# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import os import re import logging import numpy as np import shutil from inspect import isgeneratorfunction from .... import io from .... import core from .... import framework from .... import unique_name from ....executor import global_scope, Executor from ....framework import IrGraph from ....log_helper import get_logger from .quantization_pass import QuantizationTransformPass, QuantizationTransformPassV2, QuantizationFreezePass, QuantWeightPass, AddQuantDequantPass, AddQuantDequantPassV2 from .cal_kl_threshold import cal_kl_threshold from .adaround import run_adaround from . import utils __all__ = ['PostTrainingQuantization', 'WeightQuantization'] _logger = get_logger( __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s') def _all_persistable_var_names(program): persistable_var_names = [] for var in program.list_vars(): if var.persistable: persistable_var_names.append(var.name) return persistable_var_names def _remove_unused_var_nodes(graph): all_used_vars = set() ops = graph.all_op_nodes() for op_node in ops: for input_node in op_node.inputs: all_used_vars.add(input_node) for output_node in op_node.outputs: all_used_vars.add(output_node) all_used_vars = {n.node for n in all_used_vars} all_unused_vars = { n for n in filter(lambda node: node.node not in all_used_vars, graph.all_var_nodes()) } graph.safe_remove_nodes(all_unused_vars) return graph def _remove_ctrl_vars(graph): remove_ctr_vars = set() for node in graph.all_var_nodes(): if node.is_ctrl_var(): remove_ctr_vars.add(node) graph.safe_remove_nodes(remove_ctr_vars) return graph def _apply_pass(scope, graph, pass_name, attrs=None, attr_values=None, debug=False): ir_pass = core.get_pass(pass_name) cpp_graph = graph.graph if not cpp_graph.has('__param_scope__'): cpp_graph.set_not_owned('__param_scope__', scope) if attrs: assert attr_values and len(attrs) == len( attr_values), "Different number of pass attributes and their values." for attr, value in zip(attrs, attr_values): ir_pass.set(attr, value) ir_pass.apply(cpp_graph) if debug: graph.draw('.', 'qat_fp32_{}'.format(pass_name), graph.all_op_nodes()) _remove_unused_var_nodes(graph) return graph class PostTrainingQuantization(object): """ Utilizing post training quantization methon to quantize the FP32 model, and it uses calibrate data to get the quantization information for all quantized variables. """ def __init__(self, executor=None, scope=None, model_dir=None, model_filename=None, params_filename=None, batch_generator=None, sample_generator=None, data_loader=None, batch_size=10, batch_nums=None, algo="KL", hist_percent=0.99999, quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"], round_type='round', learning_rate=0.001, is_full_quantize=False, bias_correction=False, activation_bits=8, weight_bits=8, activation_quantize_type='range_abs_max', weight_quantize_type='channel_wise_abs_max', onnx_format=False, optimize_model=False, is_use_cache_file=False, cache_dir=None): ''' Constructor. Args: executor(fluid.Executor): The executor to load, run and save the quantized model. scope(fluid.Scope, optional): The scope of the program, use it to load and save variables. If scope=None, get scope by global_scope(). model_dir(str): The path of the fp32 model that will be quantized, and the model and params files are under the path. model_filename(str, optional): The name of file to load the inference program. If it is None, the default filename '__model__' will be used. Default is 'None'. params_filename(str, optional): The name of file to load all parameters. When all parameters were saved in a single binary file, set it as the real filename. If parameters were saved in separate files, set it as 'None'. Default is 'None'. batch_generator(Python Generator): The batch generator provides calibrate data for DataLoader, and it returns a batch every time. Note that, sample_generator and batch_generator, only one should be set. Beisdes, batch_generator supports lod tensor. sample_generator(Python Generator): The sample generator provides calibrate data for DataLoader, and it only returns a sample every time. Note that, sample_generator and batch_generator, only one should be set. Beisdes, sample_generator dose not support lod tensor. data_loader(Python Generator, Paddle.io.DataLoader, optional): The Generator or Dataloader provides calibrate data, and it could return a batch every time. batch_size(int, optional): The batch size of DataLoader. Default is 10. batch_nums(int, optional): If batch_nums is not None, the number of calibrate data is batch_size*batch_nums. If batch_nums is None, use all data provided by sample_generator as calibrate data. algo(str, optional): If algo='KL', use KL-divergenc method to get the KL threshold for quantized activations and get the abs_max value for quantized weights. If algo='abs_max', get the abs max value for activations and weights. If algo= 'min_max', get the min and max value for quantized activations and weights. If algo='avg', get the average value among the max values for activations. If algo= 'hist', get the value of 'hist_percent' quantile as the threshold. If algo='mse', get the value which makes the quantization mse loss minimal. Default is KL. hist_percent(float, optional): The threshold of algo 'hist' for activations. Default is 0.99999. quantizable_op_type(list[str], optional): List the type of ops that will be quantized. Default is ["conv2d", "depthwise_conv2d", "mul"]. round_type(str, optional): The method of converting the quantized weights value float->int. Currently supports ['round', 'adaround'] methods. Default is `round`, which is rounding nearest to the nearest whole number. learning_rate(float, optional): The learning rate of adaround method. is_full_quantized(bool, optional): If set is_full_quantized as True, apply quantization to all supported quantizable op type. If set is_full_quantized as False, only apply quantization to the op type according to the input quantizable_op_type. bias_correction(bool, optional): If set as True, use the bias correction method of https://arxiv.org/abs/1810.05723. Default