# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy import paddle.fluid as fluid import paddle.fluid.layers as layers import paddle.fluid.core as core from paddle.fluid.contrib.layers import BasicGRUUnit from paddle.fluid.executor import Executor from paddle.fluid import framework import numpy as np SIGMOID_THRESHOLD_MIN = -40.0 SIGMOID_THRESHOLD_MAX = 13.0 EXP_MAX_INPUT = 40.0 def sigmoid(x): y = np.copy(x) y[x < SIGMOID_THRESHOLD_MIN] = SIGMOID_THRESHOLD_MIN y[x > SIGMOID_THRESHOLD_MAX] = SIGMOID_THRESHOLD_MAX return 1. / (1. + np.exp(-y)) def tanh(x): y = -2. * x y[y > EXP_MAX_INPUT] = EXP_MAX_INPUT return (2. / (1. + np.exp(y))) - 1. def step(step_in, pre_hidden, gate_w, gate_b, candidate_w, candidate_b): concat_1 = np.concatenate([step_in, pre_hidden], 1) gate_input = np.matmul(concat_1, gate_w) gate_input += gate_b gate_input = sigmoid(gate_input) r, u = np.split(gate_input, indices_or_sections=2, axis=1) r_hidden = r * pre_hidden candidate = np.matmul(np.concatenate([step_in, pre_hidden], 1), candidate_w) candidate += candidate_b c = tanh(candidate) new_hidden = u * pre_hidden + (1 - u) * c return new_hidden class TestBasicGRUUnit(unittest.TestCase): def setUp(self): self.hidden_size = 5 self.batch_size = 5 def test_run(self): x = layers.data(name='x', shape=[-1, self.hidden_size], dtype='float32') pre_hidden = layers.data( name="pre_hidden", shape=[-1, self.hidden_size], dtype='float32') gru_unit = BasicGRUUnit("gru_unit", self.hidden_size) new_hidden = gru_unit(x, pre_hidden) new_hidden.persisbale = True if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) else: place = core.CPUPlace() exe = Executor(place) exe.run(framework.default_startup_program()) param_list = fluid.default_main_program().block(0).all_parameters() # process weight and bias gate_w_name = "gru_unit/BasicGRUUnit_0.w_0" gate_b_name = "gru_unit/BasicGRUUnit_0.b_0" candidate_w_name = "gru_unit/BasicGRUUnit_0.w_1" candidate_b_name = "gru_unit/BasicGRUUnit_0.b_1" gate_w = np.array(fluid.global_scope().find_var(gate_w_name).get_tensor( )) gate_w = np.random.uniform( -0.1, 0.1, size=gate_w.shape).astype('float32') fluid.global_scope().find_var(gate_w_name).get_tensor().set(gate_w, place) gate_b = np.array(fluid.global_scope().find_var(gate_b_name).get_tensor( )) gate_b = np.random.uniform( -0.1, 0.1, size=gate_b.shape).astype('float32') fluid.global_scope().find_var(gate_b_name).get_tensor().set(gate_b, place) candidate_w = np.array(fluid.global_scope().find_var(candidate_w_name) .get_tensor()) candidate_w = np.random.uniform( -0.1, 0.1, size=candidate_w.shape).astype('float32') fluid.global_scope().find_var(candidate_w_name).get_tensor().set( candidate_w, place) candidate_b = np.array(fluid.global_scope().find_var(candidate_b_name) .get_tensor()) candidate_b = np.random.uniform( -0.1, 0.1, size=candidate_b.shape).astype('float32') fluid.global_scope().find_var(candidate_b_name).get_tensor().set( candidate_b, place) step_input_np = np.random.uniform(-0.1, 0.1, ( self.batch_size, self.hidden_size)).astype('float32') pre_hidden_np = np.random.uniform(-0.1, 0.1, ( self.batch_size, self.hidden_size)).astype('float32') out = exe.run(feed={'x': step_input_np, 'pre_hidden': pre_hidden_np}, fetch_list=[new_hidden]) api_out = out[0] np_out = step(step_input_np, pre_hidden_np, gate_w, gate_b, candidate_w, candidate_b) self.assertTrue(np.allclose(api_out, np_out, rtol=1e-4, atol=0)) if __name__ == '__main__': unittest.main()