# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import six import numpy as np import paddle.fluid.core as core import paddle.fluid.executor as executor import paddle.fluid.layers as layers import paddle.fluid.optimizer as optimizer from paddle.fluid.framework import Program, program_guard from paddle.fluid.io import save_inference_model, load_inference_model from paddle.fluid.transpiler import memory_optimize class TestBook(unittest.TestCase): def test_fit_line_inference_model(self): MODEL_DIR = "./tmp/inference_model" init_program = Program() program = Program() with program_guard(program, init_program): x = layers.data(name='x', shape=[2], dtype='float32') y = layers.data(name='y', shape=[1], dtype='float32') y_predict = layers.fc(input=x, size=1, act=None) cost = layers.square_error_cost(input=y_predict, label=y) avg_cost = layers.mean(cost) sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001) sgd_optimizer.minimize(avg_cost, init_program) place = core.CPUPlace() exe = executor.Executor(place) exe.run(init_program, feed={}, fetch_list=[]) for i in six.moves.xrange(100): tensor_x = np.array( [[1, 1], [1, 2], [3, 4], [5, 2]]).astype("float32") tensor_y = np.array([[-2], [-3], [-7], [-7]]).astype("float32") exe.run(program, feed={'x': tensor_x, 'y': tensor_y}, fetch_list=[avg_cost]) save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, program) expected = exe.run(program, feed={'x': tensor_x, 'y': tensor_y}, fetch_list=[avg_cost])[0] six.moves.reload_module(executor) # reload to build a new scope exe = executor.Executor(place) [infer_prog, feed_var_names, fetch_vars] = load_inference_model( MODEL_DIR, exe) outs = exe.run( infer_prog, feed={feed_var_names[0]: tensor_x, feed_var_names[1]: tensor_y}, fetch_list=fetch_vars) actual = outs[0] self.assertEqual(feed_var_names, ["x", "y"]) self.assertEqual(len(fetch_vars), 1) print("fetch %s" % str(fetch_vars[0])) self.assertTrue("scale" in str(fetch_vars[0])) self.assertEqual(expected, actual) class TestSaveInferenceModel(unittest.TestCase): def test_save_inference_model(self): MODEL_DIR = "./tmp/inference_model2" init_program = Program() program = Program() # fake program without feed/fetch with program_guard(program, init_program): x = layers.data(name='x', shape=[2], dtype='float32') y = layers.data(name='y', shape=[1], dtype='float32') y_predict = layers.fc(input=x, size=1, act=None) cost = layers.square_error_cost(input=y_predict, label=y) avg_cost = layers.mean(cost) place = core.CPUPlace() exe = executor.Executor(place) exe.run(init_program, feed={}, fetch_list=[]) memory_optimize(program, print_log=True) self.assertEqual(program._is_mem_optimized, True) # will print warning message save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, program) if __name__ == '__main__': unittest.main()