is False. activation_bits(int): quantization bit number for activation. weight_bits(int, optional): quantization bit number for weights. activation_quantize_type(str): quantization type for activation, now support 'range_abs_max', 'moving_average_abs_max' and 'abs_max'. This param only specifies the fake ops in saving quantized model. If it is 'range_abs_max' or 'moving_average_abs_max', we save the scale obtained by post training quantization in fake ops. Note that, if it is 'abs_max', the scale will not be saved in fake ops. weight_quantize_type(str): quantization type for weights, support 'abs_max' and 'channel_wise_abs_max'. This param only specifies the fake ops in saving quantized model, and we save the scale obtained by post training quantization in fake ops. Compared to 'abs_max', the model accuracy is usually higher when it is 'channel_wise_abs_max'. onnx_format(bool): Whether to export the quantized model with format of ONNX. Default is False. optimize_model(bool, optional): If set optimize_model as True, it applies some passes to the model before quantization, and it supports `conv2d/depthwise_conv2d + bn` pass so far. Some targets require the weights are quantized by tensor-wise method, which means the weights scale for all channel are the same. However, if fuse `conv2d/depthwise_conv2d + bn`, the weights scale for all channel will be different. In address this problem, fuse the pattern before quantization. Default False. is_use_cache_file(bool, optional): This param is deprecated. cache_dir(str, optional): This param is deprecated. Returns: None Examples: .. code-block:: python import paddle.fluid as fluid from paddle.fluid.contrib.slim.quantization import PostTrainingQuantization exe = fluid.Executor(fluid.CPUPlace()) model_dir = path/to/fp32_model_params # set model_filename as None when the filename is __model__, # otherwise set it as the real filename model_filename = None # set params_filename as None when all parameters were saved in # separate files, otherwise set it as the real filename params_filename = None save_model_path = path/to/save_model_path # prepare the sample generator according to the model, and the # sample generator must return a sample every time. The reference # document: https://www.paddlepaddle.org.cn/documentation/docs/zh # /user_guides/howto/prepare_data/use_py_reader.html sample_generator = your_sample_generator batch_size = 10 batch_nums = 10 algo = "KL" quantizable_op_type = ["conv2d", "depthwise_conv2d", "mul"] ptq = PostTrainingQuantization( executor=exe, sample_generator=sample_generator, model_dir=model_dir, model_filename=model_filename, params_filename=params_filename, batch_size=batch_size, batch_nums=batch_nums, algo=algo, quantizable_op_type=quantizable_op_type) ptq.quantize() ptq.save_quantized_model(save_model_path) ''' self._support_activation_quantize_type = [ 'range_abs_max', 'moving_average_abs_max', 'abs_max' ] self._support_weight_quantize_type = ['abs_max', 'channel_wise_abs_max'] self._support_algo_type = [ 'KL', 'hist', 'avg', 'mse', 'emd', 'abs_max', 'min_max' ] assert round_type in ['adaround', 'round'] self._round_type = round_type self._learning_rate = learning_rate self._dynamic_quantize_op_type = ['lstm'] self._support_quantize_op_type = \ list(set(utils._weight_supported_quantizable_op_type + utils._act_supported_quantizable_op_type + self._dynamic_quantize_op_type)) # Check inputs assert executor is not None, "The executor cannot be None." assert model_dir is not None, "The model_dir cannot be None." assert any([gen is not None] for gen in [sample_generator, batch_generator, data_loader]), "The sample_generator, batch_generator " \ "and data_loader cannot be None in the same time." if data_loader is not None: assert isinstance(data_loader, (io.DataLoader, type(isgeneratorfunction))), \ "data_loader only accepts `paddle.io.DataLoader` or Generator instance." assert batch_size > 0, "The batch_size should be greater than 0." assert algo in self._support_algo_type, \ "The algo should be KL, hist, mse, avg, abs_max or min_max." assert activation_quantize_type in self._support_activation_quantize_type, \ "The activation_quantize_type ({}) should in ({}).".format( activation_quantize_type, self._support_activation_quantize_type) assert weight_quantize_type in self._support_weight_quantize_type, \ "The weight_quantize_type ({}) shoud in ({}).".format( weight_quantize_type, self._support_weight_quantize_type) # Save input params self._bias_correction = bias_correction self._executor = executor self._scope = global_scope() if scope == None else scope self._model_dir = model_dir self._model_filename = model_filename self._params_filename = params_filename self._sample_generator = sample_generator self._batch_generator = batch_generator self._batch_size = batch_size self._batch_nums = batch_nums self._algo = algo self._hist_percent = hist_percent self._activation_bits = activation_bits self._weight_bits = weight_bits self._activation_quantize_type = activation_quantize_type self._weight_quantize_type = weight_quantize_type self._onnx_format = onnx_format self._is_full_quantize = is_full_quantize if is_full_quantize: self._quantizable_op_type = self._support_quantize_op_type else: self._quantizable_op_type = quantizable_op_type for op_type in self._quantizable_op_type: assert op_type in self._support_quantize_op_type, \ op_type + " is not supported for quantization." self._optimize_model = optimize_model # Define variables self._place = self._executor.place self._program = None self._feed_list = None self._fetch_list = None self._data_loader = data_loader self._out_scale_op_list = utils._out_scale_op_list self._quantized_weight_var_name = set() self._quantized_act_var_name = set() self._weight_op_pairs = {} # The vars for alog = KL or hist self._sampling_act_abs_min_max = {} self._sampling_act_histogram = {} self._sampling_data = {} self._quantized_var_threshold = {} self._histogram_bins = 2048 # The vars for algo = min_max self._quantized_var_min = {} self._quantized_var_max = {} # The vars for algo = avg self._quantized_var_avg = {} # The best loss of algo = mse self._best_calibration_loss = {} # The threshold for algo = abs_max, mse or avg self._quantized_threshold = {} def quantize(self): ''' Load the FP32 model, and use the calibrate data to calculate the forward-stage. Based on the sample data, we can get the quantization information, and obtain the final quantized model. Args: None Returns: the program of quantized model. ''' self._load_model_data() self._collect_target_varnames() self._set_activation_persistable() if self._algo in ["KL", "hist"]: _logger.info("Preparation stage ...") batch_id = 0 for data in self._data_loader(): self._executor.run(program=self._program, feed=data, fetch_list=self._fetch_list, return_numpy=False, scope=self._scope) self._collect_activation_abs_min_max() if batch_id % 5 == 0: _logger.info("Run batch: " + str(batch_id)) batch_id += 1 if self._batch_nums and batch_id >= self._batch_nums: break _logger.info("Finish preparation stage, all batch:" + str(batch_id)) self._init_sampling_act_histogram() _logger.info("Sampling stage ...") batch_id = 0 for data in self._data_loader(): self._executor.run(program=self._program, feed=data, fetch_list=self._fetch_list, return_numpy=False, scope=self._scope) self._sampling() if batch_id % 5 == 0: _logger.info("Run batch: " + str(batch_id)) batch_id += 1 if self._batch_nums and batch_id >= self._batch_nums: break _logger.info("Finish sampling stage, all batch: " + str(batch_id)) if self._algo == 'avg': for var_name in self._quantized_act_var_name: self._quantized_threshold[var_name] = \ np.array(self._quantized_var_avg[var_name]).mean() if self._algo in ["KL", "hist"]: self._calculate_kl_hist_threshold() if self._round_type == 'adaround': self._adaround_apply() self._reset_activation_persistable() if self._algo is 'min_max': self._save_input_threhold() else: self._update_program() # save out_threshold for quantized ops. if not self._onnx_format: self._save_output_threshold() if any(op_type in self._quantizable_op_type for op_type in self._dynamic_quantize_op_type): self._collect_dynamic_quantize_op_threshold( self._dynamic_quantize_op_type) # Move sub blocks persistable var to global block global_block = self._program.global_block() for _op in global_block.ops: if _op.type == "while": _block_id = _op.attr("sub_block").id _block = self._program.block(_block_id) persistables = [] for _name, _var in _block.vars.items(): if _var.persistable: global_block._clone_variable(_var) persistables.append(_name) for _name in persistables: _block._remove_var(_name) persistables.extend(_op.input('X')) _op.desc.set_input("X", persistables) return self._program def _adaround_apply(self): assert self._algo != "min_max", "The algo should not be min_max." if self._algo in ["KL", "hist"]: scale_dict = self._quantized_var_threshold else: scale_dict = self._quantized_threshold run_adaround( self._data_loader, self._program, self._fetch_list, self._executor, self._scope, self._place, self._quantized_op_pairs, self._weight_op_pairs, scale_dict, num_iterations=self._batch_nums, lr=self._learning_rate) def save_quantized_model(self, save_model_path, model_filename=None, params_filename=None): ''' Save the quantized model to the disk. Args: save_model_path(str): The path to save the quantized model. model_filename(str, optional): If the model_filename is None, save the model to '__model__'. Otherwise, save the model to the specified filename. Default: None. params_filename(str, optional): If the params_filename is None, save params to separted files. Otherwise, save all params to the specified filename. Returns: None ''' clip_extra = True if self._onnx_format else False io.save_inference_model( dirname=save_model_path, model_filename=model_filename, params_filename=params_filename, feeded_var_names=self._feed_list, target_vars=self._fetch_list, executor=self._executor, main_program=self._program, clip_extra=clip_extra) _logger.info("The quantized model is saved in " + save_model_path) def _load_model_data(self): ''' Load model and set data loader. ''' _logger.info("Load model and set data loader ...") [self._program, self._feed_list, self._fetch_list] = \ io.load_inference_model(dirname=self._model_dir, executor=self._executor, model_filename=self._model_filename, params_filename=self._params_filename) if self._optimize_model: self._optimize_fp32_model() feed_vars = [framework._get_var(str(var_name), self._program) \ for var_name in self._feed_list] if self._data_loader is not None: return self._data_loader = io.DataLoader.from_generator( feed_list=feed_vars, capacity=3 * self._batch_size, iterable=True) if self._sample_generator is not None: self._data_loader.set_sample_generator( self._sample_generator, batch_size=self._batch_size, drop_last=True, places=self._place) elif self._batch_generator is not None: self._data_loader.set_batch_generator( self._batch_generator, places=self._place) def _optimize_fp32_model(self): ''' Fuse the `conv2d/depthwise_conv2d + bn` in FP32 model. ''' _logger.info("Optimize FP32 model ...") graph = IrGraph(core.Graph(self._program.desc), for_test=True) graph = _remove_ctrl_vars(graph) graph = _apply_pass(self._scope, graph, 'conv_bn_fuse_pass') graph = _apply_pass(self._scope, graph, 'depthwise_conv_bn_fuse_pass') graph = _apply_pass(self._scope, graph, 'conv_transpose_bn_fuse_pass') graph = _apply_pass(self._scope, graph, 'conv_eltwiseadd_bn_fuse_pass') graph = _apply_pass(self._scope, graph, 'depthwise_conv_eltwiseadd_bn_fuse_pass') self._program = graph.to_program() def _collect_target_varnames(self): ''' Collect the variable names for sampling, and set activation variables to be persistable. ''' # TODO(juncaipeng), consider the name_scope of skip_quant _logger.info("Collect quantized variable names ...") self._quantized_op_pairs = {} def collect_var_name(var_name_list, persistable_var_names, op_type): for var_name in var_name_list: if var_name in persistable_var_names: self._quantized_weight_var_name.add(var_name) self._weight_op_pairs[var_name] = op_type else: self._quantized_act_var_name.add(var_name) persistable_var_names = _all_persistable_var_names(self._program) for block_id in