/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #ifdef PADDLE_WITH_ASCEND_CL #include #include #include #include "paddle/fluid/operators/activation_op.h" #include "paddle/fluid/operators/npu_op_runner.h" #include "paddle/fluid/operators/stack_op.h" #include "paddle/fluid/operators/unsqueeze_op.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; template class StackNPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto x = ctx.MultiInput("X"); int32_t N = x.size(); PADDLE_ENFORCE_GT( N, 0, platform::errors::InvalidArgument("number of input Tensor <= 0")); std::vector x_list; for (int i = 0; i < N; i++) { x_list.push_back(*x[i]); } int axis = ctx.Attr("axis"); if (axis < 0) { axis = axis + x_list[0].dims().size() + 1; } auto* out = ctx.Output("Y"); auto place = ctx.GetPlace(); auto stream = ctx.template device_context() .stream(); out->mutable_data(place); if (axis != 0) { auto x_dim = x_list[0].dims(); std::vector vec_dim_tmp; vec_dim_tmp.push_back(N); for (auto i = 0; i < x_dim.size(); ++i) { vec_dim_tmp.push_back(x_dim[i]); } Tensor tmp_stack(out->type()); tmp_stack.Resize(framework::make_ddim(vec_dim_tmp)); tmp_stack.mutable_data(ctx.GetPlace()); auto runner = NpuOpRunner("Pack", {x_list}, {tmp_stack}, {{"axis", 0}, {"N", N}}); runner.Run(stream); std::vector vec_trans; for (auto i = 1; i <= x_dim.size(); ++i) { vec_trans.push_back(i); if (i == axis) { vec_trans.push_back(0); } } auto runner_trans_final = NpuOpRunner("TransposeD", {tmp_stack}, {*out}, {{"perm", vec_trans}}); runner_trans_final.Run(stream); } else { auto runner = NpuOpRunner("Pack", {x_list}, {*out}, {{"axis", axis}, {"N", N}}); runner.Run(stream); } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_NPU_KERNEL( stack, ops::StackNPUKernel, ops::StackNPUKernel); #endif