# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools import collections import inspect from paddle.trainer.config_parser import * from .activations import LinearActivation, SigmoidActivation, TanhActivation, \ ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation from .evaluators import * from .poolings import MaxPooling, AvgPooling, BasePoolingType from .attrs import * from .default_decorators import * try: import cPickle as pickle except ImportError: import pickle import copy __all__ = [ 'full_matrix_projection', 'AggregateLevel', 'ExpandLevel', 'identity_projection', 'dotmul_projection', 'dotmul_operator', 'repeat_layer', 'seq_reshape_layer', 'table_projection', 'mixed_layer', 'data_layer', 'embedding_layer', 'fc_layer', 'grumemory', 'pooling_layer', 'lstmemory', 'last_seq', 'first_seq', 'cos_sim', 'hsigmoid', 'conv_projection', 'mse_cost', 'regression_cost', 'classification_cost', 'LayerOutput', 'img_conv_layer', 'img_pool_layer', 'batch_norm_layer', 'img_cmrnorm_layer', 'addto_layer', 'concat_layer', 'seq_concat_layer', 'lstm_step_layer', 'recurrent_group', 'memory', 'StaticInput', 'expand_layer', 'scaling_layer', 'scaling_projection', 'power_layer', 'interpolation_layer', 'bilinear_interp_layer', 'trans_layer', 'rotate_layer', 'sum_to_one_norm_layer', 'get_output_layer', 'LayerType', 'context_projection', 'beam_search', 'maxid_layer', 'GeneratedInput', 'SubsequenceInput', 'gru_step_layer', 'gru_step_naive_layer', 'recurrent_layer', 'BaseGeneratedInput', 'conv_operator', 'conv_shift_layer', 'tensor_layer', 'selective_fc_layer', 'sampling_id_layer', 'slope_intercept_layer', 'trans_full_matrix_projection', 'linear_comb_layer', 'convex_comb_layer', 'ctc_layer', 'warp_ctc_layer', 'crf_layer', 'crf_decoding_layer', 'nce_layer', 'cross_entropy_with_selfnorm', 'cross_entropy', 'multi_binary_label_cross_entropy', 'sum_cost', 'rank_cost', 'lambda_cost', 'huber_cost', 'block_expand_layer', 'maxout_layer', 'out_prod_layer', 'printer_layer', 'print_layer', 'priorbox_layer', 'cross_channel_norm_layer', 'multibox_loss_layer', 'detection_output_layer', 'spp_layer', 'pad_layer', 'eos_layer', 'smooth_l1_cost', 'layer_support', 'multiplex_layer', 'row_conv_layer', 'dropout_layer', 'prelu_layer', 'gated_unit_layer', 'crop_layer', 'clip_layer', ] class LayerType(object): """ Layer type enumerations. """ DATA = 'data' MIXED_LAYER = 'mixed' LSTMEMORY = 'lstmemory' GRUMEMORY = 'gated_recurrent' SEQUENCE_LAST_INSTANCE = 'seqlastins' SEQUENCE_FIRST_INSTANCE = 'seqfirstins' SEQUENCE_RESHAPE = 'seqreshape' POOLING_MAX = 'max' POOLING_AVG = 'average' FC_LAYER = 'fc' COST = 'cost' COSINE_SIM_VEC = 'cos_vm' COSINE_SIM = 'cos' HSIGMOID = 'hsigmoid' CONV_LAYER = 'conv' CONVTRANS_LAYER = 'convt' EXCONV_LAYER = 'exconv' EXCONVTRANS_LAYER = 'exconvt' CUDNNCONV_LAYER = 'cudnn_conv' POOL_LAYER = 'pool' BATCH_NORM_LAYER = 'batch_norm' NORM_LAYER = 'norm' SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm' ADDTO_LAYER = 'addto' CONCAT_LAYER = 'concat' CONCAT_PROJ_LAYER = 'concat2' SEQUENCE_CONCAT_LAYER = 'seqconcat' LSTM_STEP_LAYER = 'lstm_step' GRU_STEP_LAYER = 'gru_step' GET_OUTPUT_LAYER = 'get_output' EXPAND_LAYER = 'expand' INTERPOLATION_LAYER = 'interpolation' BILINEAR_INTERP_LAYER = 'bilinear_interp' POWER_LAYER = 'power' SCALING_LAYER = 'scaling' TRANS_LAYER = 'trans' ROTATE_LAYER = 'rotate' OUT_PROD_LAYER = 'out_prod' FEATURE_MAP_EXPAND_LAYER = 'featmap_expand' MEMORY = 'memory' MAXID_LAYER = 'maxid' EOSID_LAYER = 'eos_id' RECURRENT_LAYER = 'recurrent' CONV_SHIFT_LAYER = "conv_shift" TENSOR_LAYER = "tensor" SEL_FC_LAYER = "selective_fc" SAMPLING_ID_LAYER = "sampling_id" SLOPE_INTERCEPT_LAYER = "slope_intercept" LINEAR_COMBINATION_LAYER = "convex_comb" BLOCK_EXPAND = "blockexpand" MAXOUT = "maxout" SPP_LAYER = "spp" PAD_LAYER = "pad" MULTIPLEX_LAYER = "multiplex" ROW_CONV_LAYER = "row_conv" PRINT_LAYER = 'print' PRIORBOX_LAYER = 'priorbox' MULTIBOX_LOSS_LAYER = 'multibox_loss' DETECTION_OUTPUT_LAYER = 'detection_output' CTC_LAYER = 'ctc' WARP_CTC_LAYER = 'warp_ctc' CRF_LAYER = 'crf' CRF_DECODING_LAYER = 'crf_decoding' NCE_LAYER = 'nce' RANK_COST = 'rank-cost' LAMBDA_COST = 'lambda_cost' HUBER = 'huber' CROSS_ENTROPY = 'multi-class-cross-entropy' CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm' SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy' MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy' SUM_COST = 'sum_cost' SMOOTH_L1 = 'smooth_l1' PRELU = 'prelu' CROP_LAYER = 'crop' CLIP_LAYER = 'clip' @staticmethod def is_layer_type(type_name): """ If type_name is a layer type. :param type_name: layer type name. Because layer type enumerations are strings. :type type_name: basestring :return: True if is a layer_type :rtype: bool """ for key in dir(LayerType): if key.isupper(): att = getattr(LayerType, key) if isinstance(att, basestring) and type_name == att: return True return False class AggregateLevel(object): """ PaddlePaddle supports three sequence types: - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence. - :code:`SequenceType.SEQUENCE` means the sample is a sequence. - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence, each timestep of which is also a sequence. Accordingly, AggregateLevel supports two modes: - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will be aggregated to :code:`NO_SEQUENCE`. - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to :code:`SEQUENCE`. """ TO_NO_SEQUENCE = 'non-seq' TO_SEQUENCE = 'seq' # compatible with previous configuration EACH_TIMESTEP = TO_NO_SEQUENCE EACH_SEQUENCE = TO_SEQUENCE class LayerOutput(object): """ LayerOutput is output for layer function. It is used internally by several reasons. - Check layer connection make sense. - FC(Softmax) => Cost(MSE Error) is not good for example. - Tracking layer connection. - Pass to layer methods as input. :param name: Layer output name. :type name: basestring :param layer_type: Current Layer Type. One of LayerType enumeration. :type layer_type: basestring :param activation: Layer Activation. :type activation: BaseActivation. :param parents: Layer's parents. :type parents: list|tuple|collections.Sequence """ def __init__(self, name, layer_type, parents=None, activation=None, num_filters=None, img_norm_type=None, size=None, outputs=None, reverse=None): assert isinstance(name, basestring) assert isinstance(layer_type, basestring) assert size is not None assert LayerType.is_layer_type(layer_type) self.name = name self.full_name = MakeLayerNameInSubmodel(name) self.layer_type = layer_type if parents is not None and type(parents) != list: parents = [parents] self.parents = [] if parents is None else parents self.activation = activation self.num_filters = num_filters self.img_norm_type = img_norm_type self.size = size if outputs is None: outputs = ['default'] self.outputs = outputs self.reverse = reverse def set_input(self, input): """ Set the input for a memory layer. Can only be used for memory layer """ assert isinstance(input, LayerOutput) assert self.layer_type == LayerType.MEMORY SetMemoryInput(self.name, input.name) ERROR_CLIPPING = 'error_clipping_threshold' DROPOUT = 'drop_rate' DEVICE = 'device' def layer_support(*attrs): attrs_list = list(attrs) attrs_list.append(DEVICE) def decorator(method): @functools.wraps(method) def wrapper(*args, **kwargs): for attr in attrs_list: for each in args: if isinstance(each, ExtraLayerAttribute): setattr(each, '_'.join(['can', attr]), True) for key in kwargs: val = kwargs[key] if isinstance(val, ExtraLayerAttribute): setattr(val, '_'.join(['can', attr]), True) for each in args: if isinstance(each, ExtraLayerAttribute): each.check(method.__name__) for key in kwargs: val = kwargs[key] if isinstance(val, ExtraLayerAttribute): val.check(method.__name__) return method(*args, **kwargs) if hasattr(method, 'argspec'): wrapper.argspec = method.argspec else: wrapper.argspec = inspect.getargspec(method) return wrapper return decorator @wrap_param_attr_default() def full_matrix_projection(input, size=0, param_attr=None): """ Full Matrix Projection. It performs full matrix multiplication. .. math:: out.row[i] += in.row[i] * weight There are two styles of usage. 1. When used in mixed_layer like this, you can only set the input: .. code-block:: python with mixed_layer(size=100) as m: m += full_matrix_projection(input=layer) 2. When used as an independant object like this, you must set the size: .. code-block:: python proj = full_matrix_projection(input=layer, size=100, param_attr=ParamAttr(name='_proj')) :param input: input layer :type input: LayerOutput :param size: The parameter size. Means the width of parameter. :type size: int :param param_attr: Parameter config, None if use default. :type param_attr: ParameterAttribute :return: A FullMatrixProjection Object. :rtype: FullMatrixProjection """ proj = FullMatrixProjection( input_layer_name=input.name, size=size, **param_attr.attr) proj.origin = input return proj @wrap_param_attr_default() def trans_full_matrix_projection(input, size=0, param_attr=None): """ Different from full_matrix_projection, this projection performs matrix multiplication, using transpose of weight. .. math:: out.row[i] += in.row[i] * w^\mathrm{T} :math:`w^\mathrm{T}` means transpose of weight. The simply usage is: .. code-block:: python proj = trans_full_matrix_projection(input=layer, size=100, param_attr=ParamAttr( name='_proj', initial_mean=0.0, initial_std=0.01)) :param input: input layer :type input: LayerOutput :param size: The parameter size. Means the width of parameter. :type size: int :param param_attr: Parameter config, None if use default. :type param_attr: ParameterAttribute :return: A TransposedFullMatrixProjection Object. :rtype: TransposedFullMatrixProjection """ proj = TransposedFullMatrixProjection( input_layer_name=input.name, size=size, **param_attr.attr) proj.origin = input return proj @wrap_param_attr_default() def table_projection(input, size=0, param_attr=None): """ Table Projection. It selects rows from parameter where row\_id is in input\_ids. .. math:: out.row[i] += table.row[ids[i]] where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids, and :math:`i` is row\_id. There are two styles of usage. 1. When used in mixed_layer like this, you can only set the input: .. code-block:: python with mixed_layer(size=100) as m: m += table_projection(input=layer) 2. When used as an independant object like this, you must set the size: .. code-block:: python proj = table_projection(input=layer, size=100, param_attr=ParamAttr(name='_proj')) :param input: Input layer, which must contains id fields. :type input: LayerOutput :param size: The parameter size. Means the width of parameter. :type size: int :param param_attr: Parameter config, None if use default. :type param_attr: ParameterAttribute :return: A TableProjection Object. :rtype: TableProjection """ proj = TableProjection( input_layer_name=input.name, size=size, **param_attr.attr) proj.origin = input return proj def identity_projection(input, offset=None, size=None): """ 1. IdentityProjection if offset=None. It performs: .. math:: out.row[i] += in.row[i] The example usage is: .. code-block:: python proj = identity_projection(input=layer) 2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection, but layer size may be smaller than input size. It select dimesions [offset, offset+layer_size) from input: .. math:: out.row[i] += in.row[i + \\textrm{offset}] The example usage is: .. code-block:: python proj = identity_projection(input=layer, offset=10) Note that both of two projections should not have any parameter. :param input: Input Layer. :type input: LayerOutput :param offset: Offset, None if use default. :type offset: int :return: A IdentityProjection or IdentityOffsetProjection object :rtype: IdentityProjection or IdentityOffsetProjection """ if offset is None: proj = IdentityProjection(input_layer_name=input.name) proj.origin = input else: if size is None: size = input.size - offset proj = IdentityOffsetProjection( input_layer_name=input.name, offset=offset, size=size) proj.origin = input return proj @wrap_param_attr_default() def scaling_projection(input, param_attr=None): """ scaling_projection multiplies the input with a scalar parameter and add to the output. .. math:: out += w * in The example usage is: .. code-block:: python proj = scaling_projection(input=layer) :param input: Input Layer. :type input: LayerOutput :param param_attr: Parameter config, None if use default. :type param_attr: ParameterAttribute :return: A ScalingProjection object :rtype: ScalingProjection """ proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr) proj.origin = input return proj @wrap_param_attr_default() def dotmul_projection(input, param_attr=None): """ DotMulProjection with a layer as input. It performs element-wise multiplication with weight. .. math:: out.row[i] += in.row[i] .* weight where :math:`.*` means element-wise multiplication. The example usage is: .. code-block:: python proj = dotmul_projection(input=layer) :param input: Input layer. :type input: LayerOutput :param param_attr: Parameter config, None if use default. :type param_attr: ParameterAttribute :return: A DotMulProjection Object. :rtype: DotMulProjection """ proj = DotMulProjection( input_layer_name=input.name, size=input.size, **param_attr.attr) proj.origin = input return proj def dotmul_operator(a=None, b=None, scale=1, **kwargs): """ DotMulOperator takes two inputs and performs element-wise multiplication: .. math:: out.row[i] += scale * (a.row[i] .* b.row[i]) where :math:`.*` means element-wise multiplication, and scale is a config scalar, its default value is one. The example usage is: .. code-block:: python op = dotmul_operator(a=layer1, b=layer2, scale=0.5) :param a: Input layer1 :type a: LayerOutput :param b: Input layer2 :type b: LayerOutput :param scale: config scalar, default value is one. :type scale: float :return: A DotMulOperator Object. :rtype: DotMulOperator """ if 'x' in kwargs or 'y' in kwargs: logger.warning('x and y arguments for dotmul_operator is deprecated. ' 'Please use a and b as parameter.') a = kwargs.get('x', a) # For Backward capacity. b = kwargs.get('y', b) assert isinstance(a, LayerOutput) assert isinstance(b, LayerOutput) if a.size is not None and b.size is not None: assert a.size == b.size op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale) op.origin = [a, b] return op @wrap_bias_attr_default(['padding_attr']) def context_projection(input, context_len, context_start=None, padding_attr=False): """ Context Projection. It just simply reorganizes input sequence, combines "context_len" sequence to one context from context_start. "context_start" will be set to -(context_len - 1) / 2 by default. If context position out of sequence length, padding will be filled as zero if padding_attr = False, otherwise it is trainable. For example, origin sequence is [A B C D E F G], context len is 3, then after context projection and not set padding_attr, sequence will be [ 0AB ABC BCD CDE DEF EFG FG0 ]. :param input: Input Sequence. :type input: LayerOutput :param context_len: context length. :type context_len: int :param context_start: context start position. Default is -(context_len - 1)/2 :type context_start: int :param padding_attr: Padding Parameter Attribute. If false, it means padding always be zero. Otherwise Padding is learnable, and parameter attribute is set by this parameter. :type padding_attr: bool|ParameterAttribute :return: Projection :rtype: Projection """ context_start = -( context_len - 1) / 2 if context_start is None else context_start extra_dict = dict() trainable = isinstance(padding_attr, ParameterAttribute) if trainable: extra_dict = padding_attr.attr proj = ContextProjection( input_layer_name=input.name, context_length=context_len, context_start=context_start, trainable_padding=trainable, **extra_dict) proj.origin = input return proj class MixedLayerType(LayerOutput): """ The internal object for trainer_helpers. """ class AddToSealedMixedLayerException(Exception): def __init__(self): Exception.