range(len(self._program.blocks)): for op in self._program.blocks[block_id].ops: op_type = op.type if self._is_full_quantize and \ op_type not in self._quantizable_op_type: _logger.warning(op_type + " is not supported for quantization.") # For quantized ops, sample inputs and outputs if op_type in self._quantizable_op_type: collect_var_name( utils._get_op_input_var_names(op), persistable_var_names, op_type) collect_var_name( utils._get_op_output_var_names(op), persistable_var_names, op_type) # collect quanted op output var name for out_var_name in utils._get_op_output_var_names(op): for in_var_name in utils._get_op_input_var_names(op): if in_var_name in persistable_var_names: self._quantized_op_pairs[ in_var_name] = out_var_name # For other op, only sample output scale elif op_type in self._out_scale_op_list: collect_var_name( utils._get_op_output_var_names(op), persistable_var_names, op_type) def _set_activation_persistable(self): ''' Set activation variables to be persistable, so can obtain the tensor data in sample_data ''' for var in self._program.list_vars(): if var.name in self._quantized_act_var_name: var.persistable = True def _reset_activation_persistable(self): ''' Reset activations to be not persistable. ''' to_erase = [] for var in self._program.list_vars(): if var.name in self._quantized_act_var_name: var.persistable = False to_erase.append(var.name) self._scope.erase(to_erase) def _sampling(self): ''' Sample the min/max, abs_max or histogram in every iterations. ''' if self._algo == "abs_max": self._sample_abs_max() elif self._algo == "avg": self._sample_avg() elif self._algo == "min_max": self._sample_min_max() elif self._algo == "mse": self._sample_mse() elif self._algo == "emd": self._sample_emd() elif self._algo in ["KL", "hist"]: self._sample_histogram() def _sample_mse(self): if self._quantized_threshold == {}: for var_name in self._quantized_weight_var_name: var_tensor = utils.load_variable_data(self._scope, var_name) if self._weight_quantize_type == "abs_max": abs_max_value = float(np.max(np.abs(var_tensor))) elif self._weight_quantize_type == "channel_wise_abs_max": abs_max_value = [] if self._weight_op_pairs[ var_name] in utils._channelwise_quant_axis1_ops: for i in range(var_tensor.shape[1]): abs_max_value.append( float(np.max(np.abs(var_tensor[:, i])))) else: for i in range(var_tensor.shape[0]): abs_max_value.append( float(np.max(np.abs(var_tensor[i])))) self._quantized_threshold[var_name] = abs_max_value _logger.info("MSE searching stage ...") for var_name in self._quantized_act_var_name: var_tensor = utils.load_variable_data(self._scope, var_name) var_tensor = var_tensor.flatten() abs_max_value = float(np.max(np.abs(var_tensor))) abs_max_value = 1e-8 if abs_max_value == 0.0 else abs_max_value s = 0.3 if var_name not in self._best_calibration_loss: self._best_calibration_loss[var_name] = float('inf') while s <= 1.0: scale = s * abs_max_value s += 0.02 bins = 2**(self._activation_bits - 1) - 1 quant_dequant_var = np.round( np.clip(var_tensor, 0.0, scale) / scale * bins) / bins * scale mse_loss = ((var_tensor - quant_dequant_var)**2).mean() if mse_loss <= self._best_calibration_loss[var_name]: self._best_calibration_loss[var_name] = mse_loss self._quantized_threshold[var_name] = scale def _sample_emd(self): if self._quantized_threshold == {}: for var_name in self._quantized_weight_var_name: var_tensor = utils.load_variable_data(self._scope, var_name) if self._weight_quantize_type == "abs_max": abs_max_value = float(np.max(np.abs(var_tensor))) elif self._weight_quantize_type == "channel_wise_abs_max": abs_max_value = [] if self._weight_op_pairs[ var_name] in utils._channelwise_quant_axis1_ops: for i in range(var_tensor.shape[1]): abs_max_value.append( float(np.max(np.abs(var_tensor[:, i])))) else: for i in range(var_tensor.shape[0]): abs_max_value.append( float(np.max(np.abs(var_tensor[i])))) self._quantized_threshold[var_name] = abs_max_value _logger.info("EMD searching stage ...") for var_name in self._quantized_act_var_name: var_tensor = utils.load_variable_data(self._scope, var_name) var_tensor = var_tensor.flatten() abs_max_value = float(np.max(np.abs(var_tensor))) abs_max_value = 1e-8 if abs_max_value == 0.0 else abs_max_value s = 0.3 if var_name not in self._best_calibration_loss: self._best_calibration_loss[var_name] = float('inf') while s <= 1.0: scale = s * abs_max_value s += 0.02 bins = 2**(self._activation_bits - 1) - 1 quant_dequant_var = np.round( np.clip(var_tensor, 0.0, scale) / scale * bins) / bins * scale emd_loss = np.abs( np.mean(var_tensor) - np.mean(quant_dequant_var)) + np.abs( np.std(var_tensor) - np.std(quant_dequant_var)) if emd_loss <= self._best_calibration_loss[var_name]: self._best_calibration_loss[var_name] = emd_loss self._quantized_threshold[var_name] = scale def _sample_avg(self): if self._quantized_threshold == {}: for var_name in self._quantized_weight_var_name: var_tensor = utils.load_variable_data(self._scope, var_name) if self._weight_quantize_type == "abs_max": abs_max_value = float(np.max(np.abs(var_tensor))) elif self._weight_quantize_type == "channel_wise_abs_max": abs_max_value = [] if self._weight_op_pairs[ var_name] in utils._channelwise_quant_axis1_ops: for i in range(var_tensor.shape[1]): abs_max_value.append( float(np.max(np.abs(var_tensor[:, i])))) else: for i in range(var_tensor.shape[0]): abs_max_value.append( float(np.max(np.abs(var_tensor[i])))) self._quantized_threshold[var_name] = abs_max_value for var_name in self._quantized_act_var_name: var_tensor = utils.load_variable_data(self._scope, var_name) abs_max_value = float(np.max(np.abs(var_tensor))) if (var_name not in self._quantized_var_avg): self._quantized_var_avg[var_name] = [] abs_avg_value = float(np.mean(np.max( \ np.abs(var_tensor.reshape(var_tensor.shape[0], -1)), axis=(1)))) self._quantized_var_avg[var_name].append(abs_avg_value) continue def _sample_abs_max(self): if self._quantized_threshold == {}: for var_name in self._quantized_weight_var_name: var_tensor = utils.load_variable_data(self._scope, var_name) if self._weight_quantize_type == "abs_max": abs_max_value = float(np.max(np.abs(var_tensor))) elif