mb_uart_lite *serial = (struct rt_mb_uart_lite*)dev;
RT_ASSERT(serial != RT_NULL);
/* point to buffer */
......@@ -165,10 +166,11 @@ static rt_size_t rt_serial_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_
{
*ptr = serial->rx_buffer[serial->read_index];
serial->read_index++;
serial->read_index ++;
if (serial->read_index >= RT_UART_RX_BUFFER_SIZE)
serial->read_index = 0;
} else
}
else
{
/* no data in rx buffer */
......@@ -180,40 +182,40 @@ static rt_size_t rt_serial_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_
/* enable interrupt */
rt_hw_interrupt_enable(level);
ptr++;
size--;
ptr ++; size --;
}
return (rt_uint32_t) ptr - (rt_uint32_t) buffer;
} else if (dev->flag & RT_DEVICE_FLAG_DMA_RX)
return (rt_uint32_t)ptr - (rt_uint32_t)buffer;
}
else if (dev->flag & RT_DEVICE_FLAG_DMA_RX)
{
/* not support right now */
RT_ASSERT(0);
} else
}
else
{
/* poll mode */
while (size)
{
/* Wait for Full Rx Buffer */
while (!(serial->hw_base->STAT_REG & XUL_SR_RX_FIFO_VALID_DATA))
;
while (!(serial->hw_base->STAT_REG & XUL_SR_RX_FIFO_VALID_DATA));
/* Read Character */
*ptr = serial->hw_base->Rx_FIFO;
ptr++;
size--;
ptr ++;
size --;
}
return (rt_size_t) ptr - (rt_size_t) buffer;
return (rt_size_t)ptr - (rt_size_t)buffer;
}
return 0;
}
static rt_size_t rt_serial_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
static rt_size_t rt_serial_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
rt_uint8_t* ptr;
struct rt_mb_uart_lite *serial = (struct rt_mb_uart_lite*) dev;
struct rt_mb_uart_lite *serial = (struct rt_mb_uart_lite*)dev;
RT_ASSERT(serial != RT_NULL);
ptr = (rt_uint8_t*) buffer;
......@@ -227,18 +229,20 @@ static rt_size_t rt_serial_write(rt_device_t dev, rt_off_t pos, const void* buff
/* stream mode */
if (*ptr == '\n')
{
while (!(serial->hw_base->STAT_REG & XUL_SR_TX_FIFO_EMPTY))
;
while (!(serial->hw_base->STAT_REG & XUL_SR_TX_FIFO_EMPTY));
serial->hw_base->Tx_FIFO = '\r';
}
/* Wait for Empty Tx Buffer */
while (!(serial->hw_base->STAT_REG & XUL_SR_TX_FIFO_EMPTY)) ;
while (!(serial->hw_base->STAT_REG & XUL_SR_TX_FIFO_EMPTY));
/* Transmit Character */
serial->hw_base->Tx_FIFO = *ptr;
ptr++;
size--;
if (*ptr & 1)
rt_hw_board_led_on(2);
else
rt_hw_board_led_off(2);
ptr ++; size --;
}
}
else
......@@ -246,21 +250,23 @@ static rt_size_t rt_serial_write(rt_device_t dev, rt_off_t pos, const void* buff
while (size)
{
/* Wait for Empty Tx Buffer */
while (!(serial->hw_base->STAT_REG & XUL_SR_TX_FIFO_EMPTY))
;
while (!(serial->hw_base->STAT_REG & XUL_SR_TX_FIFO_EMPTY));
/* Transmit Character */
serial->hw_base->Tx_FIFO = *ptr;
ptr++;
size--;
if (*ptr & 1)
rt_hw_board_led_on(2);
else
rt_hw_board_led_off(2);
ptr ++; size --;
}
}
}
return (rt_size_t) ptr - (rt_size_t) buffer;
return (rt_size_t)ptr - (rt_size_t)buffer;
}
static rt_err_t rt_serial_control(rt_device_t dev, rt_uint8_t cmd, void *args)
static rt_err_t rt_serial_control (rt_device_t dev, rt_uint8_t cmd, void *args)
{
return RT_EOK;
}
......@@ -287,9 +293,9 @@ rt_err_t rt_hw_serial_init()
device = (rt_device_t) &serial1;
/* init serial device private data */
serial1.hw_base = (struct rt_mb_uart_lite_hw*) XPAR_USB_UART_BASEADDR;
serial1.peripheral_id = XPAR_INTC_0_UARTLITE_1_VEC_ID;
serial1.baudrate = 9600;
serial1.hw_base = (struct rt_mb_uart_lite_hw*)XPAR_USB_UART_BASEADDR;
serial1.peripheral_id = XPAR_UARTLITE_1_DEVICE_ID;
