# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle import paddle.fluid.core as core from paddle.fluid.framework import _test_eager_guard class TestDygraphInplace(unittest.TestCase): def setUp(self): self.init_data() self.set_np_compare_func() def init_data(self): self.input_var_numpy = np.random.uniform(-5, 5, [10, 20, 1]) self.dtype = "float32" def set_np_compare_func(self): self.np_compare = np.array_equal def non_inplace_api_processing(self, var): return paddle.squeeze(var) def inplace_api_processing(self, var): return paddle.squeeze_(var) def test_inplace_api(self): with _test_eager_guard(): var = paddle.to_tensor(self.input_var_numpy).astype(self.dtype) inplace_var = self.inplace_api_processing(var) self.assertTrue(id(var) == id(inplace_var)) inplace_var.exp_() self.assertTrue(np.array_equal(var.numpy(), inplace_var.numpy())) def test_forward_version(self): with paddle.fluid.dygraph.guard(): with _test_eager_guard(): var = paddle.to_tensor(self.input_var_numpy).astype(self.dtype) self.assertEqual(var.inplace_version, 0) inplace_var = self.inplace_api_processing(var) self.assertEqual(var.inplace_version, 1) inplace_var.exp_() self.assertEqual(var.inplace_version, 2) inplace_var = self.inplace_api_processing(inplace_var) self.assertEqual(var.inplace_version, 3) def test_leaf_inplace_var_error(self): with paddle.fluid.dygraph.guard(): with _test_eager_guard(): var = paddle.to_tensor(self.input_var_numpy).astype(self.dtype) var.stop_gradient = False def leaf_inplace_error(): self.inplace_api_processing(var) self.assertRaises(ValueError, leaf_inplace_error) def test_backward_error(self): # It raises an error because the inplace operator will result # in incorrect gradient computation. with paddle.fluid.dygraph.guard(): with _test_eager_guard(): var_a = paddle.to_tensor(self.input_var_numpy).astype( self.dtype) var_a.stop_gradient = False var_b = var_a**2 # Here, the gradient computation will use the value of var_b var_c = var_b**2 self.inplace_api_processing(var_b) loss = paddle.nn.functional.relu(var_c) with self.assertRaisesRegexp( RuntimeError, "received current_inplace_version:{} != inplace_version_snapshot_:{}". format(1, 0)): loss.backward() def test_backward_success_1(self): # var_b is modified inplace before using it, the inplace operator doesn't result # in incorrect gradient computation. grad_var_a, grad_var_a_inplace = 0, 1 with paddle.fluid.dygraph.guard(): with _test_eager_guard(): var_a = paddle.to_tensor(self.input_var_numpy).astype( self.dtype) var_a.stop_gradient = False var_b = var_a**2 var_c = self.inplace_api_processing( var_b) # var_b is modified inplace before using it # Here, the gradient computation will use the value of var_b var_d = var_c**2 loss = var_d.sum() loss.backward() grad_var_a_inplace = var_a.grad.numpy() with paddle.fluid.dygraph.guard(): with _test_eager_guard(): var_a = paddle.to_tensor(self.input_var_numpy).astype( self.dtype) var_a.stop_gradient = False var_b = var_a**2 var_c = self.non_inplace_api_processing(var_b) var_d = var_c**2 loss = var_d.sum() loss.backward() grad_var_a = var_a.grad.numpy() self.assertTrue(self.np_compare(grad_var_a_inplace, grad_var_a)) def test_backward_success_2(self): # Although var_b is modified inplace after using it, it does not used in gradient computation. # The inplace operator doesn't result in incorrect gradient computation. grad_var_a, grad_var_a_inplace = 0, 1 with paddle.fluid.dygraph.guard(): with _test_eager_guard(): var_a = paddle.to_tensor(self.input_var_numpy).astype( self.dtype) var_a.stop_gradient = False var_b = var_a**2 var_c = self.inplace_api_processing( var_b) # var_b is modified