// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/tests/api/tester_helper.h" DEFINE_bool(with_precision_check, true, "turn on test"); namespace paddle { namespace inference { using namespace framework; // NOLINT using namespace contrib; // NOLINT struct DataRecord { std::vector>> link_step_data_all; std::vector> week_data_all, minute_data_all; std::vector lod1, lod2, lod3; std::vector> rnn_link_data, rnn_week_datas, rnn_minute_datas; size_t num_samples; // total number of samples size_t batch_iter{0}; size_t batch_size{1}; DataRecord() = default; explicit DataRecord(const std::string &path, int batch_size = 1) : batch_size(batch_size) { Load(path); } DataRecord NextBatch() { DataRecord data; size_t batch_end = batch_iter + batch_size; // NOTE skip the final batch, if no enough data is provided. if (batch_end <= link_step_data_all.size()) { data.link_step_data_all.assign(link_step_data_all.begin() + batch_iter, link_step_data_all.begin() + batch_end); data.week_data_all.assign(week_data_all.begin() + batch_iter, week_data_all.begin() + batch_end); data.minute_data_all.assign(minute_data_all.begin() + batch_iter, minute_data_all.begin() + batch_end); // Prepare LoDs data.lod1.push_back(0); data.lod2.push_back(0); data.lod3.push_back(0); CHECK(!data.link_step_data_all.empty()) << "empty"; CHECK(!data.week_data_all.empty()); CHECK(!data.minute_data_all.empty()); CHECK_EQ(data.link_step_data_all.size(), data.week_data_all.size()); CHECK_EQ(data.minute_data_all.size(), data.link_step_data_all.size()); for (size_t j = 0; j < data.link_step_data_all.size(); j++) { for (const auto &d : data.link_step_data_all[j]) { data.rnn_link_data.push_back(d); } data.rnn_week_datas.push_back(data.week_data_all[j]); data.rnn_minute_datas.push_back(data.minute_data_all[j]); // calculate lod data.lod1.push_back(data.lod1.back() + data.link_step_data_all[j].size()); data.lod3.push_back(data.lod3.back() + 1); for (size_t i = 1; i < data.link_step_data_all[j].size() + 1; i++) { data.lod2.push_back(data.lod2.back() + data.link_step_data_all[j].size()); } } } batch_iter += batch_size; return data; } void Load(const std::string &path) { std::ifstream file(path); std::string line; int num_lines = 0; while (std::getline(file, line)) { num_lines++; std::vector data; split(line, ':', &data); std::vector> link_step_data; std::vector link_datas; split(data[0], '|', &link_datas); for (auto &step_data : link_datas) { std::vector tmp; split_to_float(step_data, ',', &tmp); link_step_data.push_back(tmp); } // load week data std::vector week_data; split_to_float(data[2], ',', &week_data); // load minute data std::vector minute_data; split_to_float(data[1], ',', &minute_data); link_step_data_all.push_back(std::move(link_step_data)); week_data_all.push_back(std::move(week_data)); minute_data_all.push_back(std::move(minute_data)); } num_samples = num_lines; } }; void PrepareInputs(std::vector *input_slots, DataRecord *data, int batch_size) { PaddleTensor lod_attention_tensor, init_zero_tensor, lod_tensor_tensor, week_tensor, minute_tensor; lod_attention_tensor.name = "data_lod_attention"; init_zero_tensor.name = "cell_init"; lod_tensor_tensor.name = "data"; week_tensor.name = "week"; minute_tensor.name = "minute"; auto one_batch = data->NextBatch(); std::vector rnn_link_data_shape( {static_cast(one_batch.rnn_link_data.size()), static_cast(one_batch.rnn_link_data.front().size())}); lod_attention_tensor.shape.assign({1, 2}); lod_attention_tensor.lod.assign({one_batch.lod1, one_batch.lod2}); init_zero_tensor.shape.assign({batch_size, 15}); init_zero_tensor.lod.assign({one_batch.lod3}); lod_tensor_tensor.shape = rnn_link_data_shape; lod_tensor_tensor.lod.assign({one_batch.lod1}); // clang-format off week_tensor.shape.assign( {static_cast(one_batch.rnn_week_datas.size()), static_cast(one_batch.rnn_week_datas.front().size())}); week_tensor.lod.assign({one_batch.lod3}); minute_tensor.shape.assign( {static_cast(one_batch.rnn_minute_datas.size()), static_cast(one_batch.rnn_minute_datas.front().size())}); minute_tensor.lod.assign({one_batch.lod3}); // clang-format on // assign data TensorAssignData(&lod_attention_tensor, std::vector>({{0, 0}})); std::vector tmp_zeros(batch_size * 15, 0.); TensorAssignData(&init_zero_tensor, {tmp_zeros}); TensorAssignData(&lod_tensor_tensor, one_batch.rnn_link_data); TensorAssignData(&week_tensor, one_batch.rnn_week_datas); TensorAssignData(&minute_tensor, one_batch.rnn_minute_datas); // Set inputs. auto init_zero_tensor1 = init_zero_tensor; init_zero_tensor1.name = "hidden_init"; input_slots->assign({week_tensor, init_zero_tensor, minute_tensor, init_zero_tensor1, lod_attention_tensor, lod_tensor_tensor}); for (auto &tensor : *input_slots) { tensor.dtype = PaddleDType::FLOAT32; } } void PrepareZeroCopyInputs(ZeroCopyTensor *lod_attention_tensor, ZeroCopyTensor *cell_init_tensor, ZeroCopyTensor *data_tensor, ZeroCopyTensor *hidden_init_tensor, ZeroCopyTensor *week_tensor, ZeroCopyTensor *minute_tensor, DataRecord *data_record, int batch_size) { auto one_batch = data_record->NextBatch(); std::vector rnn_link_data_shape( {static_cast(one_batch.rnn_link_data.size()), static_cast(one_batch.rnn_link_data.front().size())}); lod_attention_tensor->Reshape({1, 2}); lod_attention_tensor->SetLoD({one_batch.lod1, one_batch.lod2}); cell_init_tensor->Reshape({batch_size, 15}); cell_init_tensor->SetLoD({one_batch.lod3}); hidden_init_tensor->Reshape({batch_size, 15}); hidden_init_tensor->SetLoD({one_batch.lod3}); data_tensor->Reshape(rnn_link_data_shape); data_tensor->SetLoD({one_batch.lod1}); week_tensor->Reshape( {static_cast(one_batch.rnn_week_datas.size()), static_cast(one_batch.rnn_week_datas.front().size())}); week_tensor->SetLoD({one_batch.lod3}); minute_tensor->Reshape( {static_cast(one_batch.rnn_minute_datas.size()), static_cast(one_batch.rnn_minute_datas.front().size())}); minute_tensor->SetLoD({one_batch.lod3}); // assign data float arr0[] = {0, 0}; std::vector zeros(batch_size * 15, 0); std::copy_n(arr0, 2, lod_attention_tensor->mutable_data(PaddlePlace::kCPU)); std::copy_n(arr0, 2, data_tensor->mutable_data(PaddlePlace::kCPU)); std::copy_n(zeros.begin(), zeros.size(), cell_init_tensor->mutable_data(PaddlePlace::kCPU)); std::copy_n(zeros.begin(), zeros.size(), hidden_init_tensor->mutable_data(PaddlePlace::kCPU)); ZeroCopyTensorAssignData(data_tensor, one_batch.rnn_link_data); ZeroCopyTensorAssignData(week_tensor, one_batch.rnn_week_datas); ZeroCopyTensorAssignData(minute_tensor, one_batch.rnn_minute_datas); } void SetConfig(AnalysisConfig *cfg) { cfg->prog_file = FLAGS_infer_model + "/__model__"; cfg->param_file = FLAGS_infer_model + "/param"; cfg->use_gpu = false; cfg->device = 0; cfg->specify_input_name = true; cfg->enable_ir_optim = true; cfg->ir_passes.clear(); // Do not exclude any pass. } void SetInput(std::vector> *inputs) { DataRecord data(FLAGS_infer_data, FLAGS_batch_size); std::vector input_slots; int epoch = FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1; LOG(INFO) << "number of samples: " << epoch * FLAGS_batch_size; for (int bid = 0; bid < epoch; ++bid) { PrepareInputs(&input_slots, &data, FLAGS_batch_size); (*inputs).emplace_back(input_slots); } } // Easy for profiling independently. TEST(Analyzer_rnn1, profile) { contrib::AnalysisConfig