__init__(self) def __init__(self, name, size, act, bias_attr, layer_attr, parents=None): """ Ctor. :param name: layer name. :type name: basestring :param size: layer size. :type size: int :param act: activation type. :type act: BaseActivation :param bias_attr: The Bias Attribute. If no bias, then pass False or something not type of ParameterAttribute. None will get a default Bias. :type bias_attr: ParameterAttribute or None means has bias. Any other type means no bias. :param layer_attr: Extra Layer Attribute. :type layer_attr: ExtraLayerAttribute or None """ LayerOutput.__init__( self, name, LayerType.MIXED_LAYER, parents, size=size, activation=act) self.bias_attr = bias_attr self.layer_attr = layer_attr self.inputs = [] self.finalized = False def __iadd__(self, other): """ + += operator :param other: Other projection. :type other: Projection :return: self. :rtype: MixedLayerType """ if not self.finalized: assert isinstance(other, Projection) or isinstance(other, Operator) self.inputs.append(other) if isinstance(other, Projection): self.parents.append(other.origin) else: self.parents.extend(other.origin) return self else: raise MixedLayerType.AddToSealedMixedLayerException() def __enter__(self): assert len(self.inputs) == 0 return self def __exit__(self, exc_type, exc_value, tb): if exc_value is not None: raise exc_value assert len(self.inputs) != 0 ml = MixedLayer( name=self.name, size=self.size, active_type=self.activation.name, bias=ParamAttr.to_bias(self.bias_attr), inputs=self.inputs, **ExtraLayerAttribute.to_kwargs(self.layer_attr)) # update the size which might be computed inside MixedLayer # according to the operator's output size self.size = ml.config.size self.finalized = True @wrap_name_default("mixed") @wrap_act_default(act=LinearActivation()) @wrap_bias_attr_default(has_bias=False) @layer_support(ERROR_CLIPPING, DROPOUT) def mixed_layer(size=0, input=None, name=None, act=None, bias_attr=False, layer_attr=None): """ Mixed Layer. A mixed layer will add all inputs together, then activate. Each inputs is a projection or operator. There are two styles of usages. 1. When not set inputs parameter, use mixed_layer like this: .. code-block:: python with mixed_layer(size=256) as m: m += full_matrix_projection(input=layer1) m += identity_projection(input=layer2) 2. You can also set all inputs when invoke mixed_layer as follows: .. code-block:: python m = mixed_layer(size=256, input=[full_matrix_projection(input=layer1), full_matrix_projection(input=layer2)]) :param name: mixed layer name. Can be referenced by other layer. :type name: basestring :param size: layer size. :type size: int :param input: inputs layer. It is an optional parameter. If set, then this function will just return layer's name. :param act: Activation Type. :type act: BaseActivation :param bias_attr: The Bias Attribute. If no bias, then pass False or something not type of ParameterAttribute. None will get a default Bias. :type bias_attr: ParameterAttribute or None or bool :param layer_attr: The extra layer config. Default is None. :type layer_attr: ExtraLayerAttribute :return: MixedLayerType object can add inputs or layer name. :rtype: MixedLayerType """ if input is None: return MixedLayerType(name, size, act, bias_attr, layer_attr) else: with mixed_layer( name=name, size=size, act=act, bias_attr=bias_attr, layer_attr=layer_attr) as m: if isinstance(input, collections.Sequence): for each in input: m += each else: m += input return m @layer_support() def data_layer(name, size, height=None, width=None, layer_attr=None): """ Define DataLayer For NeuralNetwork. The example usage is: .. code-block:: python data = data_layer(name="input", size=1000) :param name: Name of this data layer. :type name: basestring :param size: Size of this data layer. :type size: int :param height: Height of this data layer, used for image :type height: int|None :param width: Width of this data layer, used for image :type width: int|None :param layer_attr: Extra Layer Attribute. :type layer_attr: ExtraLayerAttribute. :return: LayerOutput object. :rtype: LayerOutput """ Layer( type=LayerType.DATA, name=name, size=size, height=height, width=width, **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput(name, LayerType.DATA, size=size) @wrap_name_default("embedding") @wrap_param_attr_default() @layer_support(ERROR_CLIPPING, DROPOUT) def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None): """ Define a embedding Layer. :param name: Name of this embedding layer. :type name: basestring :param input: The input layer for this embedding. NOTE: must be Index Data. :type input: LayerOutput :param size: The embedding dimension. :type size: int :param param_attr: The embedding parameter attribute. See ParameterAttribute for details. :type param_attr: ParameterAttribute|None :param layer_attr: Extra layer Config. Default is None. :type layer_attr: ExtraLayerAttribute|None :return: LayerOutput object. :rtype: LayerOutput """ with mixed_layer( name=name, size=size, act=LinearActivation(), bias_attr=False, layer_attr=layer_attr) as mix: mix += table_projection(input=input, size=size, param_attr=param_attr) return mix @wrap_name_default() @wrap_param_attr_default() @wrap_bias_attr_default() @wrap_act_default() @layer_support(ERROR_CLIPPING, DROPOUT) def fc_layer(input, size, act=None, name=None, param_attr=None, bias_attr=None, layer_attr=None): """ Helper for declare fully connected layer. The example usage is: .. code-block:: python fc = fc_layer(input=layer, size=1024, act=LinearActivation(), bias_attr=False) which is equal to: .. code-block:: python with mixed_layer(size=1024) as fc: fc += full_matrix_projection(input=layer) :param name: The Layer Name. :type name: basestring :param input: The input layer. Could be a list/tuple of input layer. :type input: LayerOutput|list|tuple :param size: The layer dimension. :type size: int :param act: Activation Type. Default is tanh. :type act: BaseActivation :param param_attr: The Parameter Attribute|list. :type param_attr: ParameterAttribute :param bias_attr: The Bias Attribute. If no bias, then pass False or something not type of ParameterAttribute. None will get a default Bias. :type bias_attr: ParameterAttribute|None|Any :param layer_attr: Extra Layer config. :type layer_attr: ExtraLayerAttribute|None :return: LayerOutput object. :rtype: LayerOutput """ if isinstance(input, LayerOutput): input = [input] assert not isinstance(param_attr, collections.Sequence) param_attr = [param_attr] else: if isinstance(param_attr, collections.Sequence): assert len(input) == len(param_attr) else: param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))] assert isinstance(input, collections.Sequence) Layer( inputs=[ Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr) ], name=name, type=LayerType.FC_LAYER, size=size, bias=ParamAttr.to_bias(bias_attr), active_type=act.name, **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name, LayerType.FC_LAYER, input, activation=act, size=size) @wrap_name_default("print") def printer_layer(input, format=None, name=None): """ Print the output value of input layers. This layer is useful for debugging. :param name: The Layer Name. :type name: basestring :param input: The input layer. Could be a list/tuple of input layer. :type input: LayerOutput|list|tuple :return: LayerOutput """ if isinstance(input, LayerOutput): input = [input] assert isinstance(input, collections.Sequence) # list or tuple for each in input: assert isinstance(each, LayerOutput) Layer( name=name, format=format, type=LayerType.PRINT_LAYER, inputs=[l.name for l in input], ) # this layer don't return anything, can not be input of other layer. # Keep print_layer for compatibility with V1 API. # 'print_layer' does not work for V2 API because it will be changed to # 'print' for V2 API. But 'print' is a reserved key word in python. print_layer = printer_layer @wrap_name_default("priorbox") def priorbox_layer(input, image, aspect_ratio, variance, min_size, max_size=[], name=None): """ Compute the priorbox and set the variance. This layer is necessary for ssd. :param name: The Layer Name. :type name: basestring :param input: The input layer. :type input: LayerOutput :param image: The network input image. :type image: LayerOutput :param aspect_ratio: The aspect ratio. :type aspect_ratio: list :param variance: The bounding box variance. :type min_size: The min size of the priorbox width/height. :param min_size: list :type max_size: The max size of the priorbox width/height. Could be NULL. :param max_size: list :return: LayerOutput """ # plus one for ratio 1. num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4 size = (input.size / input.num_filters) * num_filters * 2 Layer( name=name, type=LayerType.PRIORBOX_LAYER, inputs=[input.name, image.name], size=size, min_size=min_size, max_size=max_size, aspect_ratio=aspect_ratio, variance=variance) return LayerOutput( name, LayerType.PRIORBOX_LAYER, parents=[input, image], num_filters=num_filters, size=size) @wrap_name_default("multibox_loss") def multibox_loss_layer(input_loc, input_conf, priorbox, label, num_classes, overlap_threshold=0.5, neg_pos_ratio=3.0, neg_overlap=0.5, background_id=0, name=None): """ Compute the location loss and the confidence loss for ssd. :param name: The Layer Name. :type name: basestring :param input_loc: The input predict locations. :type input_loc: LayerOutput | List of LayerOutput :param input_conf: The input priorbox confidence. :type input_conf: LayerOutput | List of LayerOutput :param priorbox: The input priorbox location and the variance. :type priorbox: LayerOutput :param label: The input label. :type label: LayerOutput :param num_classes: The number of the classification. :type num_classes: int :param overlap_threshold: The threshold of the overlap. :type overlap_threshold: float :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox. :type neg_pos_ratio: float :param neg_overlap: The negative bbox overlap threshold. :type neg_overlap: float :param background_id: The background class index. :type background_id: int :return: LayerOutput """ if isinstance(input_loc, LayerOutput): input_loc = [input_loc] assert isinstance(input_loc, collections.Sequence) # list or tuple for each in input_loc: assert isinstance(each, LayerOutput) input_loc_num = len(input_loc) if isinstance(input_conf, LayerOutput): input_conf = [input_conf] assert isinstance(input_conf, collections.Sequence) # list or tuple for each in input_conf: assert isinstance(each, LayerOutput) input_conf_num = len(input_conf) # Check the input layer number. assert input_loc_num == input_conf_num inputs = [priorbox.name, label.name] inputs.extend([l.name for l in input_loc]) inputs.extend([l.name for l in input_conf]) parents = [priorbox, label] parents.extend(input_loc) parents.extend(input_conf) Layer( name=name, type=LayerType.MULTIBOX_LOSS_LAYER, inputs=inputs, input_num=input_loc_num, num_classes=num_classes, overlap_threshold=overlap_threshold, neg_pos_ratio=neg_pos_ratio, neg_overlap=neg_overlap, background_id=background_id) return LayerOutput( name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1) @wrap_name_default("detection_output") def detection_output_layer(input_loc, input_conf, priorbox, num_classes, nms_threshold=0.45, nms_top_k=400, keep_top_k=200, confidence_threshold=0.01, background_id=0, name=None): """ Apply the NMS to the output of network and compute the predict bounding box location. :param name: The Layer Name. :type name: basestring :param input_loc: The input predict locations. :type input_loc: LayerOutput | List of LayerOutput. :param input_conf: The input priorbox confidence. :type input_conf: LayerOutput | List of LayerOutput. :param priorbox: The input priorbox location and the variance. :type priorbox: LayerOutput :param num_classes: The number of the classification. :type num_classes: int :param nms_threshold: The Non-maximum suppression threshold. :type nms_threshold: float :param nms_top_k: The bbox number kept of the NMS's output :type nms_top_k: int :param keep_top_k: The bbox number kept of the layer's output :type keep_top_k: int :param confidence_threshold: The classification confidence threshold :type confidence_threshold: float :param background_id: The background class index. :type background_id: int :return: LayerOutput """ if isinstance(input_loc, LayerOutput): input_loc = [input_loc] assert isinstance(input_loc, collections.Sequence) # list or tuple for each in input_loc: assert isinstance(each, LayerOutput) input_loc_num = len(input_loc) if isinstance(input_conf, LayerOutput): input_conf = [input_conf] assert isinstance(input_conf, collections.Sequence) # list or tuple for each in input_conf: assert isinstance(each, LayerOutput) input_conf_num = len(input_conf) # Check the input layer number. assert input_loc_num == input_conf_num inputs = [priorbox.name] inputs.extend([l.name for l in input_loc]) inputs.extend([l.name for l in input_conf]) parents = [priorbox] parents.extend(input_loc) parents.extend(input_conf) size = keep_top_k * 7 Layer( name=name, type=LayerType.DETECTION_OUTPUT_LAYER, inputs=inputs, size=size, input_num=input_loc_num, num_classes=num_classes, nms_threshold=nms_threshold, nms_top_k=nms_top_k, keep_top_k=keep_top_k, confidence_threshold=confidence_threshold, background_id=background_id) return LayerOutput( name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size) @wrap_name_default("cross_channel_norm") def cross_channel_norm_layer(input, name=None, param_attr=None): """ Normalize a layer's output. This layer is necessary for ssd. This layer applys normalize