self._weight_quantize_type == "channel_wise_abs_max": abs_max_value = [] if self._weight_op_pairs[ var_name] in utils._channelwise_quant_axis1_ops: for i in range(var_tensor.shape[1]): abs_max_value.append( float(np.max(np.abs(var_tensor[:, i])))) else: for i in range(var_tensor.shape[0]): abs_max_value.append( float(np.max(np.abs(var_tensor[i])))) self._quantized_threshold[var_name] = abs_max_value for var_name in self._quantized_act_var_name: var_tensor = utils.load_variable_data(self._scope, var_name) abs_max_value = float(np.max(np.abs(var_tensor))) if (var_name not in self._quantized_threshold) or \ (abs_max_value > self._quantized_threshold[var_name]): self._quantized_threshold[var_name] = abs_max_value def _sample_min_max(self): if self._quantized_var_min == {} and self._quantized_var_max == {}: for var_name in self._quantized_weight_var_name: var_tensor = utils.load_variable_data(self._scope, var_name) if self._weight_quantize_type == "abs_max": min_value = float(np.min(var_tensor)) max_value = float(np.max(var_tensor)) elif self._weight_quantize_type == "channel_wise_abs_max": min_value = [] max_value = [] if self._weight_op_pairs[ var_name] in utils._channelwise_quant_axis1_ops: for i in range(var_tensor.shape[1]): min_value.append(float(np.min(var_tensor[:, i]))) max_value.append(float(np.max(var_tensor[:, i]))) else: for i in range(var_tensor.shape[0]): min_value.append(float(np.min(var_tensor[i]))) max_value.append(float(np.max(var_tensor[i]))) self._quantized_var_min[var_name] = min_value self._quantized_var_max[var_name] = max_value for var_name in self._quantized_act_var_name: var_tensor = utils.load_variable_data(self._scope, var_name) min_value = float(np.min(var_tensor)) max_value = float(np.max(var_tensor)) if (var_name not in self._quantized_var_min) or \ (min_value < self._quantized_var_min[var_name]): self._quantized_var_min[var_name] = min_value if (var_name not in self._quantized_var_max) or \ (max_value > self._quantized_var_max[var_name]): self._quantized_var_max[var_name] = max_value def _sample_histogram(self): for var_name in self._quantized_act_var_name: var_tensor = utils.load_variable_data(self._scope, var_name) var_tensor_abs = np.abs(var_tensor) bins = self._sampling_act_histogram[var_name][1] hist, _ = np.histogram(var_tensor_abs, bins=bins) self._sampling_act_histogram[var_name][0] += hist def _save_input_threhold(self): ''' Save input threshold to the quantized op. ''' assert self._algo == "min_max", \ "The algo should be min_max to save input threshold." for block_id in range(len(self._program.blocks)): for op in self._program.blocks[block_id].ops: if op.type in self._quantizable_op_type: for var_name in utils._get_op_input_var_names(op): assert var_name in self._quantized_var_min assert var_name in self._quantized_var_max op._set_attr(var_name + ".min", self._quantized_var_min[var_name]) op._set_attr(var_name + ".max", self._quantized_var_max[var_name]) op._set_attr("with_quant_attr", True) def _collect_activation_abs_min_max(self): ''' Collect the abs_min and abs_max for all activation. When algo = KL, get the min and max value, and then calculate the threshold. ''' for var_name in self._quantized_act_var_name: var_tensor = utils.load_variable_data(self._scope, var_name) var_tensor = np.abs(var_tensor) min_value = float(np.min(var_tensor)) max_value = float(np.max(var_tensor)) if var_name not in self._sampling_act_abs_min_max: self._sampling_act_abs_min_max[ var_name] = [min_value, max_value] else: if min_value < self._sampling_act_abs_min_max[var_name][0]: self._sampling_act_abs_min_max[var_name][0] = min_value if max_value > self._sampling_act_abs_min_max[var_name][1]: self._sampling_act_abs_min_max[var_name][1] = max_value def _init_sampling_act_histogram(self): ''' Based on the min/max value, init the sampling_act_histogram. ''' for var_name in self._quantized_act_var_name: if var_name not in self._sampling_act_histogram: min_val = self._sampling_act_abs_min_max[var_name][0] max_val = self._sampling_act_abs_min_max[var_name][1] hist, hist_edeges = np.histogram( [], bins=self._histogram_bins, range=(min_val, max_val)) self._sampling_act_histogram[var_name] = [hist, hist_edeges] def _calculate_kl_hist_threshold(self): ''' Calculate the KL or hist threshold of quantized variables. ''' _logger.info("Calculate {} threshold ...".format(self._algo)) assert self._algo in ["KL", "hist"], "The algo should be KL or hist." # Abs_max threshold for weights for var_name in self._quantized_weight_var_name: weight_data = utils.load_variable_data(self._scope, var_name) if self._weight_quantize_type == "abs_max": weight_threshold = float(np.max(np.abs(weight_data))) elif self._weight_quantize_type == "channel_wise_abs_max": weight_threshold = [] if self._weight_op_pairs[ var_name] in utils._channelwise_quant_axis1_ops: for i in range(weight_data.shape[1]): weight_threshold.append( float(np.max(np.abs(weight_data[:, i])))) else: for i in range(weight_data.shape[0]): weight_threshold.append( float(np.max(np.abs(weight_data[i])))) self._quantized_var_threshold[var_name] = weight_threshold for var_name in self._quantized_act_var_name: hist, hist_edeges = self._sampling_act_histogram[var_name] if self._algo == "KL": bin_width = hist_edeges[1] - hist_edeges[0] self._quantized_var_threshold[var_name] = \ cal_kl_threshold(hist, bin_width, self._activation_bits) elif self._algo == "hist": self._quantized_var_threshold[var_name] = \ self._get_hist_scaling_factor(hist, hist_edeges) def _update_program(self): ''' Use QuantizationTransformPass and AddQuantDequantPass to insert fake_quantize, fake_dequantize and fake_quant_dequant op. Besides, save all threshold to the scale var node. ''' _logger.info("Update the program ...") graph = IrGraph(core.Graph(self._program.desc), for_test=True) # use QuantizationTransformPass to insert fake_quant/fake_dequantize op major_quantizable_op_types = [] for op_type in utils._weight_supported_quantizable_op_type: if op_type in self._quantizable_op_type: major_quantizable_op_types.append(op_type) if not self._onnx_format: transform_pass = QuantizationTransformPass( scope=self._scope, place=self._place, weight_bits=self._weight_bits, activation_bits=self._activation_bits, activation_quantize_type=self._activation_quantize_type, weight_quantize_type=self._weight_quantize_type, quantizable_op_type=major_quantizable_op_types) else: transform_pass = QuantizationTransformPassV2( scope=self._scope, place=self._place, weight_bits=self._weight_bits, activation_bits=self._activation_bits, activation_quantize_type=self._activation_quantize_type, weight_quantize_type=self._weight_quantize_type, quantizable_op_type=major_quantizable_op_types) for sub_graph in graph.all_sub_graphs(): # Insert fake_quant/fake_dequantize op must in test graph, so # set per graph's _for_test is True. sub_graph._for_test = True transform_pass.apply(sub_graph) # use AddQuantDequantPass to insert fake_quant_dequant op minor_quantizable_op_types = [] for op_type in utils._act_supported_quantizable_op_type: if op_type in self._quantizable_op_type: minor_quantizable_op_types.append(op_type) if not self._onnx_format: add_quant_dequant_pass = AddQuantDequantPass( scope=self._scope, place=self._place, quantizable_op_type=minor_quantizable_op_types) else: add_quant_dequant_pass = AddQuantDequantPassV2( scope=self._scope, place=self._place, quantizable_op_type=minor_quantizable_op_types, is_full_quantized=self._is_full_quantize) for sub_graph in graph.all_sub_graphs(): sub_graph._for_test = True add_quant_dequant_pass.apply(sub_graph) # save threshold to scale var node if self._algo in ["KL", "hist"]: scale_dict = self._quantized_var_threshold else: scale_dict = self._quantized_threshold for key, val in scale_dict.items(): utils.set_variable_data( self._scope, self._place, key + ".scale", np.array( [val], dtype=np.float32)) utils.set_variable_data( self._scope, self._place, key + ".quant_dequant.scale", np.array( [val], dtype=np.float32)) if not self._onnx_format: # apply QuantizationFreezePass, and obtain the final quant model freeze_pass = QuantizationFreezePass( scope=self._scope, place=self._place, bias_correction=self._bias_correction, weight_bits=self._weight_bits, round_type=self._round_type, activation_bits=self._activation_bits, weight_quantize_type=self._weight_quantize_type, quantizable_op_type=major_quantizable_op_types) for sub_graph in graph.all_sub_graphs(): sub_graph._for_test = True freeze_pass.apply(sub_graph) else: quant_weight_pass = QuantWeightPass(self._scope, self._place) for sub_graph in graph.all_sub_graphs(): sub_graph._for_test = True quant_weight_pass.apply(sub_graph) self._program = graph.to_program() def _save_output_threshold(self): ''' Save output threshold to the quantized op. ''' def save_info(op_node, out_var_name, threshold_map, out_info_name, quantized_type): assert out_var_name in threshold_map, \ "The output ({}) of {} node does not have threshold.".format( out_var_name, op_node.type) op_node._set_attr(out_info_name, threshold_map[var_name]) op_node._set_attr("with_quant_attr", True) if op_node.type in self._quantizable_op_type: op._set_attr("quantization_type", quantized_type) def analysis_and_save_info(op_node, out_var_name): argname_index = utils._get_output_name_index(op_node, out_var_name) assert argname_index is not None, \ out_var_name + " is not the output of the op" if self._algo == "KL": # For compatibility, we save output threshold by two methods. save_info(op_node, out_var_name, self._quantized_var_threshold, "out_threshold", "post_kl") save_info( op_node, out_var_name, self._quantized_var_threshold, argname_index[0] + str(argname_index[1]) + "_threshold", "post_kl") elif self._algo == "hist": # For compatibility, we save output threshold by two methods. save_info(op_node, out_var_name, self._quantized_var_threshold, "out_threshold", "post_hist") save_info( op_node, out_var_name, self._quantized_var_threshold, argname_index[0] + str(argname_index[1]) + "_threshold", "post_hist") elif self._algo in ["avg", "abs_max", "mse", "emd"]: save_info(op_node, out_var_name, self._quantized_threshold, "out_threshold", "post_" + str(self._algo)) save_info( op_node, out_var_name, self._quantized_threshold, argname_index[0] + str(argname_index[1]) + "_threshold", "post_" + str(self._algo)) elif self._algo == "min_max": save_info(op_node, out_var_name, self._quantized_var_min, "out_min", "post_min_max") save_info(op_node, out_var_name, self._quantized_var_max, "out_max", "post_min_max") for block_id in range(len(self._program.blocks)): for op in self._program.blocks[block_id].ops: if op.type in ( self._quantizable_op_type + self._out_scale_op_list): out_var_names = utils._get_op_output_var_names(op) for var_name in out_var_names: analysis_and_save_info(op, var_name) def _collect_dynamic_quantize_op_threshold(self, target_ops_type): """ Collect and save the weight threshold for dynamic quantize ops, such as lstm and gru. Args: target_ops_type(list): the op type of target ops Returns: None """ target_ops = [] for index in range(self._program.num_blocks): for op in self._program.block(index).ops: if op.type in target_ops_type: target_ops.append(op) quantization_type = str("post_" + self._algo).lower() persistable_var_names = _all_persistable_var_names(self._program) for op in target_ops: for var_name in utils._get_op_input_var_names(op): if var_name in persistable_var_names: var_data = utils.load_variable_data(self._scope, var_name) threshold = float(np.max(np.abs(var_data))) argname, index = utils._get_input_name_index(op, var_name) op._set_attr(argname + str(index) + "_threshold", threshold) op._set_attr("quantization_type", quantization_type) op._set_attr("bit_length", self._weight_bits) op._set_attr("with_quant_attr", True) def _get_hist_scaling_factor(self, hist, hist_edges): ''' Using the hist method to get the scaling factor. ''' threshold_rate = self._hist_percent hist = hist / float(sum(hist)) hist_sum = 0 hist_index = 0 for i in range(len(hist)): hist_sum += hist[i] if hist_sum >= threshold_rate: hist_index = i + 1 break bin_width = hist_edges[1] - hist_edges[0] return (hist_index - 0.5) * bin_width class WeightQuantization(object): _supported_quantizable_op_type = ['conv2d', 