/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/math/detail/activation_functions.h" #include "paddle/fluid/operators/math/gru_compute.h" #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/sequence2batch.h" namespace paddle { namespace operators { using LoDTensor = framework::LoDTensor; using Tensor = framework::Tensor; template inline void ReorderInitState(const DeviceContext& ctx, const framework::Tensor& src, framework::Vector index_lod, framework::Tensor* dst, bool indexed_src) { math::CopyMatrixRowsFunctor row_shuffle; dst->mutable_data(src.dims(), ctx.GetPlace()); row_shuffle(ctx, src, index_lod, dst, indexed_src); } template class GRUGradKernel : public framework::OpKernel { public: void BatchCompute(const framework::ExecutionContext& context) const { auto* h0 = context.Input("H0"); auto* weight = context.Input("Weight"); const T* weight_data = weight->data(); auto* batch_gate = context.Input("BatchGate"); auto* batch_reset_hidden_prev = context.Input("BatchResetHiddenPrev"); auto* batch_hidden = context.Input("BatchHidden"); auto* hidden = context.Input("Hidden"); auto* hidden_grad = context.Input(framework::GradVarName("Hidden")); auto* input_grad = context.Output(framework::GradVarName("Input")); auto* h0_grad = context.Output(framework::GradVarName("H0")); auto* weight_grad = context.Output(framework::GradVarName("Weight")); auto* bias_grad = context.Output(framework::GradVarName("Bias")); auto gate_dims = batch_gate->dims(); auto hidden_dims = hidden->dims(); int frame_size = hidden_dims[1]; math::LoDTensor2BatchFunctor to_batch; LoDTensor batch_hidden_grad, batch_gate_grad, batch_reset_hidden_prev_grad; batch_hidden_grad.mutable_data(hidden_dims, context.GetPlace()); batch_gate_grad.mutable_data(gate_dims, context.GetPlace()); batch_reset_hidden_prev_grad.mutable_data(hidden_dims, context.GetPlace()); math::SetConstant zero; auto& dev_ctx = context.template device_context(); zero(dev_ctx, &batch_hidden_grad, static_cast(0.0)); zero(dev_ctx, &batch_gate_grad, static_cast(0.0)); zero(dev_ctx, &batch_reset_hidden_prev_grad, static_cast(0.0)); Tensor ordered_h0, ordered_h0_grad; framework::Vector order(batch_gate->lod()[2]); if (h0) { ReorderInitState(dev_ctx, *h0, order, &ordered_h0, true); } if (h0_grad) { ordered_h0_grad.mutable_data(h0_grad->dims(), context.GetPlace()); zero(context.template device_context(), &ordered_h0_grad, static_cast(0.0)); } bool is_reverse = context.Attr("is_reverse"); batch_hidden_grad.set_lod(batch_hidden->lod()); to_batch(dev_ctx, *hidden_grad, &batch_hidden_grad, false, is_reverse); math::GRUMetaValue gru_value; gru_value.gate_weight = const_cast(weight_data); gru_value.state_weight = const_cast(weight_data + 2 * frame_size * frame_size); math::GRUMetaGrad gru_grad; if (weight_grad) { gru_grad.gate_weight_grad = weight_grad->mutable_data(context.GetPlace()); zero(dev_ctx, weight_grad, static_cast(0.0)); gru_grad.state_weight_grad = weight_grad->data() + 2 * frame_size * frame_size; } else { gru_grad.gate_weight_grad = nullptr; gru_grad.state_weight_grad = nullptr; } auto batch_starts = batch_hidden_grad.lod()[0]; size_t num_batch = batch_starts.size() - 1; auto active_node = math::detail::GetActivationType( context.Attr("activation")); auto active_gate = math::detail::GetActivationType( context.Attr("gate_activation")); for (int n = static_cast(num_batch) - 1; n >= 0; n--) { int bstart = static_cast(batch_starts[n]); int bend = static_cast(batch_starts[n + 1]); int cur_batch_size = bend - bstart; Tensor gate_t = batch_gate->Slice(bstart, bend); gru_value.gate_value = gate_t.data(); Tensor reset_hidden_prev_t = batch_reset_hidden_prev->Slice(bstart, bend); gru_value.reset_output_value = reset_hidden_prev_t.data(); Tensor hidden_grad_t = batch_hidden_grad.Slice(bstart, bend); gru_grad.output_grad = hidden_grad_t.data(); Tensor gate_grad_t = batch_gate_grad.Slice(bstart, bend); gru_grad.gate_grad = gate_grad_t.data(); Tensor reset_hidden_prev_grad_t = batch_reset_hidden_prev_grad.Slice(bstart, bend); gru_grad.reset_output_grad = reset_hidden_prev_grad_t.data(); if (n == 0) { gru_value.prev_out_value = h0 ? ordered_h0.data() : nullptr; gru_grad.prev_out_grad = h0 && h0_grad ? ordered_h0_grad.data() : nullptr; } else { int bstart_pre = static_cast(batch_starts[n - 1]); Tensor hidden_prev_t = batch_hidden->Slice(bstart_pre, bstart); gru_value.prev_out_value = hidden_prev_t.data(); Tensor hidden_prev_grad_t = batch_hidden_grad.Slice(bstart_pre, bstart); gru_grad.prev_out_grad = hidden_prev_grad_t.data(); } math::GRUUnitGradFunctor::compute( dev_ctx, gru_value, gru_grad, frame_size, cur_batch_size, active_node, active_gate); } if (input_grad) { input_grad->mutable_data(context.GetPlace()); math::Batch2LoDTensorFunctor to_seq; batch_gate_grad.set_lod(batch_gate->lod()); to_seq(dev_ctx, batch_gate_grad, input_grad); } if (bias_grad) { bias_grad->mutable_data(context.GetPlace()); math::ColwiseSum col_sum; col_sum(dev_ctx, batch_gate_grad, bias_grad); } if (h0 && h0_grad) { ReorderInitState(dev_ctx, ordered_h0_grad, order, h0_grad, false); } } void Compute(const framework::ExecutionContext& context) const override { BatchCompute(context); } }; } // namespace operators } // namespace paddle