across the channels of each sample to a conv layer's output and scale the output by a group of trainable factors which dimensions equal to the channel's number. :param name: The Layer Name. :type name: basestring :param input: The input layer. :type input: LayerOutput :param param_attr: The Parameter Attribute|list. :type param_attr: ParameterAttribute :return: LayerOutput """ assert input.num_filters is not None Layer( name=name, type=LayerType.NORM_LAYER, inputs=[ Input( input.name, norm=Norm( norm_type="cross-channel-norm", channels=input.num_filters, size=input.size, scale=0, pow=0, blocked=0), **param_attr.attr) ]) return LayerOutput( name, LayerType.NORM_LAYER, parents=input, num_filters=input.num_filters, size=input.size) @wrap_name_default("seq_pooling") @wrap_bias_attr_default(has_bias=False) @wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling()) @layer_support() def pooling_layer(input, pooling_type=None, name=None, bias_attr=None, agg_level=AggregateLevel.TO_NO_SEQUENCE, stride=-1, layer_attr=None): """ Pooling layer for sequence inputs, not used for Image. If stride > 0, this layer slides a window whose size is determined by stride, and return the pooling value of the window as the output. Thus, a long sequence will be shorten. The parameter stride specifies the intervals at which to apply the pooling operation. Note that for sequence with sub-sequence, the default value of stride is -1. The example usage is: .. code-block:: python seq_pool = pooling_layer(input=layer, pooling_type=AvgPooling(), agg_level=AggregateLevel.TO_NO_SEQUENCE) :param agg_level: AggregateLevel.TO_NO_SEQUENCE or AggregateLevel.TO_SEQUENCE :type agg_level: AggregateLevel :param name: layer name. :type name: basestring :param input: input layer name. :type input: LayerOutput :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling, SumPooling, SquareRootNPooling. :type pooling_type: BasePoolingType|None :param stride: The step size between successive pooling regions. :type stride: Int :param bias_attr: Bias parameter attribute. False if no bias. :type bias_attr: ParameterAttribute|None|False :param layer_attr: The Extra Attributes for layer, such as dropout. :type layer_attr: ExtraLayerAttribute|None :return: LayerOutput object. :rtype: LayerOutput """ extra_dict = dict() # noinspection PyUnresolvedReferences if isinstance(pooling_type, AvgPooling): extra_dict['average_strategy'] = pooling_type.strategy elif isinstance(pooling_type, MaxPooling) and \ pooling_type.output_max_index is not None: assert isinstance(pooling_type.output_max_index, bool) extra_dict['output_max_index'] = pooling_type.output_max_index extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr)) if agg_level == AggregateLevel.TO_SEQUENCE: assert stride == -1 Layer( name=name, type=pooling_type.name, inputs=[Input(input.name)], bias=ParamAttr.to_bias(bias_attr), trans_type=agg_level, stride=stride, **extra_dict) return LayerOutput( name, pooling_type.name, parents=[input], size=input.size) @wrap_bias_attr_default() @wrap_param_attr_default() @wrap_act_default(param_names=['gate_act'], act=SigmoidActivation()) @wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation()) @wrap_name_default("lstmemory") @layer_support() def lstmemory(input, name=None, size=None, reverse=False, act=None, gate_act=None, state_act=None, bias_attr=None, param_attr=None, layer_attr=None): """ Long Short-term Memory Cell. The memory cell was implemented as follow equations. .. math:: i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i) f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f) c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c) o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o) h_t & = o_t tanh(c_t) NOTE: In PaddlePaddle's implementation, the multiplications :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`, :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer, so an additional mixed_layer with full_matrix_projection or a fc_layer must be included in the configuration file to complete the input-to-hidden mappings before lstmemory is called. NOTE: This is a low level user interface. You can use network.simple_lstm to config a simple plain lstm layer. Please refer to **Generating Sequences With Recurrent Neural Networks** for more details about LSTM. Link_ goes as below. .. _Link: http://arxiv.org/abs/1308.0850 :param name: The lstmemory layer name. :type name: basestring :param size: DEPRECATED. size of the lstm cell :type size: int :param input: input layer name. :type input: LayerOutput :param reverse: is sequence process reversed or not. :type reverse: bool :param act: activation type, TanhActivation by default. :math:`h_t` :type act: BaseActivation :param gate_act: gate activation type, SigmoidActivation by default. :type gate_act: BaseActivation :param state_act: state activation type, TanhActivation by default. :type state_act: BaseActivation :param bias_attr: Bias attribute. None means default bias. False means no bias. :type bias_attr: ParameterAttribute|None|False :param param_attr: Parameter Attribute. :type param_attr: ParameterAttribute|None|False :param layer_attr: Extra Layer attribute :type layer_attr: ExtraLayerAttribute|None :return: LayerOutput object. :rtype: LayerOutput """ assert gate_act.support_hppl assert state_act.support_hppl assert act.support_hppl assert input.size is not None and input.size % 4 == 0 if size is not None: if input.size / 4 == size: plog = logger.warning else: plog = logger.fatal plog("size of lstmemory layer: %s is automatically set to " "size of input layer / 4. The parameter size passing to " "this layer is ignored." % (name)) Layer( name=name, type=LayerType.LSTMEMORY, active_type=act.name, active_state_type=state_act.name, active_gate_type=gate_act.name, reversed=reverse, bias=ParamAttr.to_bias(bias_attr), inputs=[Input(input.name, **param_attr.attr)], **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name, LayerType.LSTMEMORY, [input], size=input.size / 4, reverse=reverse) @wrap_bias_attr_default() @wrap_param_attr_default() @wrap_act_default(param_names=['gate_act'], act=SigmoidActivation()) @wrap_act_default(param_names=["act"], act=TanhActivation()) @wrap_name_default("gru") @layer_support() def grumemory(input, size=None, name=None, reverse=False, act=None, gate_act=None, bias_attr=None, param_attr=None, layer_attr=None): """ Gate Recurrent Unit Layer. The memory cell was implemented as follow equations. 1. update gate :math:`z`: defines how much of the previous memory to keep around or the unit updates its activations. The update gate is computed by: .. math:: z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z) 2. reset gate :math:`r`: determines how to combine the new input with the previous memory. The reset gate is computed similarly to the update gate: .. math:: r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r) 3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to that of the traditional recurrent unit: .. math:: {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b) 4. The hidden activation :math:`h_t` of the GRU at time t is a linear interpolation between the previous activation :math:`h_{t-1}` and the candidate activation :math:`\\tilde{h_t}`: .. math:: h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}} NOTE: In PaddlePaddle's implementation, the multiplication operations :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in gate_recurrent layer. Consequently, an additional mixed_layer with full_matrix_projection or a fc_layer must be included before grumemory is called. More details can be found by referring to `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. `_ The simple usage is: .. code-block:: python gru = grumemory(input) :param name: The gru layer name. :type name: None|basestring :param input: input layer. :type input: LayerOutput. :param size: DEPRECATED. size of the gru cell :type size: int :param reverse: Whether sequence process is reversed or not. :type reverse: bool :param act: activation type, TanhActivation by default. This activation affects the :math:`{\\tilde{h_t}}`. :type act: BaseActivation :param gate_act: gate activation type, SigmoidActivation by default. This activation affects the :math:`z_t` and :math:`r_t`. It is the :math:`\\sigma` in the above formula. :type gate_act: BaseActivation :param bias_attr: Bias attribute. None means default bias. False means no bias. :type bias_attr: ParameterAttribute|None|False :param param_attr: Parameter Attribute. :type param_attr: ParameterAttribute|None|False :param layer_attr: Extra Layer attribute :type layer_attr: ExtraLayerAttribute|None :return: LayerOutput object. :rtype: LayerOutput """ assert act.support_hppl assert gate_act.support_hppl assert input.size is not None and input.size % 3 == 0 if size is not None: if input.size / 3 == size: plog = logger.warning else: plog = logger.fatal plog("size of grumemory layer: %s is automatically set to " "size of input layer / 3. The parameter size passing to this " "layer is ignored." % (name)) Layer( name=name, type=LayerType.GRUMEMORY, active_type=act.name, active_gate_type=gate_act.name, reversed=reverse, bias=ParamAttr.to_bias(bias_attr), inputs=[Input(input.name, **param_attr.attr)], **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name, LayerType.GRUMEMORY, [input], size=input.size / 3, reverse=reverse) @wrap_name_default() @layer_support() def last_seq(input, name=None, agg_level=AggregateLevel.TO_NO_SEQUENCE, stride=-1, layer_attr=None): """ Get Last Timestamp Activation of a sequence. If stride > 0, this layer slides a window whose size is determined by stride, and return the last value of the window as the output. Thus, a long sequence will be shorten. Note that for sequence with sub-sequence, the default value of stride is -1. The simple usage is: .. code-block:: python seq = last_seq(input=layer) :param agg_level: Aggregated level :param name: Layer name. :type name: basestring :param input: Input layer name. :type input: LayerOutput :param stride: The step size between successive pooling regions. :type stride: Int :param layer_attr: extra layer attributes. :type layer_attr: ExtraLayerAttribute. :return: LayerOutput object. :rtype: LayerOutput """ if input.reverse is not None and input.reverse: logger.warning("You are getting the last instance of a sequence that" " is a output of a REVERSED layer. There is no time" " series information at all. Maybe you want to use" " first_seq instead.") if agg_level == AggregateLevel.TO_SEQUENCE: assert stride == -1 Layer( name=name, type=LayerType.SEQUENCE_LAST_INSTANCE, inputs=[input.name], trans_type=agg_level, stride=stride, **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name, LayerType.SEQUENCE_LAST_INSTANCE, parents=[input], size=input.size) @wrap_name_default() @layer_support() def first_seq(input, name=None, agg_level=AggregateLevel.TO_NO_SEQUENCE, stride=-1, layer_attr=None): """ Get First Timestamp Activation of a sequence. If stride > 0, this layer slides a window whose size is determined by stride, and return the first value of the window as the output. Thus, a long sequence will be shorten. Note that for sequence with sub-sequence, the default value of stride is -1. The simple usage is: .. code-block:: python seq = first_seq(input=layer) :param agg_level: aggregation level :param name: Layer name. :type name: basestring :param input: Input layer name. :type input: LayerOutput :param stride: The step size between successive pooling regions. :type stride: Int :param layer_attr: extra layer attributes. :type layer_attr: ExtraLayerAttribute. :return: LayerOutput object. :rtype: LayerOutput """ if input.reverse is not None and not input.reverse: logger.warning('You are getting the first instance for a time series,' ' and it is a normal recurrent layer output. There is no' ' time series information at all. Maybe you want to use' ' last_seq instead.') if agg_level == AggregateLevel.TO_SEQUENCE: assert stride == -1 Layer( name=name, type=LayerType.SEQUENCE_FIRST_INSTANCE, inputs=[input.name], trans_type=agg_level, stride=stride, **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name, LayerType.SEQUENCE_FIRST_INSTANCE, parents=[input], size=input.size) class ExpandLevel(object): """ Please refer to AggregateLevel first. ExpandLevel supports two modes: - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on :code:`NO_SEQUENCE`, which will be expanded to :code:`SEQUENCE` or :code:`SUB_SEQUENCE`. - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on :code:`SEQUENCE`, which will be expanded to :code:`SUB_SEQUENCE`. """ FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE # compatible with previous configuration FROM_TIMESTEP = FROM_NO_SEQUENCE @wrap_name_default() @layer_support() def expand_layer(input, expand_as, name=None, bias_attr=False, expand_level=ExpandLevel.FROM_NO_SEQUENCE, layer_attr=None): """ A layer for "Expand Dense data or (sequence data where the length of each sequence is one) to sequence data." The example usage is: .. code-block:: python expand = expand_layer(input=layer1, expand_as=layer2, expand_level=ExpandLevel.FROM_NO_SEQUENCE) :param input: Input layer :type input: LayerOutput :param expand_as: Expand as this layer's sequence info. :type expand_as: LayerOutput :param name: Layer name. :type name: basestring :param bias_attr: Bias attribute. None means default bias. False means no bias. :type bias_attr: ParameterAttribute|None|False :param expand_level: whether input layer is timestep(default) or sequence. :type expand_level: ExpandLevel :param layer_attr: extra layer attributes. :type layer_attr: ExtraLayerAttribute. :return: LayerOutput object. :rtype: LayerOutput """ Layer( inputs=[input.name, expand_as.name], name=name, bias=ParamAttr.to_bias(bias_attr=bias_attr), type=LayerType.EXPAND_LAYER, trans_type=expand_level, **ExtraAttr.to_kwargs(layer_attr)) return LayerOutput( name=name, size=input.size, layer_type=LayerType.EXPAND_LAYER, parents=[input, expand_as]) @wrap_name_default() @wrap_act_default(act=IdentityActivation()) @layer_support() def repeat_layer(input, num_repeats, as_row_vector=True, act=None, name=None, layer_attr=None): """ A layer for repeating the input for num_repeats times. If as_row_vector: .. math:: y = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n] If not as_row_vector: .. math:: y = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n] The example usage is: .. code-block:: python expand = repeat_layer(input=layer, num_repeats=4) :param input: Input layer :type input: LayerOutput :param num_repeats: Repeat the input so many times :type num_repeats: int :param name: Layer name. :param as_row_vector: True for treating input as row vector and repeating in the column direction. This is equivalent to apply concat_layer() with