serial1.baudrate = 115200;
/* set device virtual interface */
device->init = rt_serial_init;
......@@ -303,6 +309,8 @@ rt_err_t rt_hw_serial_init()
rt_device_register(device, "uart1", RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX);
#endif
return RT_EOK;
}
......@@ -16,6 +16,8 @@
extern void *_SDA_BASE_;
extern void *_SDA2_BASE_;
/**
* This function will initialize thread stack
*
......@@ -26,11 +28,12 @@ extern void *_SDA2_BASE_;
*
* @return stack address
*/
rt_uint8_t *rt_hw_stack_init(void *tentry, void *parameter, rt_uint8_t *stack_addr, void *texit)
rt_uint8_t *rt_hw_stack_init(void *tentry, void *parameter,
rt_uint8_t *stack_addr, void *texit)
{
unsigned long *stk;
stk = (unsigned long *) stack_addr;
stk = (unsigned long *)stack_addr;
stk--;
stk--;
*stk-- = 0; /* r31 */
......@@ -48,9 +51,9 @@ rt_uint8_t *rt_hw_stack_init(void *tentry, void *parameter, rt_uint8_t *stack_ad
*stk-- = 0; /* r19 */
*stk-- = 0; /* r18 */
*stk-- = 0; /* r17 */
*stk-- = (unsigned long) texit - 8; /* r15 = task return address*/
*stk-- = (unsigned long) tentry; /* r14 = entry address*/
*stk-- = (unsigned long) &_SDA_BASE_; /* r13 */
*stk-- = (unsigned long)texit - 8; /* r15 = task return address*/
*stk-- = (unsigned long)tentry; /* r14 = entry address*/
*stk-- = (unsigned long)&_SDA_BASE_; /* r13 */
*stk-- = 0; /* r12 */
*stk-- = 0; /* r11 */
*stk-- = 0; /* r10 */
......@@ -61,8 +64,8 @@ rt_uint8_t *rt_hw_stack_init(void *tentry, void *parameter, rt_uint8_t *stack_ad
*stk-- = (unsigned long) parameter; /* r05 */
*stk-- = 0; /* r04 */
*stk-- = 0; /* r03 */
*stk-- = (unsigned long) &_SDA2_BASE_; /* r02 */
*stk-- = (unsigned long)&_SDA2_BASE_; /* r02 */
*stk = 2; /* enable interrupt */
return (rt_uint8_t *) stk;
return (rt_uint8_t *)stk;
}
......@@ -20,14 +20,17 @@
#include "xintc_i.h"
#include "xintc_l.h"
#define MAX_HANDLERS XPAR_INTC_MAX_NUM_INTR_INPUTS
extern XIntc int_ctl; /* The instance of the Interrupt Controller */
extern rt_uint32_t rt_interrupt_nest;
rt_uint32_t rt_interrupt_from_thread, rt_interrupt_to_thread;
rt_uint32_t rt_thread_switch_interrupt_flag;
void rt_hw_interrupt_handler(int vector)
{
rt_kprintf("Unhandled interrupt %d occured!!!\n", vector);
......@@ -42,11 +45,13 @@ void rt_hw_interrupt_init()
XIntc_Config *CfgPtr;
CfgPtr = &XIntc_ConfigTable[0];
for (index = 0; index < MAX_HANDLERS; index++)
for (index = 0; index < MAX_HANDLERS; index ++)
{
CfgPtr->HandlerTable[index].Handler = (XInterruptHandler) rt_hw_interrupt_handler;
CfgPtr->HandlerTable[index].Handler = (XInterruptHandler)rt_hw_interrupt_handler;
}
/* init interrupt nest, and context in thread sp */
......@@ -63,7 +68,7 @@ void rt_hw_interrupt_init()
void rt_hw_interrupt_mask(int vector)
{
/* disable interrupt */
XIntc_Disable(&int_ctl, vector);
XIntc_Disable(&int_ctl,vector);
}
/**
......@@ -72,7 +77,7 @@ void rt_hw_interrupt_mask(int vector)
*/
void rt_hw_interrupt_umask(int vector)
{
XIntc_Enable(&int_ctl, vector);
XIntc_Enable(&int_ctl,vector);
}
/**
......@@ -87,45 +92,44 @@ void rt_hw_interrupt_install(int vector, rt_isr_handler_t new_handler, rt_isr_ha
CfgPtr = &XIntc_ConfigTable[0];
if (vector >= 0 && vector < MAX_HANDLERS)
if(vector >= 0 && vector < MAX_HANDLERS)
{
if (*old_handler != RT_NULL)
*old_handler = (rt_isr_handler_t) CfgPtr->HandlerTable[vector].Handler;