inplace before using it var_d = var_c + var_c # Here, the grad op of sum doesn't use the value of var_b loss = var_d.sum() loss.backward() grad_var_a_inplace = var_a.grad.numpy() with paddle.fluid.dygraph.guard(): with _test_eager_guard(): var_a = paddle.to_tensor(self.input_var_numpy).astype( self.dtype) var_a.stop_gradient = False var_b = var_a**2 var_c = self.non_inplace_api_processing( var_b) # var_b is modified inplace before using it var_d = var_c + var_c # Here, the grad op of sum doesn't use the value of var_b loss = var_d.sum() loss.backward() grad_var_a = var_a.grad.numpy() self.assertTrue(np.array_equal(grad_var_a_inplace, grad_var_a)) # inplace + hook def test_backward_success_3(self): # var_b is modified inplace before using it, the inplace operator doesn't result # in incorrect gradient computation. def double_hook(grad): grad = grad * 2 return grad grad_var_a, grad_var_a_inplace = 0, 1 with paddle.fluid.dygraph.guard(): with _test_eager_guard(): var_a = paddle.to_tensor(self.input_var_numpy).astype( self.dtype) var_a.stop_gradient = False helper = var_a.register_hook(double_hook) var_b = var_a**2 var_c = self.inplace_api_processing( var_b) # var_b is modified inplace before using it # Here, the gradient computation will use the value of var_b var_d = var_c**2 loss = var_d.sum() loss.backward() grad_var_a_inplace = var_a.grad.numpy() with paddle.fluid.dygraph.guard(): with _test_eager_guard(): var_a = paddle.to_tensor(self.input_var_numpy).astype( self.dtype) var_a.stop_gradient = False helper = var_a.register_hook(double_hook) var_b = var_a**2 var_c = self.non_inplace_api_processing(var_b) var_d = var_c**2 loss = var_d.sum() loss.backward() grad_var_a = var_a.grad.numpy() self.assertTrue(self.np_compare(grad_var_a_inplace, grad_var_a)) # inplace + hook def test_backward_success_4(self): # Although var_b is modified inplace after using it, it does not used in gradient computation. # The inplace operator doesn't result in incorrect gradient computation. def double_hook(grad): grad = grad * 2 return grad grad_var_a, grad_var_a_inplace = 0, 1 with paddle.fluid.dygraph.guard(): with _test_eager_guard(): var_a = paddle.to_tensor(self.input_var_numpy).astype( self.dtype) var_a.stop_gradient = False var_a.register_hook(double_hook) var_b = var_a**2 var_c = self.inplace_api_processing( var_b) # var_b is modified inplace before using it var_d = var_c + var_c # Here, the grad op of sum doesn't use the value of var_b loss = var_d.sum() loss.backward() grad_var_a_inplace = var_a.grad.numpy() with paddle.fluid.dygraph.guard(): with _test_eager_guard(): var_a = paddle.to_tensor(self.input_var_numpy).astype( self.dtype) var_a.stop_gradient = False var_a.register_hook(double_hook) var_b = var_a**2 var_c = self.non_inplace_api_processing( var_b) # var_b is modified inplace before using it var_d = var_c + var_c # Here, the grad op of sum doesn't use the value of var_b loss = var_d.sum() loss.backward() grad_var_a = var_a.grad.numpy() self.assertTrue(np.array_equal(grad_var_a_inplace, grad_var_a)) # inplace + hook def test_backward_success_5(self): # var_b is modified inplace before using it, the inplace operator doesn't result # in incorrect gradient computation. def double_hook(grad): grad = grad * 2 return grad grad_var_a, grad_var_a_inplace = 0, 1 with paddle.fluid.dygraph.guard(): with _test_eager_guard(): var_a = paddle.to_tensor(self.input_var_numpy).astype( self.dtype) var_a.stop_gradient = False var_b = var_a**2 var_b.register_hook(double_hook) var_c = self.inplace_api_processing( var_b) # var_b is modified inplace before using it # Here, the gradient computation will