num_repeats same input. False for treating input as column vector and repeating in the row direction. :type as_row_vector: bool :param act: Activation type. :type act: BaseActivation :type name: basestring :param layer_attr: extra layer attributes. :type layer_attr: ExtraLayerAttribute. :return: LayerOutput object. :rtype: LayerOutput """ l = Layer( inputs=[input.name], name=name, active_type=act.name, num_filters=num_repeats, as_row_vector=as_row_vector, type=LayerType.FEATURE_MAP_EXPAND_LAYER, **ExtraAttr.to_kwargs(layer_attr)) return LayerOutput( name=name, size=l.config.size, layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER, activation=act, parents=[input]) @wrap_name_default("seqreshape") @wrap_act_default(act=IdentityActivation()) @wrap_bias_attr_default(has_bias=False) @layer_support(ERROR_CLIPPING, DROPOUT) def seq_reshape_layer(input, reshape_size, act=None, name=None, layer_attr=None, bias_attr=None): """ A layer for reshaping the sequence. Assume the input sequence has T instances, the dimension of each instance is M, and the input reshape_size is N, then the output sequence has T*M/N instances, the dimension of each instance is N. Note that T*M/N must be an integer. The example usage is: .. code-block:: python reshape = seq_reshape_layer(input=layer, reshape_size=4) :param input: Input layer. :type input: LayerOutput :param reshape_size: the size of reshaped sequence. :type reshape_size: int :param name: Layer name. :type name: basestring :param act: Activation type. :type act: BaseActivation :param layer_attr: extra layer attributes. :type layer_attr: ExtraLayerAttribute. :param bias_attr: The Bias Attribute. If no bias, then pass False or something not type of ParameterAttribute. None will get a default Bias. :type bias_attr: ParameterAttribute or None or bool :return: LayerOutput object. :rtype: LayerOutput """ Layer( inputs=[input.name], name=name, size=reshape_size, type=LayerType.SEQUENCE_RESHAPE, bias=ParamAttr.to_bias(bias_attr), **ExtraAttr.to_kwargs(layer_attr)) return LayerOutput( name=name, size=reshape_size, layer_type=LayerType.SEQUENCE_RESHAPE, parents=[input]) @wrap_name_default() @layer_support() def interpolation_layer(input, weight, name=None, layer_attr=None): """ This layer is for linear interpolation with two inputs, which is used in NEURAL TURING MACHINE. .. math:: y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i] where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs, :math:`w` is (batchSize x 1) weight vector, and :math:`y` is (batchSize x dataDim) output. The example usage is: .. code-block:: python interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3) :param input: Input layer. :type input: list|tuple :param weight: Weight layer. :type weight: LayerOutput :param name: Layer name. :type name: basestring :param layer_attr: extra layer attributes. :type layer_attr: ExtraLayerAttribute. :return: LayerOutput object. :rtype: LayerOutput """ assert isinstance(input, collections.Sequence) assert len(input) == 2 assert isinstance(input[0], LayerOutput) and isinstance(input[1], LayerOutput) if input[0].size is not None and input[1].size is not None: assert input[0].size == input[1].size assert isinstance(weight, LayerOutput) if weight.size is not None: assert weight.size == 1 Layer( name=name, type=LayerType.INTERPOLATION_LAYER, inputs=[weight.name, input[0].name, input[1].name], **ExtraAttr.to_kwargs(layer_attr)) return LayerOutput( name, LayerType.INTERPOLATION_LAYER, parents=[weight, input[0], input[1]], size=input[0].size) @wrap_name_default() @layer_support() def bilinear_interp_layer(input, out_size_x=None, out_size_y=None, name=None, layer_attr=None): """ This layer is to implement bilinear interpolation on conv layer output. Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation The simple usage is: .. code-block:: python bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64) :param input: A input layer. :type input: LayerOutput. :param out_size_x: bilinear interpolation output width. :type out_size_x: int|None :param out_size_y: bilinear interpolation output height. :type out_size_y: int|None :param name: The layer's name, which cna not be specified. :type name: None|basestring :param layer_attr: Extra Layer attribute. :type layer_attr: ExtraLayerAttribute :return: LayerOutput object. :rtype: LayerOutput """ assert input.layer_type == LayerType.CONV_LAYER assert isinstance(input.activation, LinearActivation) assert out_size_x > 0 and out_size_y > 0 assert input.num_filters is not None num_channels = input.num_filters l = Layer( name=name, inputs=Input( input.name, bilinear_interp=BilinearInterp( out_size_x=out_size_x, out_size_y=out_size_y, channels=num_channels)), type=LayerType.BILINEAR_INTERP_LAYER, **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name, LayerType.BILINEAR_INTERP_LAYER, parents=[input], num_filters=num_channels, size=l.config.size) @wrap_name_default() @layer_support() def power_layer(input, weight, name=None, layer_attr=None): """ This layer applies a power function to a vector element-wise, which is used in NEURAL TURING MACHINE. .. math:: y = x^w where :math:`x` is a input vector, :math:`w` is scalar weight, and :math:`y` is a output vector. The example usage is: .. code-block:: python power = power_layer(input=layer1, weight=layer2) :param input: Input layer. :type input: LayerOutput :param weight: Weight layer. :type weight: LayerOutput :param name: Layer name. :type name: basestring :param layer_attr: extra layer attributes. :type layer_attr: ExtraLayerAttribute. :return: LayerOutput object. :rtype: LayerOutput """ assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput) if weight.size is not None: assert weight.size == 1 Layer( name=name, type=LayerType.POWER_LAYER, inputs=[weight.name, input.name], **ExtraAttr.to_kwargs(layer_attr)) return LayerOutput( name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size) @wrap_name_default() @layer_support() def scaling_layer(input, weight, name=None, layer_attr=None): """ A layer for multiplying input vector by weight scalar. .. math:: y = w x where :math:`x` is size=dataDim input, :math:`w` is size=1 weight, and :math:`y` is size=dataDim output. Note that the above computation is for one sample. Multiple samples are processed in one batch. The example usage is: .. code-block:: python scale = scaling_layer(input=layer1, weight=layer2) :param input: Input layer. :type input: LayerOutput :param weight: Weight layer. :type weight: LayerOutput :param name: Layer name. :type name: basestring :param layer_attr: extra layer attributes. :type layer_attr: ExtraLayerAttribute. :return: LayerOutput object. :rtype: LayerOutput """ assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput) if weight.size is not None: assert weight.size == 1 Layer( name=name, type=LayerType.SCALING_LAYER, inputs=[weight.name, input.name], **ExtraAttr.to_kwargs(layer_attr)) return LayerOutput( name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size) @wrap_name_default() @layer_support() def trans_layer(input, name=None, layer_attr=None): """ A layer for transposing a minibatch matrix. .. math:: y = x^\mathrm{T} where :math:`x` is (M x N) input, and :math:`y` is (N x M) output. The example usage is: .. code-block:: python trans = trans_layer(input=layer) :param input: Input layer. :type input: LayerOutput :param name: Layer name. :type name: basestring :param layer_attr: extra layer attributes. :type layer_attr: ExtraLayerAttribute. :return: LayerOutput object. :rtype: LayerOutput """ Layer( name=name, type=LayerType.TRANS_LAYER, inputs=[input.name], **ExtraAttr.to_kwargs(layer_attr)) return LayerOutput( name, LayerType.TRANS_LAYER, parents=[input], size=input.size) @wrap_name_default() @layer_support() def rotate_layer(input, height, width, name=None, layer_attr=None): """ A layer for rotating 90 degrees (clock-wise) for each feature channel, usually used when the input sample is some image or feature map. .. math:: y(j,i,:) = x(M-i-1,j,:) where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output. The example usage is: .. code-block:: python rot = rotate_layer(input=layer, height=100, width=100) :param input: Input layer. :type input: LayerOutput :param height: The height of the sample matrix :type height: int :param name: Layer name. :type name: basestring :param layer_attr: extra layer attributes. :type layer_attr: ExtraLayerAttribute. :return: LayerOutput object. :rtype: LayerOutput """ assert isinstance(input, LayerOutput) l = Layer( name=name, height=height, width=width, type=LayerType.ROTATE_LAYER, inputs=[input.name], **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name=name, layer_type=LayerType.ROTATE_LAYER, parents=[input], size=l.config.size) @wrap_name_default() @layer_support() def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None): """ Cosine Similarity Layer. The cosine similarity equation is here. .. math:: similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b} \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|} The size of a is M, size of b is M*N, Similarity will be calculated N times by step M. The output size is N. The scale will be multiplied to similarity. Note that the above computation is for one sample. Multiple samples are processed in one batch. The example usage is: .. code-block:: python cos = cos_sim(a=layer1, b=layer2, size=3) :param name: layer name :type name: basestring :param a: input layer a :type a: LayerOutput :param b: input layer b :type b: LayerOutput :param scale: scale for cosine value. default is 5. :type scale: float :param size: layer size. NOTE size_a * size should equal size_b. :type size: int :param layer_attr: Extra Layer Attribute. :type layer_attr: ExtraLayerAttribute :return: LayerOutput object. :rtype: LayerOutput """ assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput) if size == 1: Layer( name=name, type=LayerType.COSINE_SIM, cos_scale=scale, inputs=[a.name, b.name], **ExtraLayerAttribute.to_kwargs(layer_attr)) else: if a.size is not None and b.size is not None: assert size == b.size / a.size Layer( name=name, type=LayerType.COSINE_SIM_VEC, size=size, cos_scale=scale, inputs=[a.name, b.name], **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size) @wrap_name_default() @wrap_bias_attr_default(has_bias=True) @wrap_param_attr_default() @layer_support() def hsigmoid(input, label, num_classes=None, name=None, bias_attr=None, param_attr=None, layer_attr=None): """ Organize the classes into a binary tree. At each node, a sigmoid function is used to calculate the probability of belonging to the right branch. This idea is from "F. Morin, Y. Bengio (AISTATS 05): Hierarchical Probabilistic Neural Network Language Model." The example usage is: .. code-block:: python cost = hsigmoid(input=[layer1, layer2], label=data_layer) :param input: Input layers. It could be a LayerOutput or list/tuple of LayerOutput. :type input: LayerOutput|list|tuple :param label: Label layer. :type label: LayerOutput :param num_classes: number of classes. :type num_classes: int|None :param name: layer name :type name: basestring :param bias_attr: Bias attribute. None means default bias. False means no bias. :type bias_attr: ParameterAttribute|False :param param_attr: Parameter Attribute. None means default parameter. :type param_attr: ParameterAttribute|None :param layer_attr: Extra Layer Attribute. :type layer_attr: ExtraLayerAttribute :return: LayerOutput object. :rtype: LayerOutput """ if isinstance(input, LayerOutput): input = [input] if not isinstance(param_attr, collections.Sequence): param_attr = [param_attr] else: if not isinstance(param_attr, collections.Sequence): param_attr = [param_attr] * len(input) else: assert len(param_attr) == len(input) assert isinstance(input, collections.Sequence) assert isinstance(label, LayerOutput) assert label.layer_type == LayerType.DATA if num_classes is None: num_classes = label.size if num_classes is None or num_classes <= 2: raise ValueError("hsigmoid label size must larger than 2.") ipts_for_layer = [] parents = [] for each_input, each_param_attr in zip(input, param_attr): assert isinstance(each_input, LayerOutput) ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr)) parents.append(each_input) ipts_for_layer.append(label.name) parents.append(label) l = Layer( name=name, type=LayerType.HSIGMOID, num_classes=num_classes, bias=ParamAttr.to_bias(bias_attr), inputs=ipts_for_layer, **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name, LayerType.HSIGMOID, parents=parents, size=l.config.size) @wrap_name_default("conv") @wrap_param_attr_default() @wrap_bias_attr_default() @wrap_act_default(act=ReluActivation()) @layer_support(DROPOUT) def img_conv_layer(input, filter_size, num_filters, name=None, num_channels=None, act=None, groups=1, stride=1, padding=0, bias_attr=None, param_attr=None, shared_biases=True, layer_attr=None, filter_size_y=None, stride_y=None, padding_y=None, trans=False, layer_type=None): """ Convolution layer for image. Paddle can support both square and non-square input currently. The details of convolution layer, please refer UFLDL's `convolution `_ . Convolution Transpose (deconv) layer for image. Paddle can support both square and non-square input currently. The details of convolution transpose layer, please refer to the following explanation and references therein `_ . The num_channel means input image's channel number. It may be 1 or 3 when input is raw pixels of image(mono or RGB), or it may be the previous layer's num_filters * num_group. There are several group of filter in PaddlePaddle implementation. Each group will process some channel of the inputs. For example, if an input num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create 32*4 = 128 filters to process inputs. The channels will be split into 4 pieces. First 256/4 = 64 channels will process by first 32 filters. The rest channels will be processed by rest group of filters. The example usage is: .. code-block:: python conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1, num_channels=8, num_filters=16, stride=1, bias_attr=False, act=ReluActivation()) :param name: Layer name. :type name: basestring :param input: Layer Input. :type input: LayerOutput :param filter_size: The x dimension of a filter kernel. Or input a tuple for two image dimension. :type filter_size: int|tuple|list :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle currently supports rectangular filters, the filter's shape will be (filter_size, filter_size_y). :type filter_size_y: int|None :param num_filters: Each filter group's number of filter :param act: Activation type. Default is tanh :type act: BaseActivation :param groups: Group size of filters. :type groups: int :param stride: The x dimension of the stride. Or input a tuple for