/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/inference/io.h" #include "paddle/fluid/platform/profiler.h" template void SetupTensor(paddle::framework::LoDTensor& input, paddle::framework::DDim dims, T lower, T upper) { srand(time(0)); T* input_ptr = input.mutable_data(dims, paddle::platform::CPUPlace()); for (int i = 0; i < input.numel(); ++i) { input_ptr[i] = (static_cast(rand()) / static_cast(RAND_MAX)) * (upper - lower) + lower; } } template void SetupTensor(paddle::framework::LoDTensor& input, paddle::framework::DDim dims, std::vector& data) { CHECK_EQ(paddle::framework::product(dims), static_cast(data.size())); T* input_ptr = input.mutable_data(dims, paddle::platform::CPUPlace()); memcpy(input_ptr, data.data(), input.numel() * sizeof(T)); } template void SetupLoDTensor(paddle::framework::LoDTensor& input, paddle::framework::LoD& lod, T lower, T upper) { input.set_lod(lod); int dim = lod[0][lod[0].size() - 1]; SetupTensor(input, {dim, 1}, lower, upper); } template void SetupLoDTensor(paddle::framework::LoDTensor& input, paddle::framework::DDim dims, paddle::framework::LoD lod, std::vector& data) { const size_t level = lod.size() - 1; CHECK_EQ(dims[0], static_cast((lod[level]).back())); input.set_lod(lod); SetupTensor(input, dims, data); } template void CheckError(paddle::framework::LoDTensor& output1, paddle::framework::LoDTensor& output2) { // Check lod information EXPECT_EQ(output1.lod(), output2.lod()); EXPECT_EQ(output1.dims(), output2.dims()); EXPECT_EQ(output1.numel(), output2.numel()); T err = static_cast(0); if (typeid(T) == typeid(float)) { err = 1E-3; } else if (typeid(T) == typeid(double)) { err = 1E-6; } else { err = 0; } size_t count = 0; for (int64_t i = 0; i < output1.numel(); ++i) { if (fabs(output1.data()[i] - output2.data()[i]) > err) { count++; } } EXPECT_EQ(count, 0U) << "There are " << count << " different elements."; } template void TestInference(const std::string& dirname, const std::vector& cpu_feeds, std::vector& cpu_fetchs, const int repeat = 1, const bool is_combined = false) { // 1. Define place, executor, scope auto place = Place(); auto executor = paddle::framework::Executor(place); auto* scope = new paddle::framework::Scope(); // Profile the performance paddle::platform::ProfilerState state; if (paddle::platform::is_cpu_place(place)) { state = paddle::platform::ProfilerState::kCPU; } else { #ifdef PADDLE_WITH_CUDA state = paddle::platform::ProfilerState::kCUDA; // The default device_id of paddle::platform::CUDAPlace is 0. // Users can get the device_id using: // int device_id = place.GetDeviceId(); paddle::platform::SetDeviceId(0); #endif } // Enable the profiler paddle::platform::EnableProfiler(state); // 2. Initialize the inference_program and load parameters std::unique_ptr inference_program; { paddle::platform::RecordEvent record_event( "init_program", paddle::platform::DeviceContextPool::Instance().Get(place)); if (is_combined) { // All parameters are saved in a single file. // Hard-coding the file names of program and parameters in unittest. // The file names should be consistent with that used in Python API // `fluid.io.save_inference_model`. std::string prog_filename = "__model_combined__"; std::string param_filename = "__params_combined__"; inference_program = paddle::inference::Load(executor, *scope, dirname + "/" + prog_filename, dirname + "/" + param_filename); } else { // Parameters are saved in separate files sited in the specified // `dirname`. inference_program = paddle::inference::Load(executor, *scope, dirname); } } // 3. Get the feed_target_names and fetch_target_names const std::vector& feed_target_names = inference_program->GetFeedTargetNames(); const std::vector& fetch_target_names = inference_program->GetFetchTargetNames(); // 4. Prepare inputs: set up maps for feed targets std::map feed_targets; for (size_t i = 0; i < feed_target_names.size(); ++i) { // Please make sure that cpu_feeds[i] is right for feed_target_names[i] feed_targets[feed_target_names[i]] = cpu_feeds[i]; } // 5. Define Tensor to get the outputs: set up maps for fetch targets std::map fetch_targets; for (size_t i = 0; i < fetch_target_names.size(); ++i) { fetch_targets[fetch_target_names[i]] = cpu_fetchs[i]; } // 6. Run the inference program { // Run repeat times to profile the performance for (int i = 0; i < repeat; ++i) { paddle::platform::RecordEvent record_event( "run_inference", paddle::platform::DeviceContextPool::Instance().Get(place)); executor.Run(*inference_program, scope, feed_targets, fetch_targets); } } // Disable the profiler and print the timing information paddle::platform::DisableProfiler(paddle::platform::EventSortingKey::kDefault, "profiler.txt"); paddle::platform::ResetProfiler(); delete scope; }