cfg; SetConfig(&cfg); std::vector outputs; std::vector> input_slots_all; SetInput(&input_slots_all); TestPrediction(cfg, input_slots_all, &outputs, FLAGS_num_threads); } // Check the fuse status TEST(Analyzer_rnn1, fuse_statis) { contrib::AnalysisConfig cfg; SetConfig(&cfg); int num_ops; auto predictor = CreatePaddlePredictor(cfg); auto fuse_statis = GetFuseStatis( static_cast(predictor.get()), &num_ops); ASSERT_TRUE(fuse_statis.count("fc_fuse")); EXPECT_EQ(fuse_statis.at("fc_fuse"), 1); EXPECT_EQ(fuse_statis.at("fc_nobias_lstm_fuse"), 2); // bi-directional LSTM EXPECT_EQ(fuse_statis.at("seq_concat_fc_fuse"), 1); EXPECT_EQ(num_ops, 13); // After graph optimization, only 13 operators exists. } // Compare result of NativeConfig and AnalysisConfig TEST(Analyzer_rnn1, compare) { contrib::AnalysisConfig cfg; SetConfig(&cfg); std::vector> input_slots_all; SetInput(&input_slots_all); CompareNativeAndAnalysis(cfg, input_slots_all); } // Test Multi-Thread. TEST(Analyzer_rnn1, multi_thread) { contrib::AnalysisConfig cfg; SetConfig(&cfg); std::vector outputs; std::vector> input_slots_all; SetInput(&input_slots_all); TestPrediction(cfg, input_slots_all, &outputs, 4 /* multi_thread */); } bool CompareTensors(const framework::Scope &a_scope, const framework::Scope &b_scope, const std::vector &tensors) { for (auto &x : tensors) { auto *a_var = a_scope.FindVar(x); auto *b_var = b_scope.FindVar(x); if (a_var && b_var) { if (a_var->Type() == typeid(framework::LoDTensor) || a_var->Type() == typeid(framework::Tensor)) { LOG(INFO) << "comparing tensor " << x; auto &a_t = a_var->Get(); auto &b_t = b_var->Get(); if (!inference::CompareTensor(a_t, b_t)) { LOG(ERROR) << string::Sprintf("tensor %s not match in two scopes", x); } } else { LOG(INFO) << "skip no tensor " << x; } } else { LOG(INFO) << "skip tensor " << x; } } return true; } // Validate that the AnalysisPredictor + ZeroCopyTensor really works by testing // on the complex RNN1 model. TEST(Analyzer_rnn1, ZeroCopy) { AnalysisConfig config; SetConfig(&config); config.use_feed_fetch_ops = false; PaddlePlace place; int output_size{0}; auto predictor = CreatePaddlePredictor(config); config.use_feed_fetch_ops = true; auto native_predictor = CreatePaddlePredictor(config); config.use_feed_fetch_ops = true; // the analysis predictor needs feed/fetch. auto analysis_predictor = CreatePaddlePredictor(config); #define NEW_TENSOR(name__) \ auto name__##_tensor = predictor->GetInputTensor(#name__); NEW_TENSOR(data_lod_attention); NEW_TENSOR(cell_init); NEW_TENSOR(data); NEW_TENSOR(week); NEW_TENSOR(minute); NEW_TENSOR(hidden_init); // Prepare data for AnalysisPredictor DataRecord data(FLAGS_infer_data, FLAGS_batch_size); PrepareZeroCopyInputs(data_lod_attention_tensor.get(), cell_init_tensor.get(), data_tensor.get(), hidden_init_tensor.get(), week_tensor.get(), minute_tensor.get(), &data, FLAGS_batch_size); // Prepare data for NativePredictor std::vector> native_inputs; SetInput(&native_inputs); std::vector native_outputs; std::vector analysis_outputs; auto output_tensor = predictor->GetOutputTensor("final_output.tmp_1"); // Run analysis predictor int num_ops; auto fuse_statis = GetFuseStatis(predictor.get(), &num_ops); ASSERT_TRUE(fuse_statis.count("fc_fuse")); ASSERT_EQ(fuse_statis.at("fc_fuse"), 1); ASSERT_EQ(fuse_statis.at("fc_nobias_lstm_fuse"), 2); // bi-directional LSTM ASSERT_EQ(fuse_statis.at("seq_concat_fc_fuse"), 1); ASSERT_EQ(num_ops, 13); // After graph optimization, only 13 operators exists. Timer timer; double total_time{0}; double native_total_time{0}; double analysis_total_time{0.