two image dimension. :type stride: int|tuple|list :param stride_y: The y dimension of the stride. :type stride_y: int :param padding: The x dimension of the padding. Or input a tuple for two image dimension :type padding: int|tuple|list :param padding_y: The y dimension of the padding. :type padding_y: int :param bias_attr: Convolution bias attribute. None means default bias. False means no bias. :type bias_attr: ParameterAttribute|False :param num_channels: number of input channels. If None will be set automatically from previous output. :type num_channels: int :param param_attr: Convolution param attribute. None means default attribute :type param_attr: ParameterAttribute :param shared_biases: Is biases will be shared between filters or not. :type shared_biases: bool :param layer_attr: Layer Extra Attribute. :type layer_attr: ExtraLayerAttribute :param trans: true if it is a convTransLayer, false if it is a convLayer :type trans: bool :param layer_type: specify the layer_type, default is None. If trans=True, layer_type has to be "exconvt" or "cudnn_convt", otherwise layer_type has to be either "exconv" or "cudnn_conv" :type layer_type: String :return: LayerOutput object. :rtype: LayerOutput """ if num_channels is None: assert input.num_filters is not None num_channels = input.num_filters if filter_size_y is None: if isinstance(filter_size, collections.Sequence): assert len(filter_size) == 2 filter_size, filter_size_y = filter_size else: filter_size_y = filter_size if stride_y is None: if isinstance(stride, collections.Sequence): assert len(stride) == 2 stride, stride_y = stride else: stride_y = stride if padding_y is None: if isinstance(padding, collections.Sequence): assert len(padding) == 2 padding, padding_y = padding else: padding_y = padding if param_attr.attr.get('initial_smart'): # special initial for conv layers. init_w = (2.0 / (filter_size**2 * num_channels))**0.5 param_attr.attr["initial_mean"] = 0.0 param_attr.attr["initial_std"] = init_w param_attr.attr["initial_strategy"] = 0 param_attr.attr["initial_smart"] = False if layer_type: if trans: assert layer_type in ["exconvt", "cudnn_convt"] else: assert layer_type in ["exconv", "cudnn_conv"] lt = layer_type else: lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER l = Layer( name=name, inputs=Input( input.name, conv=Conv( filter_size=filter_size, padding=padding, stride=stride, channels=num_channels, groups=groups, filter_size_y=filter_size_y, padding_y=padding_y, stride_y=stride_y), **param_attr.attr), active_type=act.name, num_filters=num_filters, bias=ParamAttr.to_bias(bias_attr), shared_biases=shared_biases, type=lt, **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name, lt, parents=[input], activation=act, num_filters=num_filters, size=l.config.size) @wrap_name_default("pool") @layer_support() def img_pool_layer(input, pool_size, name=None, num_channels=None, pool_type=None, stride=1, padding=0, layer_attr=None, pool_size_y=None, stride_y=None, padding_y=None, ceil_mode=True): """ Image pooling Layer. The details of pooling layer, please refer ufldl's pooling_ . .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/ - ceil_mode=True: .. math:: w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride)) h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y)) - ceil_mode=False: .. math:: w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride)) h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y)) The example usage is: .. code-block:: python maxpool = img_pool_layer(input=conv, pool_size=3, pool_size_y=5, num_channels=8, stride=1, stride_y=2, padding=1, padding_y=2, pool_type=MaxPooling()) :param padding: pooling padding width. :type padding: int :param padding_y: pooling padding height. It's equal to padding by default. :type padding_y: int|None :param name: name of pooling layer :type name: basestring. :param input: layer's input :type input: LayerOutput :param pool_size: pooling window width :type pool_size: int :param pool_size_y: pooling window height. It's eaqual to pool_size by default. :type pool_size_y: int|None :param num_channels: number of input channel. :type num_channels: int :param pool_type: pooling type. MaxPooling or AvgPooling. Default is MaxPooling. :type pool_type: BasePoolingType :param stride: stride width of pooling. :type stride: int :param stride_y: stride height of pooling. It is equal to stride by default. :type stride_y: int|None :param layer_attr: Extra Layer attribute. :type layer_attr: ExtraLayerAttribute :param ceil_mode: Wether to use ceil mode to calculate output height and with. Defalut is True. If set false, Otherwise use floor. :type ceil_mode: bool :return: LayerOutput object. :rtype: LayerOutput """ if num_channels is None: assert input.num_filters is not None num_channels = input.num_filters if pool_type is None: pool_type = MaxPooling() elif isinstance(pool_type, AvgPooling): pool_type.name = 'avg' type_name = pool_type.name + '-projection' \ if ( isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \ else pool_type.name pool_size_y = pool_size if pool_size_y is None else pool_size_y stride_y = stride if stride_y is None else stride_y padding_y = padding if padding_y is None else padding_y l = Layer( name=name, type=LayerType.POOL_LAYER, inputs=[ Input( input.name, pool=Pool( pool_type=type_name, channels=num_channels, size_x=pool_size, start=None, stride=stride, padding=padding, size_y=pool_size_y, stride_y=stride_y, padding_y=padding_y)) ], ceil_mode=ceil_mode, **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name, LayerType.POOL_LAYER, parents=[input], num_filters=num_channels, size=l.config.size) @wrap_name_default("spp") @layer_support() def spp_layer(input, name=None, num_channels=None, pool_type=None, pyramid_height=None, layer_attr=None): """ Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. The details please refer to `Kaiming He's paper `_. The example usage is: .. code-block:: python spp = spp_layer(input=data, pyramid_height=2, num_channels=16, pool_type=MaxPooling()) :param name: layer name. :type name: basestring :param input: layer's input. :type input: LayerOutput :param num_channels: number of input channel. :type num_channels: int :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling. :type scale: BasePoolingType :param pyramid_height: pyramid height. :type pyramid_height: int :param layer_attr: Extra Layer Attribute. :type layer_attr: ExtraLayerAttribute :return: LayerOutput object. :rtype: LayerOutput """ if num_channels is None: assert input.num_filters is not None num_channels = input.num_filters if pool_type is None: pool_type = MaxPooling() elif isinstance(pool_type, AvgPooling): pool_type.name = 'avg' type_name = pool_type.name if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)): type_name += '-projection' l = Layer( name=name, type=LayerType.SPP_LAYER, inputs=Input( input.name, spp=SpatialPyramidPool( pool_type=type_name, channels=num_channels, pyramid_height=pyramid_height)), **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name, layer_type=LayerType.SPP_LAYER, parents=[input], num_filters=num_channels, size=l.config.size) def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels, blocked, layer_attr): if num_channels is None: assert input.num_filters is not None num_channels = input.num_filters l = Layer( name=name, type=LayerType.NORM_LAYER, inputs=Input( input.name, norm=Norm( norm_type=norm_type, channels=num_channels, size=size, scale=scale, pow=power, blocked=blocked)), **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name, layer_type=LayerType.NORM_LAYER, parents=[input], num_filters=num_channels, img_norm_type=norm_type, size=l.config.size) @wrap_name_default("crmnorm") @layer_support() def img_cmrnorm_layer(input, size, scale=0.0128, power=0.75, name=None, num_channels=None, layer_attr=None): """ Response normalization across feature maps. The details please refer to `Alex's paper `_. The example usage is: .. code-block:: python norm = img_cmrnorm_layer(input=net, size=5) :param name: layer name. :type name: None|basestring :param input: layer's input. :type input: LayerOutput :param size: Normalize in number of :math:`size` feature maps. :type size: int :param scale: The hyper-parameter. :type scale: float :param power: The hyper-parameter. :type power: float :param num_channels: input layer's filers number or channels. If num_channels is None, it will be set automatically. :param layer_attr: Extra Layer Attribute. :type layer_attr: ExtraLayerAttribute :return: LayerOutput object. :rtype: LayerOutput """ return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale, power, num_channels, 0, layer_attr) @wrap_bias_attr_default() @wrap_param_attr_default( default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.)) @wrap_act_default(act=ReluActivation()) @wrap_name_default("batch_norm") @layer_support(DROPOUT, ERROR_CLIPPING) def batch_norm_layer(input, act=None, name=None, num_channels=None, bias_attr=None, param_attr=None, layer_attr=None, batch_norm_type=None, moving_average_fraction=0.9, use_global_stats=None): """ Batch Normalization Layer. The notation of this layer as follow. :math:`x` is the input features over a mini-batch. .. math:: \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\ \ mini-batch\ mean \\\\ \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\ \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\ \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\ \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\ y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift The details of batch normalization please refer to this `paper `_. The example usage is: .. code-block:: python norm = batch_norm_layer(input=net, act=ReluActivation()) :param name: layer name. :type name: basestring :param input: batch normalization input. Better be linear activation. Because there is an activation inside batch_normalization. :type input: LayerOutput :param batch_norm_type: We have batch_norm and cudnn_batch_norm. batch_norm supports both CPU and GPU. cudnn_batch_norm requires cuDNN version greater or equal to v4 (>=v4). But cudnn_batch_norm is faster and needs less memory than batch_norm. By default (None), we will automaticly select cudnn_batch_norm for GPU and batch_norm for CPU. Otherwise, select batch norm type based on the specified type. If you use cudnn_batch_norm, we suggested you use latest version, such as v5.1. :type batch_norm_type: None|string, None or "batch_norm" or "cudnn_batch_norm" :param act: Activation Type. Better be relu. Because batch normalization will normalize input near zero. :type act: BaseActivation :param num_channels: num of image channels or previous layer's number of filters. None will automatically get from layer's input. :type num_channels: int :param bias_attr: :math:`\\beta`, better be zero when initialize. So the initial_std=0, initial_mean=1 is best practice. :type bias_attr: ParameterAttribute :param param_attr: :math:`\\gamma`, better be one when initialize. So the initial_std=0, initial_mean=1 is best practice. :type param_attr: ParameterAttribute :param layer_attr: Extra Layer Attribute. :type layer_attr: ExtraLayerAttribute :param use_global_stats: whether use moving mean/variance statistics during testing peroid. If None or True, it will use moving mean/variance statistics during testing. If False, it will use the mean and variance of current batch of test data for testing. :type use_global_stats: bool|None. :param moving_average_fraction: Factor used in the moving average computation, referred to as facotr, :math:`runningMean = newMean*(1-factor) + runningMean*factor` :type moving_average_fraction: float. :return: LayerOutput object. :rtype: LayerOutput """ if num_channels is None: if input.num_filters is not None: num_channels = input.num_filters else: num_channels = input.size assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \ (batch_norm_type == "cudnn_batch_norm") l = Layer( name=name, inputs=Input( input.name, image=Image(channels=num_channels), **param_attr.attr), active_type=act.name, type=LayerType.BATCH_NORM_LAYER, batch_norm_type=batch_norm_type, bias=ParamAttr.to_bias(bias_attr), moving_average_fraction=moving_average_fraction, use_global_stats=use_global_stats, **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name=name, layer_type=LayerType.BATCH_NORM_LAYER, parents=[input], activation=act, num_filters=num_channels, size=l.config.size) @wrap_name_default() @layer_support() def sum_to_one_norm_layer(input, name=None, layer_attr=None): """ A layer for sum-to-one normalization, which is used in NEURAL TURING MACHINE. .. math:: out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]} where :math:`in` is a (batchSize x dataDim) input vector, and :math:`out` is a (batchSize x dataDim) output vector. The example usage is: .. code-block:: python sum_to_one_norm = sum_to_one_norm_layer(input=layer) :param input: Input layer. :type input: LayerOutput :param name: Layer name. :type name: basestring :param layer_attr: extra layer attributes. :type layer_attr: ExtraLayerAttribute. :return: LayerOutput object. :rtype: LayerOutput """ Layer( name=name, type=LayerType.SUM_TO_ONE_NORM_LAYER, inputs=[input.name], **ExtraAttr.to_kwargs(layer_attr)) return LayerOutput( name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size) @wrap_name_default("addto") @wrap_act_default(act=LinearActivation()) @wrap_bias_attr_default(has_bias=False) @layer_support(DROPOUT, ERROR_CLIPPING) def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None): """ AddtoLayer. .. math:: y = f(\\sum_{i} x_i + b) where :math:`y` is output, :math:`x` is input, :math:`b` is bias, and :math:`f` is activation function. The example usage is: .. code-block:: python addto = addto_layer(input=[layer1, layer2], act=ReluActivation(), bias_attr=False) This layer just simply add all input layers together, then activate the sum inputs. Each input of this layer should be the same size, which is also the output size of this layer. There is no weight matrix for each input, because it just a simple add operation. If you want a complicated operation before add, please use mixed_layer. It is a very good way to set dropout outside the layers. Since not all PaddlePaddle layer support dropout, you can add an add_to layer, set dropout here. Please refer to dropout_layer for details. :param name: Layer name. :type name: basestring :param input: Input layers. It could be a LayerOutput or list/tuple of LayerOutput. :type input: LayerOutput|list|tuple :param act: Activation Type, default is tanh. :type act: BaseActivation :param bias_attr: Bias attribute. If False, means no bias. None is default bias. :type bias_attr: ParameterAttribute|bool :param layer_attr: Extra Layer attribute. :type layer_attr: ExtraLayerAttribute :return: LayerOutput object. :rtype: LayerOutput """ num_filters = None if isinstance(input, LayerOutput): input = [input] assert isinstance(input, collections.Sequence) ipts_for_layer = [] for each_input in input: assert isinstance(each_input, LayerOutput) ipts_for_layer.append(Input(each_input.name)) if each_input.num_filters is not None: num_filters = each_input.num_filters l = Layer( name=name, type=LayerType.ADDTO_LAYER, inputs=ipts_for_layer, bias=ParamAttr.to_bias(bias_attr), active_type=act.name, **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name, LayerType.ADDTO_LAYER, parents=input, activation=act, num_filters=num_filters, size=l.config.size) @wrap_act_default(act=IdentityActivation()) @wrap_name_default("concat") @layer_support(DROPOUT, ERROR_CLIPPING) def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None): """ Concat all input vector into one huge vector. Inputs can be list of LayerOutput or list of projection. The example usage is: .. code-block:: python concat = concat_layer(input=[layer1, layer2]) :param name: Layer name. :type name: basestring :param input: input layers or projections :type input: list|tuple|collections.Sequence :param act: Activation type. :type act: BaseActivation :param layer_attr: Extra Layer Attribute. :type layer_attr: ExtraLayerAttribute :return: LayerOutput object. :rtype: LayerOutput """ if isinstance(input, LayerOutput): input = [input] elif isinstance(input, Projection): input = [input] else: assert isinstance(input, collections.Sequence) def __is_type__(o, tp): if not isinstance(o, collections.Sequence): if o == tp: return True elif len(o.