# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. def create_graph(optimizer_list): nsize = len(optimizer_list) edge = [[0] * nsize for _ in range(nsize)] # adjacency matrix indegree = [0] * nsize for i, opt in enumerate(optimizer_list): for j, opt_inner in enumerate(optimizer_list): if opt._can_update(opt_inner): edge[i][j] = 1 # weight indegree[j] += 1 return edge, indegree def topo_sort(edge, indegree): nsize = len(indegree) topo = [-1] * nsize for i in range(nsize): j = 0 while j < nsize and indegree[j] != 0: j += 1 assert j < nsize, 'The combination of meta optimizers contains ring' topo[i] = j indegree[j] = -1 for k in range(nsize): if edge[j][k] != 0: indegree[k] -= 1 return topo def floyd(edge): nsize = len(edge) max_len = -1 max_edge = [-1, -1] max_path = [[[] for _ in range(nsize)] for _ in range(nsize)] for i in range(nsize): for j in range(nsize): if edge[i][j] > 0: max_path[i][j] = [j] if edge[i][j] > max_len: max_len = edge[i][j] max_edge = [i, j] # use floyd algorithm to find max_path for k in range(nsize): for i in range(nsize): for j in range(nsize): # if a-->b-->c, but a-/->c, can only apply a-->b or b-->c, # however if a-->b-->c, and a-->c, can apply a->b->c if edge[i][j] == 0: continue if edge[i][k] == 0 or edge[k][j] == 0: continue if edge[i][j] < edge[i][k] + edge[k][j]: edge[i][j] = edge[i][k] + edge[k][j] max_path[i][j] = max_path[i][k] + max_path[k][j] max_len = edge[i][j] max_edge = [i, j] if max_len == -1: return [0] return [max_edge[0]] + max_path[max_edge[0]][max_edge[1]] def maximum_path_len_algo(optimizer_list): if len(optimizer_list) == 0: return None edge, indegree = create_graph(optimizer_list) topo_sort(edge, indegree) max_path = floyd(edge) candidate = [] for idx in max_path: candidate.append(optimizer_list[idx]) for idx, opt in enumerate(candidate[:-1]): opt._update_inner_optimizer(candidate[idx + 1]) return candidate class StrategyCompilerBase(object): def __init__(self): pass class StrategyCompiler(StrategyCompilerBase): """ StrategyCompiler is responsible for meta optimizers combination Generally, a user can define serveral distributed strategies that can generate serveral meta optimizer. The combination of these meta optimizers should have the right order to apply the optimizers' minimize function. This class is responsible for the executable distributed optimizer generation. """ def __init__(self): super(StrategyCompiler, self).__init__() self._meta_optimizer = None self._graph_optimizer = None self._valid_optimizer_list = None self._user_defined_strategy = None self._meta_optimizer_candidates = [] self._graph_optimizer_candidates = [] def _get_valid_strategy(self, dist_strategy, can_not_apply_optimizer_list): import copy valid_strategy = copy.deepcopy(dist_strategy) invalid_optimizers = [] for candidate in self._meta_optimizer_candidates: is_valid = False for valid in self._meta_optimizers: if candidate.__class__.__name__ == valid.__class__.__name__: is_valid = True break if not is_valid: invalid_optimizers.append(candidate) for opt in invalid_optimizers: opt._disable_strategy(valid_strategy) for opt in can_not_apply_optimizer_list: opt._disable_strategy(valid_strategy) return valid_strategy """ Meta Optimizer Type A: rewrite forward, backward. e.g. recompute, async, sync, pipeline. results will be splitted in async, sync, pipeline Meta Optimizer Type B: rewrite forward, e.g. AMP and the corresponding backward is generated by rewritten forward Meta Opitmizer Type B: rewrite backward. e.g. gradient fusion Meta Optimizer Type D: rewrite optimize. e.g. lars, lamb, localsgd, gradient merge, dgc Meta Optimizer Type E: only transpile to Graph structure for runtime, currently, grad fusion and kernel fusion, sync batch-norm included. we will remove grad fusion and sync batch-norm """ def generate_optimizer(self, loss, role_maker, optimizer, user_defined_strategy, meta_optimizer_list, graph_optimizer_list): self._user_defined_strategy = user_defined_strategy self._meta_optimizer_candidates = meta_optimizer_list self._graph_optimizer_candidates = graph_optimizer_list if len(meta_optimizer_list) == 0 and len(graph_optimizer_list) == 0: return optimizer, None else: # currently, we use heuristic algorithm to select # meta optimizers combinations meta_optimizers = maximum_path_len_algo(meta_optimizer_list) graph_optimizers = maximum_path_len_algo(graph_optimizer_list) # should design a distributed strategy update interface # when we have finally decided the combination of meta_optimizer # and graph_optimizer, the corresponding distributed strategy # should be updated. self._meta_optimizers = meta_optimizers self._graph_optimizers = graph_optimizers return_meta = None if meta_optimizers == None else meta_optimizers[ 0] return_graph = None if graph_optimizers == None else graph_optimizers[ 0] if meta_optimizers == None or graph_optimizers == None: return return_meta, return_graph # do heuristic filter here, if any meta optimizer in graph optimizers is in # any meta optimizers' black list, set return_graph to None need_graph_opt = True for graph_opt in graph_optimizers: for program_opt in meta_optimizers: if graph_opt.__class__.__name__ in program_opt.meta_optimizers_black_list: need_graph_opt = False if not need_graph_opt: return_graph = None return return_meta, return_graph