use the value of var_b var_d = var_c**2 loss = var_d.sum() loss.backward() grad_var_a_inplace = var_a.grad.numpy() with paddle.fluid.dygraph.guard(): with _test_eager_guard(): var_a = paddle.to_tensor(self.input_var_numpy).astype( self.dtype) var_a.stop_gradient = False var_b = var_a**2 var_b.register_hook(double_hook) var_c = self.non_inplace_api_processing(var_b) var_d = var_c**2 loss = var_d.sum() loss.backward() grad_var_a = var_a.grad.numpy() self.assertTrue(self.np_compare(grad_var_a_inplace, grad_var_a)) # inplace + hook def test_backward_success_6(self): # Although var_b is modified inplace before using it, it does not used in gradient computation. # The inplace operator doesn't result in incorrect gradient computation. def double_hook(grad): grad = grad * 2 return grad grad_var_a, grad_var_a_inplace = 0, 1 with paddle.fluid.dygraph.guard(): with _test_eager_guard(): var_a = paddle.to_tensor(self.input_var_numpy).astype( self.dtype) var_a.stop_gradient = False var_b = var_a**2 var_b.register_hook(double_hook) var_c = self.inplace_api_processing( var_b) # var_b is modified inplace before using it var_d = var_c + var_c # Here, the grad op of sum doesn't use the value of var_b loss = var_d.sum() loss.backward() grad_var_a_inplace = var_a.grad.numpy() with paddle.fluid.dygraph.guard(): with _test_eager_guard(): var_a = paddle.to_tensor(self.input_var_numpy).astype( self.dtype) var_a.stop_gradient = False var_b = var_a**2 var_b.register_hook(double_hook) var_c = self.non_inplace_api_processing( var_b) # var_b is modified inplace before using it var_d = var_c + var_c # Here, the grad op of sum doesn't use the value of var_b loss = var_d.sum() loss.backward() grad_var_a = var_a.grad.numpy() self.assertTrue(np.array_equal(grad_var_a_inplace, grad_var_a)) class TestDygraphInplaceUnsqueeze(TestDygraphInplace): def non_inplace_api_processing(self, var): return paddle.unsqueeze(var, -1) def inplace_api_processing(self, var): return paddle.unsqueeze_(var, -1) class TestDygraphInplaceReshape(TestDygraphInplace): def non_inplace_api_processing(self, var): return paddle.reshape(var, [-1]) def inplace_api_processing(self, var): return paddle.reshape_(var, [-1]) class TestDygraphInplaceFlatten(TestDygraphInplace): def non_inplace_api_processing(self, var): return var.flatten() def inplace_api_processing(self, var): return var.flatten_() """ # This case will fail while using `_C_ops.final_state_scatter`. class TestDygraphInplaceScatter(TestDygraphInplace): def init_data(self): self.input_var_numpy = np.array([[1, 1], [2, 2], [3, 3]]) self.dtype = "float32" def non_inplace_api_processing(self, var): index = paddle.to_tensor([2, 1, 0, 1], dtype='int64') updates = paddle.to_tensor( [[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32') return paddle.scatter(var, index, updates, overwrite=False) def inplace_api_processing(self, var): index = paddle.to_tensor([2, 1, 0, 1], dtype='int64') updates = paddle.to_tensor( [[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32') return paddle.scatter_(var, index, updates, overwrite=False) """ class TestDygraphInplaceElu(TestDygraphInplace): def non_inplace_api_processing(self, var): return paddle.nn.functional.elu(var) def inplace_api_processing(self, var): return paddle.nn.functional.elu_(var) class TestDygraphInplaceRelu(TestDygraphInplace): def non_inplace_api_processing(self, var): return paddle.nn.functional.relu(var) def inplace_api_processing(self, var): return paddle.nn.functional.relu_(var) class TestDygraphInplaceSoftmax(TestDygraphInplace): def non_inplace_api_processing(self, var): return paddle.nn.functional.softmax(var) def