__bases__) == 0: return False else: for bs in o.__bases__: if __is_type__(bs, tp): return True return False else: tmp = map(lambda _x: __is_type__(_x, tp), o) a = tmp[0] for b in tmp[1:]: assert a == b return a def __reduce_concat_type__(a, b): assert __is_type__([a, b], Projection) or __is_type__([a, b], LayerOutput) return a is_concat_layer = __is_type__( reduce(__reduce_concat_type__, map(type, input)), LayerOutput) layer_type = (LayerType.CONCAT_LAYER if is_concat_layer else LayerType.CONCAT_PROJ_LAYER) if layer_type == LayerType.CONCAT_LAYER: assert not bias_attr layer = Layer( name=name, type=layer_type, inputs=[x.name for x in input] if is_concat_layer else input, active_type=act.name, bias=ParamAttr.to_bias(bias_attr), **ExtraLayerAttribute.to_kwargs(layer_attr)) sz = layer.config.size return LayerOutput( name, layer_type=layer_type, parents=input if is_concat_layer else [x.origin for x in input], activation=act, size=sz) @wrap_name_default("seqconcat") @wrap_act_default(act=IdentityActivation()) @wrap_bias_attr_default(has_bias=False) @layer_support(DROPOUT, ERROR_CLIPPING) def seq_concat_layer(a, b, act=None, name=None, layer_attr=None, bias_attr=None): """ Concat sequence a with sequence b. Inputs: - a = [a1, a2, ..., am] - b = [b1, b2, ..., bn] Output: [a1, ..., am, b1, ..., bn] Note that the above computation is for one sample. Multiple samples are processed in one batch. The example usage is: .. code-block:: python concat = seq_concat_layer(a=layer1, b=layer2) :param name: Layer name. :type name: basestring :param a: input sequence layer :type a: LayerOutput :param b: input sequence layer :type b: LayerOutput :param act: Activation type. :type act: BaseActivation :param layer_attr: Extra Layer Attribute. :type layer_attr: ExtraLayerAttribute :param bias_attr: The Bias Attribute. If no bias, then pass False or something not type of ParameterAttribute. None will get a default Bias. :type bias_attr: ParameterAttribute or None or bool :return: LayerOutput object. :rtype: LayerOutput """ assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput) assert a.size == b.size Layer( name=name, type=LayerType.SEQUENCE_CONCAT_LAYER, inputs=[a.name, b.name], active_type=act.name, bias=ParamAttr.to_bias(bias_attr), **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name, layer_type=LayerType.SEQUENCE_CONCAT_LAYER, parents=[a, b], activation=act, size=a.size) @wrap_name_default("memory", "memory_name") def memory(name, size, memory_name=None, is_seq=False, boot_layer=None, boot_bias=None, boot_bias_active_type=None, boot_with_const_id=None): """ The memory layers is a layer cross each time step. Reference this output as previous time step layer :code:`name` 's output. The default memory is zero in first time step, previous time step's output in the rest time steps. If boot_bias, the first time step value is this bias and with activation. If boot_with_const_id, then the first time stop is a IndexSlot, the Arguments.ids()[0] is this :code:`cost_id`. If boot_layer is not null, the memory is just the boot_layer's output. Set :code:`is_seq` is true boot layer is sequence. The same name layer in recurrent group will set memory on each time step. .. code-block:: python mem = memory(size=256, name='state') state = fc_layer(input=mem, size=256, name='state') If you do not want to specify the name, you can equivalently use set_input() to specify the layer needs to be remembered as the following: .. code-block:: python mem = memory(size=256) state = fc_layer(input=mem, size=256) mem.set_input(mem) :param name: the name of the layer which this memory remembers. If name is None, user should call set_input() to specify the name of the layer which this memory remembers. :type name: basestring :param size: size of memory. :type size: int :param memory_name: the name of the memory. It is ignored when name is provided. :type memory_name: basestring :param is_seq: DEPRECATED. is sequence for boot_layer :type is_seq: bool :param boot_layer: boot layer of memory. :type boot_layer: LayerOutput|None :param boot_bias: boot layer's bias :type boot_bias: ParameterAttribute|None :param boot_bias_active_type: boot layer's active type. :type boot_bias_active_type: BaseActivation :param boot_with_const_id: boot layer's id. :type boot_with_const_id: int :return: LayerOutput object which is a memory. :rtype: LayerOutput """ if boot_bias_active_type is None: boot_bias_active_type = LinearActivation() assert boot_bias is None or isinstance(boot_bias, ParameterAttribute) if isinstance(boot_bias, ParameterAttribute): boot_bias = ParamAttr.to_bias(boot_bias) assert boot_layer is None or isinstance(boot_layer, LayerOutput) if name is not None: memory_name = None memory_name = Memory( name, size, boot_layer=boot_layer.name if boot_layer is not None else None, boot_bias=boot_bias, boot_bias_active_type=boot_bias_active_type.name, boot_with_const_id=boot_with_const_id, memory_name=memory_name) lout = LayerOutput( name=memory_name, size=size, layer_type=LayerType.MEMORY, parents=[boot_layer] if boot_layer is not None else None) return lout @wrap_bias_attr_default() @wrap_act_default(param_names=['gate_act'], act=SigmoidActivation()) @wrap_act_default(param_names=['state_act'], act=TanhActivation()) @wrap_act_default(act=TanhActivation()) @wrap_name_default('lstm_step') @layer_support() def lstm_step_layer(input, state, size=None, act=None, name=None, gate_act=None, state_act=None, bias_attr=None, layer_attr=None): """ LSTM Step Layer. This function is used only in recurrent_group. The lstm equations are shown as follows. .. math:: i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i) f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f) c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c) o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o) h_t & = o_t tanh(c_t) The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these input vectors. The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do .. math:: i_t = \\sigma(input + W_{ci}c_{t-1} + b_i) ... This layer has two outputs. Default output is :math:`h_t`. The other output is :math:`o_t`, whose name is 'state' and can use :code:`get_output_layer` to extract this output. :param name: Layer's name. :type name: basestring :param size: Layer's size. NOTE: lstm layer's size, should be equal to :code:`input.size/4`, and should be equal to :code:`state.size`. :type size: int :param input: input layer. :math:`Wx_t + Wh_{t-1}` :type input: LayerOutput :param state: State Layer. :math:`c_{t-1}` :type state: LayerOutput :param act: Activation type. Default is tanh :type act: BaseActivation :param gate_act: Gate Activation Type. Default is sigmoid, and should be sigmoid only. :type gate_act: BaseActivation :param state_act: State Activation Type. Default is sigmoid, and should be sigmoid only. :type state_act: BaseActivation :param bias_attr: Bias Attribute. :type bias_attr: ParameterAttribute :param layer_attr: layer's extra attribute. :type layer_attr: ExtraLayerAttribute :return: LayerOutput object. :rtype: LayerOutput """ assert size is None or state.size == size size = state.size Layer( name=name, type=LayerType.LSTM_STEP_LAYER, active_type=act.name, active_gate_type=gate_act.name, active_state_type=state_act.name, bias=ParamAttr.to_bias(bias_attr), size=state.size, inputs=[input.name, state.name], **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name=name, layer_type=LayerType.LSTM_STEP_LAYER, parents=[input, state], activation=act, size=size, outputs=['default', 'state']) @wrap_bias_attr_default() @wrap_param_attr_default() @wrap_act_default(param_names=['gate_act'], act=SigmoidActivation()) @wrap_act_default(act=TanhActivation()) @wrap_name_default('gru_step') @layer_support() def gru_step_layer(input, output_mem, size=None, act=None, name=None, gate_act=None, bias_attr=None, param_attr=None, layer_attr=None): """ :param input: :type input: LayerOutput :param output_mem: :param size: :param act: :param name: :param gate_act: :param bias_attr: :param param_attr: the parameter_attribute for transforming the output_mem from previous step. :param layer_attr: :return: LayerOutput object. :rtype: LayerOutput """ assert input.size % 3 == 0 if size is None: size = input.size / 3 Layer( name=name, type=LayerType.GRU_STEP_LAYER, # The parameter here is for transforming the output_mem. The input has # already been transformed outside this module so it does not need # parameter associated with it. # The parameter here is instead grouped with input is due to # backward model compatibility. inputs=[Input(input.name, **param_attr.attr), output_mem.name], bias=ParamAttr.to_bias(bias_attr), size=size, active_type=act.name, active_gate_type=gate_act.name, **ExtraAttr.to_kwargs(layer_attr)) return LayerOutput( name=name, layer_type=LayerType.GRU_STEP_LAYER, parents=[input, output_mem], size=size, activation=act) @wrap_bias_attr_default() @wrap_param_attr_default() @wrap_act_default(param_names=['gate_act'], act=SigmoidActivation()) @wrap_act_default(act=TanhActivation()) @wrap_name_default('gru_step_naive') @layer_support(ERROR_CLIPPING, DROPOUT) def gru_step_naive_layer(input, output_mem, size=None, name=None, act=None, gate_act=None, bias_attr=None, param_attr=None, layer_attr=None): """ GRU Step Layer, but using MixedLayer to generate. It support ERROR_CLIPPING and DROPOUT. :param input: :param output_mem: :param size: :param name: :param act: :param gate_act: :param bias_attr: :param param_attr: :param layer_attr: :return: """ if input.size % 3 != 0: raise ValueError("GruStep input size must be divided by 3") if size is None: size = input.size / 3 def __gate__(gate_name, offset): with mixed_layer( name=name + "_" + gate_name, size=size, layer_attr=layer_attr, bias_attr=bias_attr, act=gate_act) as gate: gate += identity_projection(input=input, offset=offset) gate += full_matrix_projection( input=output_mem, param_attr=param_attr) return gate update_gate = __gate__("update", 0) reset_gate = __gate__("reset", size) with mixed_layer( name=name + "_reset_output", bias_attr=False) as reset_output: reset_output += dotmul_operator(a=output_mem, b=reset_gate) with mixed_layer( name=name + "_output_candidate", size=size, layer_attr=layer_attr, bias_attr=bias_attr, act=act) as output_candidate: output_candidate += identity_projection(input=input, offset=2 * size) output_candidate += full_matrix_projection( input=reset_output, param_attr=param_attr) with mixed_layer(name=name) as output: output += identity_projection(output_mem) output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0) output += dotmul_operator(a=output_candidate, b=update_gate) return output @wrap_name_default() @layer_support() def get_output_layer(input, arg_name, name=None, layer_attr=None): """ Get layer's output by name. In PaddlePaddle, a layer might return multiple values, but returns one layer's output. If the user wants to use another output besides the default one, please use get_output_layer first to get the output from input. :param name: Layer's name. :type name: basestring :param input: get output layer's input. And this layer should contains multiple outputs. :type input: LayerOutput :param arg_name: Output name from input. :type arg_name: basestring :param layer_attr: Layer's extra attribute. :return: LayerOutput object. :rtype: LayerOutput """ # GetOutputLayer assert arg_name in input.outputs, 'Get Output From an not existed input.' \ ' The get output name is %s, which not' \ ' in %s' % ( arg_name, ",".join(input.outputs)) Layer( name=name, type=LayerType.GET_OUTPUT_LAYER, inputs=[Input( input.name, input_layer_argument=arg_name)], size=input.size, **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name=name, layer_type=LayerType.GET_OUTPUT_LAYER, parents=[input], size=input.size) @wrap_name_default() @wrap_act_default() @wrap_bias_attr_default() @wrap_param_attr_default() @layer_support() def recurrent_layer(input, act=None, bias_attr=None, param_attr=None, name=None, reverse=False, layer_attr=None): """ Simple recurrent unit layer. It is just a fully connect layer through both time and neural network. For each sequence [start, end] it performs the following computation\: .. math:: out_{i} = act(in_{i}) \\ \\ \\text{for} \\ i = start \\\\ out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end If reversed is true, the order is reversed\: .. math:: out_{i} = act(in_{i}) \\ \\ \\text{for} \\ i = end \\\\ out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end :param input: Input Layer :type input: LayerOutput :param act: activation. :type act: BaseActivation :param bias_attr: bias attribute. :type bias_attr: ParameterAttribute :param param_attr: parameter attribute. :type param_attr: ParameterAttribute :param name: name of the layer :type name: basestring :param layer_attr: Layer Attribute. :type layer_attr: ExtraLayerAttribute :return: LayerOutput object. :rtype: LayerOutput """ Layer( name=name, type=LayerType.RECURRENT_LAYER, inputs=Input(input.name, **param_attr.attr), active_type=act.name, bias=ParamAttr.to_bias(bias_attr), reversed=reverse, **ExtraAttr.to_kwargs(layer_attr)) return