'depthwise_conv2d', 'mul'] _supported_weight_quantize_type = ['channel_wise_abs_max', 'abs_max'] def __init__(self, model_dir, model_filename=None, params_filename=None): ''' This class quantizes the weight of some ops to reduce the size of model or improve the perforemace. Args: model_dir(str): The path of the fp32 model that will be quantized, and the model and params files are under the path. model_filename(str, optional): The name of file to load the inference program. If it is None, the default filename '__model__' will be used. Default is 'None'. params_filename(str, optional): The name of file to load all parameters. When all parameters were saved in a single binary file, set it as the real filename. If parameters were saved in separate files, set it as 'None'. Default is 'None'. ''' self._model_dir = model_dir self._model_filename = model_filename self._params_filename = params_filename def quantize_weight_to_int(self, save_model_dir, save_model_filename=None, save_params_filename=None, quantizable_op_type=["conv2d", "mul"], weight_bits=8, weight_quantize_type="channel_wise_abs_max", generate_test_model=False, threshold_rate=0.0): ''' In order to reduce the size of model, this api quantizes the weight of some ops from float32 to int8/16. In the inference stage, the quantized weight will be dequantized to float32 again. Args: save_model_dir(str): The path to save the quantized model. save_model_filename(str, optional): The name of file to save the inference program. If it is None, the default filename '__model__' will be used. Default is 'None'. save_params_filename(str, optional): The name of file to save all parameters. If it is None, parameters were saved in separate files. If it is not None, all parameters were saved in a single binary file. quantizable_op_type(list[str], optional): The list of ops that will be quantized, and the quantized ops should be contained in ["conv2d", "depthwise_conv2d", "mul"]. Default is ["conv2d","mul"]. weight_bits(int, optional): The bits for the quantized weight, and it should be 8 or 16. Default is 8. weight_quantize_type(str, optional): quantization type for weights, support 'channel_wise_abs_max' and 'abs_max'. Set it as 'channel_wise_abs_max', the accuracy performs better. generate_test_model(bool, optional): If set generate_test_model as True, it saves a fake quantized model, in which the weights are quantized and dequantized. We can use PaddlePaddle to load the fake quantized model and test the accuracy on GPU or CPU. threshold_rate(float, optional): This api uses abs_max methd to quantize the weight from float32 to int8/16, and the abs max value is important for quantization diff. When the abs_max value is far away from the center of the numerical distribution, we can set threshold_rate between 1e-6 and 1e-8, so the abs max value will be optimized. Default is 0.0. ''' for op_type in quantizable_op_type: assert op_type in self._supported_quantizable_op_type, \ "Input error:" + op_type + \ " is not supported for weight quantization." assert weight_bits in [8, 16], \ "Input error: weight_bits should be 8 or 16." assert weight_quantize_type in self._supported_weight_quantize_type, \ "Input error: weight_quantize_type should in {}".format( self._supported_weight_quantize_type) quantized_model_dir = os.path.join(save_model_dir, "quantized_model") self._quantize_weight_to_int(quantized_model_dir, save_model_filename, save_params_filename, quantizable_op_type, weight_bits, weight_quantize_type, False, threshold_rate) if generate_test_model: test_model_dir = os.path.join(save_model_dir, "test_model") self._quantize_weight_to_int( test_model_dir, save_model_filename, save_params_filename, quantizable_op_type, weight_bits, weight_quantize_type, True, threshold_rate) def convert_weight_to_fp16(self, save_model_dir): """ Convert all presistable vars from fp32 to fp16. Note that, this api only changes the data type of variables in __params__ file, and the __model__ file remains unchanged. Args: save_model_dir(str): The path to save the fp16 model. """ # Load model place = core.CPUPlace() exe = Executor(place) scope = global_scope() [infer_program, feed_list, fetch_list] = \ io.load_inference_model(dirname=self._model_dir, executor=exe, model_filename=self._model_filename, params_filename=self._params_filename) # Clone and save fp16 weights save_program = framework.Program() save_block = save_program.global_block() save_var_map = {} for var in infer_program.list_vars(): if (var.type == core.VarDesc.VarType.RAW) or \ (not var.persistable) or (var.name in ['feed', 'fetch']) \ or (var.dtype != core.VarDesc.VarType.FP32): continue #new_var = _clone_var_to_block_(var, save_block) new_var = save_block._clone_variable(var) if self._params_filename is not None: save_var_map[new_var.name] = new_var else: save_file_path = os.path.join( os.path.normpath(save_model_dir), new_var.name) save_block.append_op( type='save', inputs={'X': [new_var]}, outputs={}, attrs={ 'file_path': os.path.normpath(save_file_path), 'save_as_fp16': True }) if self._params_filename is not None: save_var_list = [] for name in sorted(save_var_map.keys()): save_var_list.append(save_var_map[name]) saved_params_var = save_block.create_var( type=core.VarDesc.VarType.RAW, name=unique_name.generate("saved_params")) saved_params_var.desc.set_persistable(True) save_path = os.path.join( os.path.normpath(save_model_dir), self._params_filename) save_block.append_op( type='save_combine', inputs={'X': save_var_list}, outputs={'Y': saved_params_var}, attrs={'file_path': save_path, 'save_as_fp16': True}) save_program._sync_with_cpp() exe.run(save_program) # Copy model model_filename = "__model__" if self._model_filename is None \ else self._model_filename src_model = os.path.join(self._model_dir, model_filename) dest_model = os.path.join(save_model_dir, model_filename) shutil.copyfile(src_model, dest_model) def _quantize_weight_to_int(self, save_model_dir, save_model_filename, save_params_filename, quantizable_op_type, weight_bits, weight_quantize_type, for_test, threshold_rate): """ Generate quantized model or fake quantized model. """ # Load model place = core.CPUPlace() exe = Executor(place) scope = global_scope() [program, feed_list, fetch_list] = \ io.load_inference_model(dirname=self._model_dir, executor=exe, model_filename=self._model_filename, params_filename=self._params_filename) quantized_ops = [] for index in range(program.num_blocks): block = program.block(index) for op in block.ops: if op.type in quantizable_op_type: quantized_ops.append(op) # Quantize weights persistable_var_names = _all_persistable_var_names(program) for op in quantized_ops: for var_name in op.input_arg_names: if var_name in persistable_var_names: if weight_quantize_type == "abs_max": self._weight_abs_max_quantization( scope, place, weight_bits, threshold_rate, op, var_name, for_test) elif weight_quantize_type == "channel_wise_abs_max": self._weight_channel_wise_abs_max_quantization( scope, place, weight_bits, op, var_name, for_test) io.save_inference_model( dirname=save_model_dir, feeded_var_names=feed_list, target_vars=fetch_list, executor=exe, main_program=program, model_filename=save_model_filename, params_filename=save_params_filename) def _weight_abs_max_quantization(self, scope, place, weight_bits, threshold_rate, op, var_name, for_test): ''' Use abs_max method to quantize weight. ''' quantize_range = (1 << (weight_bits - 1)) - 1 save_weight_dtype = np.int8 if weight_bits == 8 else np.int16 # Get quantized scale and weight data weight_data = utils.load_variable_data(scope, var_name) if abs(threshold_rate) < 1e-10: threshold_value = np.max(np.abs(weight_data)) else: threshold_value = self._calculate_threshold(\ weight_data, threshold_rate) weight_data[weight_data > threshold_value] = threshold_value weight_data[weight_data < -threshold_value] = -threshold_value scale = threshold_value / quantize_range quantized_weight_data = \ np.around(weight_data / scale).astype(save_weight_dtype) # Set weight data if not for_test: utils.set_variable_data(scope, place, var_name, quantized_weight_data) else: dequantized_weight_data = \ (quantized_weight_data * scale).astype(np.float32) utils.set_variable_data(scope, place, var_name, dequantized_weight_data) # Save info op._set_attr('quantization_type', 'post_weight_abs_max') op._set_attr('quantize_weight_bits', weight_bits) op._set_attr(var_name + "_quant_scale", [scale]) # Save as list op._set_attr("with_quant_attr", True) def _weight_channel_wise_abs_max_quantization( self, scope, place, weight_bits, op, var_name, for_test): ''' Use channel_wise_abs_max method to quantize weight. ''' quantize_range = (1 << (weight_bits - 1)) - 1 save_weight_dtype = np.int8 if weight_bits == 8 else np.int16 # Get quantized scale and weight data weight_data = utils.load_variable_data(scope, var_name) if op.type == "mul": scales, quantized_weight_data = \ self._mul_channel_wise_quantization(weight_data, quantize_range, save_weight_dtype) elif op.type in ["conv2d", "depthwise_conv2d"]: scales, quantized_weight_data = \ self._conv_channel_wise_quantization(weight_data, quantize_range, save_weight_dtype) else: _logger.error(op.type + " is not supported by weight quantization") # Set weight data if not for_test: utils.set_variable_data(scope, place, var_name, quantized_weight_data) else: if op.type == "mul": dequantized_weight_data = \ self._mul_channel_wise_dequantization(quantized_weight_data, scales) elif op.type in ["conv2d", "depthwise_conv2d"]: dequantized_weight_data = \ self._conv_channel_wise_dequantization(quantized_weight_data, scales) else: _logger.error(op.type + " is not supported by weight quantization") utils.set_variable_data(scope, place, var_name, dequantized_weight_data) # Save info op._set_attr('quantization_type', 'post_weight_channel_wise_abs_max') op._set_attr('quantize_weight_bits', weight_bits) op._set_attr(var_name + "_quant_scale", scales) op._set_attr("with_quant_attr", True) def _conv_channel_wise_quantization(self, weight_data, quantize_range, save_weight_dtype): ''' Get channel wise scale for the weights of conv2d and depthwise_conv2d, and quantize the weights. ''' scales = [] quantized_weight_data = np.zeros_like( weight_data, dtype=save_weight_dtype) channel_num = weight_data.shape[0] for i in range(channel_num): scale = np.max(np.abs(weight_data[i])) / quantize_range scales.append(scale) quantized_weight_data[i] = \ np.around(weight_data[i] / scale).astype(save_weight_dtype) return scales, quantized_weight_data def _conv_channel_wise_dequantization(self, quantized_weight_data, scales): ''' For conv2d and depthwise_conv2d, dequantize the weights to fp32. ''' dequantized_weight_data = np.zeros_like( quantized_weight_data, dtype=np.float32) for i in range(len(scales)): dequantized_weight_data[i] = \ (quantized_weight_data[i] * scales[i]).astype(np.float32) return dequantized_weight_data def _mul_channel_wise_quantization(self, weight_data, quantize_range, save_weight_dtype): ''' Get channel wise scale for the weights of conv2d and depthwise_conv2d, and quantize the weights. ''' scales = [] quantized_weight_data = np.zeros_like( weight_data, dtype=save_weight_dtype) channel_num = weight_data.shape[-1] for i in range(channel_num): scale = np.max(np.abs(weight_data[:, i])) / quantize_range scales.append(scale) quantized_weight_data[:, i] = \ np.around(weight_data[:, i] / scale).astype(save_weight_dtype) return scales, quantized_weight_data def _mul_channel_wise_dequantization(self, quantized_weight_data, scales): ''' For mul, dequantize the weights to fp32. ''' dequantized_weight_data = np.zeros_like( quantized_weight_data, dtype=np.float32) for i in range(len(scales)): dequantized_weight_data[:, i] = \ (quantized_weight_data[:, i] * scales[i]).astype(np.float32) return dequantized_weight_data def _calculate_threshold(self, input, threshold_rate, histogram_bins=5000): input_abs = np.abs(input) hist, hist_edeges = np.histogram( input_abs, bins=histogram_bins, range=(0, np.max(input_abs))) hist = hist / float(sum(hist)) hist_sum = 0 hist_index = 0 for i in range(len(hist)): hist_sum += hist[i] if hist_sum >= 1.0 - threshold_rate: hist_index = i + 1 break bin_width = hist_edeges[1] - hist_edeges[0] return hist_index * bin_width