if (new_handler != RT_NULL)
CfgPtr->HandlerTable[vector].Handler = (XInterruptHandler) new_handler;
if (*old_handler != RT_NULL) *old_handler = (rt_isr_handler_t)CfgPtr->HandlerTable[vector].Handler;
if (new_handler != RT_NULL) CfgPtr->HandlerTable[vector].Handler = (XInterruptHandler)new_handler;
}
}
/*****************************************************************************/
/** copy from XIntc_DeviceInterruptHandler in xintc_l.c nl1031
*
* This function is the primary interrupt handler for the driver. It must be
* connected to the interrupt source such that is called when an interrupt of
* the interrupt controller is active. It will resolve which interrupts are
* active and enabled and call the appropriate interrupt handler. It uses
* the AckBeforeService flag in the configuration data to determine when to
* acknowledge the interrupt. Highest priority interrupts are serviced first.
* The driver can be configured to service only the highest priority interrupt
* or all pending interrupts using the {XIntc_SetOptions()} function or
* the {XIntc_SetIntrSrvOption()} function.
*
* This function assumes that an interrupt vector table has been previously
* initialized. It does not verify that entries in the table are valid before
* calling an interrupt handler.
*
*
* @return None.
*
* @note
*
* The constant XPAR_INTC_MAX_NUM_INTR_INPUTS must be setup for this to compile.
* Interrupt IDs range from 0 - 31 and correspond to the interrupt input signals
* for the interrupt controller. XPAR_INTC_MAX_NUM_INTR_INPUTS specifies the
* highest numbered interrupt input signal that is used.
*
******************************************************************************/
void rt_hw_trap_irq(void)
*
* This function is the primary interrupt handler for the driver. It must be
* connected to the interrupt source such that is called when an interrupt of
* the interrupt controller is active. It will resolve which interrupts are
* active and enabled and call the appropriate interrupt handler. It uses
* the AckBeforeService flag in the configuration data to determine when to
* acknowledge the interrupt. Highest priority interrupts are serviced first.
* The driver can be configured to service only the highest priority interrupt
* or all pending interrupts using the {XIntc_SetOptions()} function or
* the {XIntc_SetIntrSrvOption()} function.
*
* This function assumes that an interrupt vector table has been previously
* initialized. It does not verify that entries in the table are valid before
* calling an interrupt handler.
*
*
* @return None.
*
* @note
*
* The constant XPAR_INTC_MAX_NUM_INTR_INPUTS must be setup for this to compile.
* Interrupt IDs range from 0 - 31 and correspond to the interrupt input signals
* for the interrupt controller. XPAR_INTC_MAX_NUM_INTR_INPUTS specifies the
* highest numbered interrupt input signal that is used.
*
******************************************************************************/
void rt_hw_trap_irq(void )
{
u32 intr_status;
u32 intr_mask = 1;
......@@ -133,6 +137,7 @@ void rt_hw_trap_irq(void)
volatile u32 reg; /* used as bit bucket */
XIntc_Config *cfg_ptr;
/* Get the configuration data using the device ID */
cfg_ptr = &XIntc_ConfigTable[0];
......@@ -203,3 +208,4 @@ void rt_hw_trap_irq(void)
}
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册