LayerOutput( name=name, layer_type=LayerType.RECURRENT_LAYER, parents=[input], size=input.size, activation=act, reverse=reverse) class StaticInput(object): """ StaticInput is only used in recurrent_group which defines a read-only memory that can be a sequence or non-sequence. :param size: DEPRECATED :param is_seq: DEPRECATED """ def __init__(self, input, is_seq=False, size=None): assert isinstance(input, LayerOutput) self.input = input assert input.size is not None if size is not None: assert input.size == size def SubsequenceInput(input): """ DEPRECATED. Input sequence has sub-sequence, used in recurrent_group. The example usage is: .. code-block:: python input = SubsequenceInput(layer) """ return input @wrap_name_default("recurrent_group") def recurrent_group(step, input, reverse=False, name=None, targetInlink=None): """ Recurrent layer group is an extremely flexible recurrent unit in PaddlePaddle. As long as the user defines the calculation done within a time step, PaddlePaddle will iterate such a recurrent calculation over sequence input. This is extremely usefull for attention based model, or Neural Turning Machine like models. The basic usage (time steps) is: .. code-block:: python def step(input): output = fc_layer(input=layer, size=1024, act=LinearActivation(), bias_attr=False) return output group = recurrent_group(input=layer, step=step) You can see following configs for further usages: - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \ demo/seqToseq/seqToseq_net.py - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf :param step: recurrent one time step function.The input of this function is input of the group. The return of this function will be recurrent group's return value. The recurrent group scatter a sequence into time steps. And for each time step, will invoke step function, and return a time step result. Then gather each time step of output into layer group's output. :type step: callable :param name: recurrent_group's name. :type name: basestring :param input: Input links array. LayerOutput will be scattered into time steps. SubsequenceInput will be scattered into sequence steps. StaticInput will be imported to each time step, and doesn't change through time. It's a mechanism to access layer outside step function. :type input: LayerOutput|StaticInput|SubsequenceInput|list|tuple :param reverse: If reverse is set true, the recurrent unit will process the input sequence in a reverse order. :type reverse: bool :param targetInlink: DEPRECATED. The input layer which share info with layer group's output Param input specifies multiple input layers. For SubsequenceInput inputs, config should assign one input layer that share info(the number of sentences and the number of words in each sentence) with all layer group's outputs. targetInlink should be one of the layer group's input. :type targetInlink: LayerOutput|SubsequenceInput :return: LayerOutput object. :rtype: LayerOutput """ model_type('recurrent_nn') if isinstance(input, LayerOutput) or isinstance(input, StaticInput): input = [input] assert isinstance(input, collections.Sequence) def is_in_links(x): return isinstance(x, LayerOutput) in_links = filter(is_in_links, input) RecurrentLayerGroupWithoutOutLinksBegin( name=name, in_links=map(lambda x: x.name, in_links), seq_reversed=reverse) in_args = [] for each_input in input: if isinstance(each_input, StaticInput): # StaticInput mem_name = "__%s_memory__" % each_input.input.name mem = memory( name=None, size=each_input.input.size, boot_layer=each_input.input) mem.set_input(mem) in_args.append(mem) else: in_args.append(each_input) layer_outs = step(*in_args) if isinstance(layer_outs, LayerOutput): layer_outs = [layer_outs] for layer_out in layer_outs: assert isinstance( layer_out, LayerOutput ), "Type of step function's return value must be LayerOutput." layer_out.reverse = reverse RecurrentLayerGroupSetOutLink(layer_out.name) RecurrentLayerGroupEnd(name=name) for layer_out in layer_outs: # The previous full_name is the name inside the recurrent group. # We need a full_name outside the recurrent group. layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name) if len(layer_outs) == 1: return layer_outs[0] else: return layer_outs class BaseGeneratedInput(object): def __init__(self): self.bos_id = None self.eos_id = None def before_real_step(self): raise NotImplementedError() def after_real_step(self, *args): raise NotImplementedError() class GeneratedInput(BaseGeneratedInput): def after_real_step(self, input): if isinstance(input, LayerOutput): input = [input] elif isinstance(input, collections.Sequence): input = list(input) if len(input) > 1: logger.info( ("More than one layers inside the recurrent_group " "are returned as outputs of the entire recurrent_group " "PLEASE garantee the first output is probability of " "the predicted next word.")) return [maxid_layer( input=input[0], name='__beam_search_predict__')] + ( input[1:] if len(input) > 1 else []) def before_real_step(self): predict_id = memory( name='__beam_search_predict__', size=self.size, boot_with_const_id=self.bos_id) trg_emb = embedding_layer( input=predict_id, size=self.embedding_size, param_attr=ParamAttr(name=self.embedding_name)) return trg_emb def __init__(self, size, embedding_name, embedding_size): super(GeneratedInput, self).__init__() self.size = size self.embedding_name = embedding_name self.embedding_size = embedding_size @wrap_name_default() def maxid_layer(input, name=None, layer_attr=None): """ A layer for finding the id which has the maximal value for each sample. The result is stored in output.ids. The example usage is: .. code-block:: python maxid = maxid_layer(input=layer) :param input: Input layer name. :type input: LayerOutput :param name: Layer name. :type name: basestring :param layer_attr: extra layer attributes. :type layer_attr: ExtraLayerAttribute. :return: LayerOutput object. :rtype: LayerOutput """ assert isinstance(input, LayerOutput) l = Layer( name=name, type='maxid', inputs=[input.name], **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name=name, layer_type=LayerType.MAXID_LAYER, parents=[input], size=l.config.size) @wrap_name_default() def out_prod_layer(input1, input2, name=None, layer_attr=None): """ A layer for computing the outer product of two vectors The result is a matrix of size(input1) x size(input2) The example usage is: .. code-block:: python out_prod = out_prod_layer(input1=vec1, input2=vec2) :param name: Layer name. :type name: basestring :param input1: The first input layer name. :type input: LayerOutput :param input2: The second input layer name. :type input2: LayerOutput :param layer_attr: extra layer attributes. :type layer_attr: ExtraLayerAttribute. :return: LayerOutput object. :rtype: LayerOutput """ assert isinstance(input1, LayerOutput) assert isinstance(input2, LayerOutput) l = Layer( name=name, type=LayerType.OUT_PROD_LAYER, inputs=[input1.name, input2.name], **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name=name, layer_type=LayerType.OUT_PROD_LAYER, parents=[input1, input2], size=l.config.size) @wrap_name_default() def eos_layer(input, eos_id, name=None, layer_attr=None): """ A layer for checking EOS for each sample: - output_id = (input_id == conf.eos_id) The result is stored in output\_.ids. It is used by recurrent layer group. The example usage is: .. code-block:: python eos = eos_layer(input=layer, eos_id=id) :param name: Layer name. :type name: basestring :param input: Input layer name. :type input: LayerOutput :param eos_id: end id of sequence :type eos_id: int :param layer_attr: extra layer attributes. :type layer_attr: ExtraLayerAttribute. :return: LayerOutput object. :rtype: LayerOutput """ l = Layer( name=name, type=LayerType.EOSID_LAYER, eos_id=eos_id, inputs=[input.name], **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name=name, layer_type=LayerType.EOSID_LAYER, parents=[input], size=l.config.size) @wrap_name_default() def beam_search(step, input, bos_id, eos_id, beam_size, max_length=500, name=None, num_results_per_sample=None): """ Beam search is a heuristic search algorithm used in sequence generation. It explores a graph by expanding the most promising nodes in a limited set to maintain tractability. The example usage is: .. code-block:: python def rnn_step(input): last_time_step_output = memory(name='rnn', size=512) with mixed_layer(size=512, name='rnn') as simple_rnn: simple_rnn += full_matrix_projection(input) simple_rnn += last_time_step_output return simple_rnn generated_word_embedding = GeneratedInput( size=target_dictionary_dim, embedding_name="target_language_embedding", embedding_size=word_vector_dim) beam_gen = beam_search(name="decoder", step=rnn_step, input=[StaticInput(encoder_last), generated_word_embedding], bos_id=0, eos_id=1, beam_size=5) Please see the following demo for more details: - machine translation : demo/seqToseq/translation/gen.conf \ demo/seqToseq/seqToseq_net.py :param name: Name of the recurrent unit that generates sequences. :type name: base string :param step: A callable function that defines the calculation in a time step, and it is applied to sequences with arbitrary length by sharing a same set of weights. You can refer to the first parameter of recurrent_group, or demo/seqToseq/seqToseq_net.py for more details. :type step: callable :param input: Input data for the recurrent unit, which should include the previously generated words as a GeneratedInput object. In beam_search, none of the input's type should be LayerOutput. :type input: list :param bos_id: Index of the start symbol in the dictionary. The start symbol is a special token for NLP task, which indicates the beginning of a sequence. In the generation task, the start symbol is essential, since it is used to initialize the RNN internal state. :type bos_id: int :param eos_id: Index of the end symbol in the dictionary. The end symbol is a special token for NLP task, which indicates the end of a sequence. The generation process will stop once the end symbol is generated, or a pre-defined max iteration number is exceeded. :type eos_id: int :param max_length: Max generated sequence length. :type max_length: int :param beam_size: Beam search for sequence generation is an iterative search algorithm. To maintain tractability, every iteration only only stores a predetermined number, called the beam_size, of the most promising next words. The greater the beam size, the fewer candidate words are pruned. :type beam_size: int :param num_results_per_sample: Number of the generated results per input sequence. This number must always be less than beam size. :type num_results_per_sample: int :return: The generated word index. :rtype: LayerOutput """ if num_results_per_sample is None: num_results_per_sample = beam_size if num_results_per_sample > beam_size: logger.warning("num_results_per_sample should be less than beam_size") if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput): input = [input] generated_input_index = -1 real_input = [] for i, each_input in enumerate(input): assert not isinstance(each_input, LayerOutput), ( "in beam_search, " "none of the input should has a type of LayerOutput.") if isinstance(each_input, BaseGeneratedInput): assert generated_input_index == -1, ("recurrent_group accepts " "only one GeneratedInput.") generated_input_index = i else: real_input.append(each_input) assert generated_input_index != -1, "No GeneratedInput is given." gipt = input[generated_input_index] gipt.bos_id = bos_id gipt.eos_id = eos_id def __real_step__(*args): eos_name = "__%s_eos_layer__" % name RecurrentLayerGroupSetGenerator( Generator( eos_layer_name=eos_name, max_num_frames=max_length, beam_size=beam_size, num_results_per_sample=num_results_per_sample)) args = list(args) args.insert(generated_input_index, gipt.before_real_step()) predict = gipt.after_real_step(step(*args)) eos_layer(input=predict[0], eos_id=eos_id, name=eos_name) return predict return recurrent_group( step=__real_step__, input=real_input, reverse=False, name=name) def __cost_input__(input, label, weight=None): """ inputs and parents for cost layers. """ ipts = [Input(input.name), Input(label.name)] parents = [input, label] if weight is not None: assert weight.size == 1 ipts.append(Input(weight.name)) parents.append(weight) return ipts, parents @wrap_name_default() @layer_support() def mse_cost(input, label, weight=None, name=None, coeff=1.0, layer_attr=None): """ mean squared error cost: .. math:: \\frac{1}{N}\sum_{i=1}^N(t_i-y_i)^2 :param name: layer name. :type name: basestring :param input: Network prediction. :type input: LayerOutput :param label: Data label. :type label: LayerOutput :param weight: The weight affects the cost, namely the scale of cost. It is an optional argument. :type weight: LayerOutput :param coeff: The coefficient affects the gradient in the backward. :type coeff: float :param layer_attr: layer's extra attribute. :type layer_attr: ExtraLayerAttribute :return: LayerOutput object. :rtype: LayerOutput """ ipts, parents = __cost_input__(input, label, weight) Layer( inputs=ipts, type="square_error", name=name, coeff=coeff, **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput(name, LayerType.COST, parents=parents, size=1) regression_cost = mse_cost @wrap_name_default("cost") @layer_support() def classification_cost(input, label, weight=None, name=None, evaluator=classification_error_evaluator, layer_attr=None, coeff=1.): """ classification cost Layer. :param name: layer name. :type name: basestring :param input: input layer name. network output. :type input: LayerOutput :param label: label layer name. data_layer often. :type label: LayerOutput :param weight: The weight affects the cost, namely the scale of cost. It is an optional argument. :type weight: LayerOutput :param evaluator: Evaluator method. :param layer_attr: layer's extra attribute. :type layer_attr: ExtraLayerAttribute :param coeff: The coefficient affects the gradient in the backward. :type coeff: float :return: LayerOutput object. :rtype: LayerOutput """ assert input.layer_type != LayerType.DATA assert isinstance(input.activation, SoftmaxActivation) assert label.layer_type == LayerType.DATA ipts, parents = __cost_input__(input, label, weight) Layer( name=name, type="multi-class-cross-entropy", inputs=ipts, coeff=coeff, **ExtraLayerAttribute.to_kwargs(layer_attr)) def __add_evaluator__(e): assert callable(e) assert hasattr(e, 'is_evaluator') assert isinstance(e.is_evaluator, bool) assert e.is_evaluator assert hasattr(e, "for_classification") assert isinstance(e.for_classification, bool) assert e.for_classification e(name=e.