// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include <Eigen/Dense> #include "paddle/phi/kernels/qr_kernel.h" #include "paddle/phi/backends/cpu/cpu_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/complex_functors.h" namespace phi { static inline std::tuple<bool, bool> ParseQrMode(const std::string& mode) { bool compute_q; bool reduced; if (mode == "reduced") { compute_q = true; reduced = true; } else if (mode == "complete") { compute_q = true; reduced = false; } else if (mode == "r") { compute_q = false; reduced = true; } else { PADDLE_THROW(errors::InvalidArgument( "QR received unrecognized mode '%s'" " but expected one of 'reduced' (default), 'r', or 'complete'", mode)); } return std::make_tuple(compute_q, reduced); } template <typename T, typename Context> void QrKernel(const Context& ctx, const DenseTensor& x, const std::string& mode, DenseTensor* q, DenseTensor* r) { bool compute_q; bool reduced_mode; std::tie(compute_q, reduced_mode) = ParseQrMode(mode); auto numel = x.numel(); PADDLE_ENFORCE_GT( numel, 0, errors::PreconditionNotMet("The input of QR is empty.")); auto x_dims = x.dims(); int x_rank = x_dims.size(); int m = x_dims[x_rank - 2]; int n = x_dims[x_rank - 1]; int min_mn = std::min(m, n); int k = reduced_mode ? min_mn : m; int batch_size = numel / (m * n); int x_stride = m * n; int q_stride = m * k; int r_stride = k * n; auto* x_data = x.data<phi::dtype::Real<T>>(); T* q_data = nullptr; if (compute_q) { q_data = ctx.template Alloc<phi::dtype::Real<T>>( q, batch_size * m * k * sizeof(phi::dtype::Real<T>)); } auto* r_data = ctx.template Alloc<phi::dtype::Real<T>>( r, batch_size * k * n * sizeof(phi::dtype::Real<T>)); // Implement QR by calling Eigen for (int i = 0; i < batch_size; ++i) { const T* x_matrix_ptr = x_data + i * x_stride; T* r_matrix_ptr = r_data + i * r_stride; using EigenDynamicMatrix = Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>; auto x_matrix = Eigen::Map<const EigenDynamicMatrix>(x_matrix_ptr, m, n); Eigen::HouseholderQR<EigenDynamicMatrix> qr(x_matrix); if (reduced_mode) { auto qr_top_matrix = qr.matrixQR().block(0, 0, min_mn, n); auto r_matrix_view = qr_top_matrix.template triangularView<Eigen::Upper>(); auto r_matrix = EigenDynamicMatrix(r_matrix_view); memcpy(r_matrix_ptr, r_matrix.data(), r_matrix.size() * sizeof(T)); } else { auto r_matrix_view = qr.matrixQR().template triangularView<Eigen::Upper>(); auto r_matrix = EigenDynamicMatrix(r_matrix_view); memcpy(r_matrix_ptr, r_matrix.data(), r_matrix.size() * sizeof(T)); } if (compute_q) { T* q_matrix_ptr = q_data + i * q_stride; if (reduced_mode) { auto q_matrix = qr.householderQ() * EigenDynamicMatrix::Identity(m, min_mn); q_matrix.transposeInPlace(); memcpy(q_matrix_ptr, q_matrix.data(), q_matrix.size() * sizeof(T)); } else { auto q_matrix = qr.householderQ() * EigenDynamicMatrix::Identity(m, m); q_matrix.transposeInPlace(); memcpy(q_matrix_ptr, q_matrix.data(), q_matrix.size() * sizeof(T)); } } } } } // namespace phi PD_REGISTER_KERNEL(qr, CPU, ALL_LAYOUT, phi::QrKernel, float, double) {}