inplace_api_processing(self, var): return paddle.nn.functional.softmax_(var) class TestDygraphInplaceTanh(TestDygraphInplace): def non_inplace_api_processing(self, var): return paddle.tanh(var) def inplace_api_processing(self, var): return paddle.tanh_(var) class TestDygraphInplaceCeil(TestDygraphInplace): def non_inplace_api_processing(self, var): return var.ceil() def inplace_api_processing(self, var): return var.ceil_() class TestDygraphInplaceFloor(TestDygraphInplace): def non_inplace_api_processing(self, var): return var.floor() def inplace_api_processing(self, var): return var.floor_() class TestDygraphInplaceExp(TestDygraphInplace): def set_np_compare_func(self): self.np_compare = np.allclose def non_inplace_api_processing(self, var): return var.exp() def inplace_api_processing(self, var): return var.exp_() class TestDygraphInplaceReciprocal(TestDygraphInplace): def non_inplace_api_processing(self, var): return var.reciprocal() def inplace_api_processing(self, var): return var.reciprocal_() class TestDygraphInplaceRound(TestDygraphInplace): def non_inplace_api_processing(self, var): return var.round() def inplace_api_processing(self, var): return var.round_() class TestDygraphInplaceSqrt(TestDygraphInplace): def init_data(self): self.input_var_numpy = np.random.uniform(0, 5, [10, 20, 1]) self.dtype = "float32" def non_inplace_api_processing(self, var): return var.sqrt() def inplace_api_processing(self, var): return var.sqrt_() class TestDygraphInplaceRsqrt(TestDygraphInplaceSqrt): def non_inplace_api_processing(self, var): return var.rsqrt() def inplace_api_processing(self, var): return var.rsqrt_() class TestDygraphInplaceClip(TestDygraphInplace): def non_inplace_api_processing(self, var): return var.clip(0.6, 1.5) def inplace_api_processing(self, var): return var.clip_(0.6, 1.5) class TestDygraphInplaceScale(TestDygraphInplace): def non_inplace_api_processing(self, var): return var.scale(scale=2.0, bias=3.0) def inplace_api_processing(self, var): return var.scale_(scale=2.0, bias=3.0) class TestDygraphInplaceAdd(TestDygraphInplace): def init_data(self): self.input_var_numpy = np.random.rand(2, 3, 4) self.dtype = "float32" self.input_var_numpy_2 = np.random.rand(2, 3, 4).astype(self.dtype) def non_inplace_api_processing(self, var): input_var_2 = paddle.to_tensor(self.input_var_numpy_2) return var.add(input_var_2) def inplace_api_processing(self, var): input_var_2 = paddle.to_tensor(self.input_var_numpy_2) return var.add_(input_var_2) class TestDygraphInplaceSubtract(TestDygraphInplaceAdd): def non_inplace_api_processing(self, var): input_var_2 = paddle.to_tensor(self.input_var_numpy_2) return var.subtract(input_var_2) def inplace_api_processing(self, var): input_var_2 = paddle.to_tensor(self.input_var_numpy_2) return var.subtract_(input_var_2) class TestLossIsInplaceVar(unittest.TestCase): def test_loss_is_inplace_var(self): with paddle.fluid.dygraph.guard(): with _test_eager_guard(): var_a = paddle.ones((2, 2)) var_a.stop_gradient = False var_b = var_a * 2 loss = var_b.tanh_() loss.backward() inplace_grad_var_a = var_a.grad.numpy() with paddle.fluid.dygraph.guard(): with _test_eager_guard(): var_a = paddle.ones((2, 2)) var_a.stop_gradient = False var_b = var_a * 2 loss = var_b.tanh() loss.backward() grad_var_a = var_a.grad.numpy() self.assertTrue(np.array_equal(inplace_grad_var_a, grad_var_a)) class TestContinuouslyInplace(unittest.TestCase): def test_continuously_inplace(self): with _test_eager_guard(): a = paddle.rand([2, 3]) a.stop_gradient = False b = a * 2 b.reshape_([-1]) b.reshape_([2, 3]) b.reshape_([-1]) b.backward() if __name__ == '__main__': unittest.main()