}; for (int i = 0; i < FLAGS_repeat; i++) { timer.tic(); predictor->ZeroCopyRun(); total_time += timer.toc(); } auto *output_data = output_tensor->data(&place, &output_size); ASSERT_GT(output_size, 0); // more than one output! for (int i = 0; i < FLAGS_repeat; i++) { // Run native predictor. timer.tic(); ASSERT_TRUE(native_predictor->Run(native_inputs.front(), &native_outputs)); native_total_time += timer.toc(); } for (int i = 0; i < FLAGS_repeat; i++) { timer.tic(); ASSERT_TRUE( analysis_predictor->Run(native_inputs.front(), &analysis_outputs)); analysis_total_time += timer.toc(); } if (!FLAGS_with_precision_check) { return; } int native_output_size = VecReduceToInt(native_outputs.front().shape); EXPECT_EQ(native_output_size, output_size); // Compare tensors between analysis and zerocopy auto *p0 = static_cast(predictor.get()); auto *p1 = static_cast(analysis_predictor.get()); auto *p2 = static_cast(native_predictor.get()); std::vector tensor_names; for (auto &var_desc : p0->program().Block(0).AllVars()) { tensor_names.push_back(var_desc->Name()); } LOG(INFO) << "Comparing tensors"; ASSERT_TRUE( CompareTensors(*p0->scope(), *p1->scope(), {"final_output.tmp_1"})); ASSERT_TRUE( CompareTensors(*p0->scope(), *p2->scope(), {"final_output.tmp_1"})); LOG(INFO) << "output1 " << inference::LoDTensorSummary( p0->scope() ->FindVar("final_output.tmp_1") ->Get()); LOG(INFO) << "output2 " << inference::LoDTensorSummary( p1->scope() ->FindVar("final_output.tmp_1") ->Get()); LOG(INFO) << "output3 " << inference::LoDTensorSummary( p2->scope() ->FindVar("final_output.tmp_1") ->Get()); for (int i = 0; i < output_size; i++) { LOG(INFO) << output_data[i] << " " << static_cast(native_outputs.front().data.data())[i] << " " << static_cast(analysis_outputs.front().data.data())[i]; EXPECT_NEAR(output_data[i], static_cast(native_outputs.front().data.data())[i], 1e-3); } LOG(INFO) << "batch_size: " << FLAGS_batch_size; LOG(INFO) << "zero average time: " << total_time / (FLAGS_repeat * FLAGS_batch_size); LOG(INFO) << "analysis average time: " << analysis_total_time / (FLAGS_repeat * FLAGS_batch_size); LOG(INFO) << "native average time: " << native_total_time / (FLAGS_repeat * FLAGS_batch_size); } TEST(Analyzer_rnn1, ZeroCopyMultiThread) { AnalysisConfig config; SetConfig(&config); config.use_feed_fetch_ops = false; #define NEW_TENSOR(name__) \ auto name__##_tensor = predictor->GetInputTensor(#name__); auto base_predictor = CreatePaddlePredictor(config); double total_time_of_threads{0}; std::vector threads; std::vector> predictors; for (int tid = 0; tid < FLAGS_num_threads; tid++) { predictors.emplace_back(CreatePaddlePredictor(config)); } for (int tid = 0; tid < FLAGS_num_threads; tid++) { threads.emplace_back([config, &total_time_of_threads, &predictors, tid] { // auto predictor = base_predictor->Clone(); auto &predictor = predictors[tid]; NEW_TENSOR(data_lod_attention); NEW_TENSOR(cell_init); NEW_TENSOR(data); NEW_TENSOR(week); NEW_TENSOR(minute); NEW_TENSOR(hidden_init); // Prepare data for AnalysisPredictor DataRecord data(FLAGS_infer_data, FLAGS_batch_size); Timer timer; double total_time{0}; for (int i = 0; i < FLAGS_repeat; i++) { PrepareZeroCopyInputs(data_lod_attention_tensor.get(), cell_init_tensor.get(), data_tensor.get(), hidden_init_tensor.get(), week_tensor.get(), minute_tensor.get(), &data, FLAGS_batch_size); timer.tic(); predictor->ZeroCopyRun(); total_time += timer.toc(); } total_time_of_threads += total_time; LOG(INFO) << "thread time: " << total_time / FLAGS_repeat; }); } for (auto &t : threads) { t.join(); } LOG(INFO) << "average time: " << total_time_of_threads / FLAGS_num_threads / FLAGS_repeat; } } // namespace inference } // namespace paddle