/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/phi/api/lib/api_gen_utils.h" namespace paddle { namespace experimental { /* ------------------ for input ----------------------- */ std::shared_ptr TensorToDenseTensor(const Tensor& tensor) { return std::static_pointer_cast(tensor.impl()); } paddle::optional TensorToDenseTensor( const paddle::optional& tensor) { if (tensor) { return {*std::static_pointer_cast(tensor->impl())}; } return nullptr; } std::unique_ptr> TensorToDenseTensor( const std::vector& tensors) { auto pt_tensors = std::make_unique>(); pt_tensors->reserve(tensors.size()); for (const auto& t : tensors) { pt_tensors->push_back( std::dynamic_pointer_cast(t.impl()).get()); } return pt_tensors; } std::vector TensorToConstDenseTensorPtr( const std::vector& tensors) { std::vector pt_tensors(tensors.size()); for (size_t i = 0; i < tensors.size(); ++i) { pt_tensors[i] = static_cast(tensors[i].impl().get()); } return pt_tensors; } paddle::optional> TensorToConstDenseTensorPtr( const paddle::optional>& tensors) { paddle::optional> pt_tensors; if (tensors) { pt_tensors = paddle::optional>(tensors->size()); for (size_t i = 0; i < tensors->size(); ++i) { pt_tensors->at(i) = static_cast(tensors->at(i).impl().get()); } } return pt_tensors; } std::shared_ptr TensorToSelectedRows(const Tensor& tensor) { return std::static_pointer_cast(tensor.impl()); } paddle::optional TensorToSelectedRows( const paddle::optional& tensor) { if (tensor) { return {*std::static_pointer_cast(tensor->impl())}; } return nullptr; } std::shared_ptr TensorToStringTensor(const Tensor& tensor) { return std::dynamic_pointer_cast(tensor.impl()); } std::shared_ptr TensorToSparseCooTensor( const Tensor& tensor) { return std::static_pointer_cast(tensor.impl()); } /* ----------------- for infer_meta --------------------- */ phi::MetaTensor MakeMetaTensor(const phi::TensorBase& tensor) { return phi::MetaTensor(tensor); } phi::MetaTensor MakeMetaTensor( const paddle::optional& tensor) { if (tensor) { return {phi::MetaTensor(*tensor)}; } return phi::MetaTensor(); } std::vector MakeMetaTensor( const std::vector& tensors) { std::vector meta_tensors; meta_tensors.reserve(tensors.size()); for (const auto* t : tensors) { meta_tensors.emplace_back(*t); } return meta_tensors; } std::vector MakeMetaTensor( const std::vector& tensors) { std::vector meta_tensors; meta_tensors.reserve(tensors.size()); for (auto* t : tensors) { meta_tensors.emplace_back(*t); } return meta_tensors; } phi::MetaTensor MakeMetaTensor( const paddle::optional& tensor) { if (tensor) { return {phi::MetaTensor(*tensor)}; } return phi::MetaTensor(); } phi::MetaTensor MakeMetaTensor( const paddle::optional& tensor) { if (tensor) { return {phi::MetaTensor(*tensor)}; } return phi::MetaTensor(); } phi::MetaTensor MakeMetaTensor( const paddle::optional& tensor) { if (tensor) { return {phi::MetaTensor(*tensor)}; } return phi::MetaTensor(); } std::vector MakeMetaTensor( const paddle::optional>& tensors) { std::vector meta_tensors; if (tensors) { meta_tensors.reserve(tensors->size()); for (auto* t : tensors.get()) { meta_tensors.emplace_back(*t); } } return meta_tensors; } /* ------------------ for output ----------------------- */ phi::DenseTensor* SetKernelOutput(Tensor* out) { if (out) { if (out->impl() == nullptr) { out->set_impl(std::make_shared()); } return static_cast(out->impl().get()); } return nullptr; } std::vector SetKernelOutput(size_t out_size, std::vector* out) { out->reserve(out_size); std::vector results(out_size); for (size_t i = 0; i < out_size; ++i) { auto tensor_ptr = std::make_shared(); results[i] = tensor_ptr.get(); out->emplace_back(); out->back().set_impl(tensor_ptr); } return results; } std::vector SetInplaceVectorKernelOutput( size_t out_size, std::vector* out) { std::vector results(out->size(), nullptr); for (size_t i = 0; i < out->size(); ++i) { results[i] = static_cast(out->at(i).impl().get()); } return results; } std::vector SetInplaceOptionalVectorKernelOutput( size_t out_size, const paddle::optional>& out) { std::vector results; if (out) { results = std::vector(out->size(), nullptr); for (size_t i = 0; i < out->size(); ++i) { results[i] = static_cast(out->at(i).impl().get()); } } return results; } std::vector SetKernelOutput(std::vector* out) { std::vector results(out->size(), nullptr); for (size_t i = 0; i < out->size(); ++i) { if (out->at(i)) { auto tensor_ptr = std::make_shared(); results[i] = tensor_ptr.get(); (*out)[i]->set_impl(tensor_ptr); } } return results; } phi::SelectedRows* SetSelectedRowsKernelOutput(Tensor* out) { if (!out->initialized()) { auto select_rows = std::make_shared(); out->set_impl(select_rows); return select_rows.get(); } return static_cast(out->impl().get()); } phi::TensorBase* SetSparseKernelOutput(Tensor* out, TensorType type) { if (!out->initialized()) { if (type == TensorType::SPARSE_COO) { auto sparse_tensor = std::make_shared( phi::DenseTensor(), phi::DenseTensor(), phi::DDim{-1}); out->set_impl(sparse_tensor); return sparse_tensor.get(); } else if (type == TensorType::SPARSE_CSR) { auto sparse_tensor = std::make_shared(phi::DenseTensor(), phi::DenseTensor(), phi::DenseTensor(), phi::DDim{-1, -1}); out->set_impl(sparse_tensor); return sparse_tensor.get(); } else { auto dense_tensor = std::make_shared(); out->set_impl(dense_tensor); return dense_tensor.get(); } } return out->impl().get(); } phi::TensorBase* SetStringsKernelOutput(Tensor* out, TensorType type) { if (!out->initialized()) { if (type == TensorType::STRING_TENSOR) { if (out->impl() == nullptr) { auto strings_tensor = std::make_shared(); out->set_impl(strings_tensor); } return out->impl().get(); } } return out->impl().get(); } } // namespace experimental } // namespace paddle