__name__, input=input, label=label, weight=weight) if not isinstance(evaluator, collections.Sequence): evaluator = [evaluator] for each_evaluator in evaluator: __add_evaluator__(each_evaluator) return LayerOutput(name, LayerType.COST, parents=parents, size=1) def conv_operator(img, filter, filter_size, num_filters, num_channels=None, stride=1, padding=0, filter_size_y=None, stride_y=None, padding_y=None, trans=False): """ Different from img_conv_layer, conv_op is an Operator, which can be used in mixed_layer. And conv_op takes two inputs to perform convolution. The first input is the image and the second is filter kernel. It only support GPU mode. The example usage is: .. code-block:: python op = conv_operator(img=input1, filter=input2, filter_size=3, num_filters=64, num_channels=64) :param img: input image :type img: LayerOutput :param filter: input filter :type filter: LayerOutput :param filter_size: The x dimension of a filter kernel. :type filter_size: int :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle now supports rectangular filters, the filter's shape can be (filter_size, filter_size_y). :type filter_size_y: int :param num_filters: channel of output data. :type num_filters: int :param num_channels: channel of input data. :type num_channels: int :param stride: The x dimension of the stride. :type stride: int :param stride_y: The y dimension of the stride. :type stride_y: int :param padding: The x dimension of padding. :type padding: int :param padding_y: The y dimension of padding. :type padding_y: int :return: A ConvOperator Object. :rtype: ConvOperator """ if filter_size_y is None: filter_size_y = filter_size if stride_y is None: stride_y = stride if padding_y is None: padding_y = padding if num_channels is None: num_channels = img.num_filters assert isinstance(filter, LayerOutput) if filter.size is not None: filter.size = filter_size * filter_size_y * num_filters * num_channels opCls = ConvTransOperator if trans else ConvOperator op = opCls( input_layer_names=[img.name, filter.name], num_filters=num_filters, conv_conf=Conv( filter_size=filter_size, padding=padding, stride=stride, channels=num_channels, filter_size_y=filter_size_y, padding_y=padding_y, stride_y=stride_y, groups=1)) op.origin = [img, filter] return op @wrap_param_attr_default() def conv_projection(input, filter_size, num_filters, num_channels=None, stride=1, padding=0, filter_size_y=None, stride_y=None, padding_y=None, groups=1, param_attr=None, trans=False): """ Different from img_conv_layer and conv_op, conv_projection is an Projection, which can be used in mixed_layer and conat_layer. It use cudnn to implement conv and only support GPU mode. The example usage is: .. code-block:: python proj = conv_projection(input=input1, filter_size=3, num_filters=64, num_channels=64) :param input: input layer :type input: LayerOutput :param filter_size: The x dimension of a filter kernel. :type filter_size: int :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle now supports rectangular filters, the filter's shape can be (filter_size, filter_size_y). :type filter_size_y: int :param num_filters: channel of output data. :type num_filters: int :param num_channels: channel of input data. :type num_channels: int :param stride: The x dimension of the stride. :type stride: int :param stride_y: The y dimension of the stride. :type stride_y: int :param padding: The x dimension of padding. :type padding: int :param padding_y: The y dimension of padding. :type padding_y: int :param groups: The group number. :type groups: int :param param_attr: Convolution param attribute. None means default attribute :type param_attr: ParameterAttribute :param trans: whether it is convTrans or conv :type trans: boolean :return: A DotMulProjection Object. :rtype: DotMulProjection """ if num_channels is None: assert input.num_filters is not None num_channels = input.num_filters if filter_size_y is None: if isinstance(filter_size, collections.Sequence): assert len(filter_size) == 2 filter_size, filter_size_y = filter_size else: filter_size_y = filter_size if stride_y is None: if isinstance(stride, collections.Sequence): assert len(stride) == 2 stride, stride_y = stride else: stride_y = stride if padding_y is None: if isinstance(padding, collections.Sequence): assert len(padding) == 2 padding, padding_y = padding else: padding_y = padding if param_attr.attr.get('initial_smart'): # special initial for conv layers. init_w = (2.0 / (filter_size**2 * num_channels))**0.5 param_attr.attr["initial_mean"] = 0.0 param_attr.attr["initial_std"] = init_w param_attr.attr["initial_strategy"] = 0 param_attr.attr["initial_smart"] = False projCls = ConvTransProjection if trans else ConvProjection proj = projCls( input_layer_name=input.name, num_filters=num_filters, conv_conf=Conv( filter_size=filter_size, padding=padding, stride=stride, channels=num_channels, filter_size_y=filter_size_y, padding_y=padding_y, stride_y=stride_y, groups=groups), **param_attr.attr) proj.origin = input return proj @wrap_name_default("pad") @layer_support() def pad_layer(input, pad_c=None, pad_h=None, pad_w=None, name=None, layer_attr=None): """ This operation pads zeros to the input data according to pad_c,pad_h and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size of padding. And the input data shape is NCHW. For example, pad_c=[2,3] means padding 2 zeros before the input data and 3 zeros after the input data in channel dimension. pad_h means padding zeros in height dimension. pad_w means padding zeros in width dimension. For example, .. code-block:: python input(2,2,2,3) = [ [ [[1,2,3], [3,4,5]], [[2,3,5], [1,6,7]] ], [ [[4,3,1], [1,8,7]], [[3,8,9], [2,3,5]] ] ] pad_c=[1,1], pad_h=[0,0], pad_w=[0,0] output(2,4,2,3) = [ [ [[0,0,0], [0,0,0]], [[1,2,3], [3,4,5]], [[2,3,5], [1,6,7]], [[0,0,0], [0,0,0]] ], [ [[0,0,0], [0,0,0]], [[4,3,1], [1,8,7]], [[3,8,9], [2,3,5]], [[0,0,0], [0,0,0]] ] ] The simply usage is: .. code-block:: python pad = pad_layer(input=ipt, pad_c=[4,4], pad_h=[0,0], pad_w=[2,2]) :param input: layer's input. :type input: LayerOutput :param pad_c: padding size in channel dimension. :type pad_c: list|None :param pad_h: padding size in height dimension. :type pad_h: list|None :param pad_w: padding size in width dimension. :type pad_w: list|None :param layer_attr: Extra Layer Attribute. :type layer_attr: ExtraLayerAttribute :param name: layer name. :type name: basestring :return: LayerOutput object. :rtype: LayerOutput """ if pad_c is not None: assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2 else: pad_c = [0, 0] if pad_h is not None: assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2 else: pad_h = [0, 0] if pad_w is not None: assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2 else: pad_w = [0, 0] assert input.num_filters is not None in_ch = input.num_filters out_ch = in_ch + pad_c[0] + pad_c[1] l = Layer( name=name, type=LayerType.PAD_LAYER, inputs=Input( input.name, pad=Pad( channels=in_ch, pad_c=pad_c, pad_h=pad_h, pad_w=pad_w, )), **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name, layer_type=LayerType.PAD_LAYER, parents=[input], num_filters=out_ch, size=l.config.size) @wrap_name_default() @layer_support() def conv_shift_layer(a, b, name=None, layer_attr=None): """ This layer performs cyclic convolution for two input. For example: - a[in]: contains M elements. - b[in]: contains N elements (N should be odd). - c[out]: contains M elements. .. math:: c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j} In this formular: - a's index is computed modulo M. When it is negative, then get item from the right side (which is the end of array) to the left. - b's index is computed modulo N. When it is negative, then get item from the right size (which is the end of array) to the left. The example usage is: .. code-block:: python conv_shift = conv_shift_layer(a=layer1, b=layer2) :param name: layer name :type name: basestring :param a: Input layer a. :type a: LayerOutput :param b: input layer b. :type b: LayerOutput :param layer_attr: layer's extra attribute. :type layer_attr: ExtraLayerAttribute :return: LayerOutput object. :rtype: LayerOutput """ assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput) assert b.size is None or b.size % 2 == 1 # size of b must be odd. Layer( name=name, type=LayerType.CONV_SHIFT_LAYER, inputs=[a.name, b.name], **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size) @wrap_name_default() @wrap_param_attr_default() @wrap_bias_attr_default() @wrap_act_default(act=LinearActivation()) @layer_support(ERROR_CLIPPING, DROPOUT) def tensor_layer(a, b, size, act=None, name=None, param_attr=None, bias_attr=None, layer_attr=None): """ This layer performs tensor operation for two input. For example, each sample: .. math:: y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1 In this formular: - :math:`a`: the first input contains M elements. - :math:`b`: the second input contains N elements. - :math:`y_{i}`: the i-th element of y. - :math:`W_{i}`: the i-th learned weight, shape if [M, N] - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`. The simple usage is: .. code-block:: python tensor = tensor_layer(a=layer1, b=layer2, size=1000) :param name: layer name :type name: basestring :param a: Input layer a. :type a: LayerOutput :param b: input layer b. :type b: LayerOutput :param size: the layer dimension. :type size: int. :param act: Activation Type. Default is tanh. :type act: BaseActivation :param param_attr: The Parameter Attribute. :type param_attr: ParameterAttribute :param bias_attr: The Bias Attribute. If no bias, then pass False or something not type of ParameterAttribute. None will get a default Bias. :type bias_attr: ParameterAttribute|None|Any :param layer_attr: Extra Layer config. :type layer_attr: ExtraLayerAttribute|None :return: LayerOutput object. :rtype: LayerOutput """ assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput) Layer( name=name, size=size, type=LayerType.TENSOR_LAYER, active_type=act.name, bias=ParamAttr.to_bias(bias_attr), inputs=[Input(a.name, **param_attr.attr), Input(b.name)], **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size) @wrap_name_default() @wrap_param_attr_default() @wrap_bias_attr_default() @wrap_act_default() @layer_support(DROPOUT, ERROR_CLIPPING) def selective_fc_layer(input, size, select=None, act=None, name=None, pass_generation=False, has_selected_colums=True, mul_ratio=0.02, param_attr=None, bias_attr=None, layer_attr=None): """ Selectived fully connected layer. Different from fc_layer, the output of this layer maybe sparse. It requires an additional input to indicate several selected columns for output. If the selected columns is not specified, selective_fc_layer acts exactly like fc_layer. The simple usage is: .. code-block:: python sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation()) :param name: The Layer Name. :type name: basestring :param input: The input layer. :type input: LayerOutput|list|tuple :param select: The select layer. The output of select layer should be a sparse binary matrix, and treat as the mask of selective fc. If is None, acts exactly like fc_layer. :type select: LayerOutput :param size: The layer dimension. :type size: int :param act: Activation Type. Default is tanh. :type act: BaseActivation :param param_attr: The Parameter Attribute. :type param_attr: ParameterAttribute :param bias_attr: The Bias Attribute. If no bias, then pass False or something not type of ParameterAttribute. None will get a default Bias. :type bias_attr: ParameterAttribute|None|Any :param layer_attr: Extra Layer config. :type layer_attr: ExtraLayerAttribute|None :return: LayerOutput object. :rtype: LayerOutput """ if isinstance(input, LayerOutput): input = [input] assert not isinstance(param_attr, collections.Sequence) param_attr = [param_attr] else: if isinstance(param_attr, collections.Sequence): assert len(input) == len(param_attr) else: param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))] assert isinstance(input, collections.Sequence) assert isinstance(select, LayerOutput) if select.size is not None: assert select.size == size Layer( inputs=[ Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr) ] + [select.name], name=name, type=LayerType.SEL_FC_LAYER, size=size, bias=ParameterAttribute.to_bias(bias_attr), active_type=act.name, selective_fc_pass_generation=pass_generation, has_selected_colums=has_selected_colums, selective_fc_full_mul_ratio=mul_ratio, **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name, LayerType.SEL_FC_LAYER, list(input) + [select], activation=act, size=size) @wrap_name_default() @layer_support() def sampling_id_layer(input, name=None, layer_attr=None): """ A layer for sampling id from multinomial distribution from the input layer. Sampling one id for one sample. The simple usage is: .. code-block:: python samping_id = sampling_id_layer(input=input) :param input: The input layer. :type input: LayerOutput :param name: The Layer Name. :type name: basestring :param layer_attr: Extra Layer config. :type layer_attr: ExtraLayerAttribute|None :return: LayerOutput object. :rtype: LayerOutput """ l = Layer( name=name, type=LayerType.SAMPLING_ID_LAYER, inputs=[Input(input.name)], **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size) @wrap_name_default() @layer_support() def slope_intercept_layer(input, name=None, slope=1.0, intercept=0.0, layer_attr=None): """ This layer for applying a slope and an intercept to the input element-wise. There is no activation and weight. .. math:: y = slope * x + intercept The simple usage is: .. code-block:: python scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0) :param input: The input layer. :type input: LayerOutput :param name: The Layer Name. :type name: basestring :param slope: the scale factor. :type slope: float. :param intercept: the offset. :type intercept: float. :param layer_attr: Extra Layer config. :type layer_attr: ExtraLayerAttribute|None :return: LayerOutput object. :rtype: LayerOutput """ Layer( name=name, type=LayerType.SLOPE_INTERCEPT_LAYER, slope=slope, intercept=intercept, inputs=[Input(input.name)], **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size) @wrap_name_default() @layer_support() def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None): """ A layer for weighted sum of vectors takes two inputs. - Input: size of weights is M size of vectors is M*N - Output: a vector of size=N .. math:: z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj) where :math:`0 \le i \le N-1` Or in the matrix notation: .. math:: z = x^\mathrm{T} Y In this formular: - :math:`x`: weights - :math:`y`: vectors. - :math:`z`: the output. Note that the above computation is for one sample. Multiple samples are processed in one batch. The simple usage is: .. code-block:: python linear_comb = linear_comb_layer(weights=weight, vectors=vectors, size=elem_dim) :param weights: The weight layer. :type weights: LayerOutput :param vectors: The vector layer. :type vectors: LayerOutput :param size: the dimension of this layer. :type size: int :param name: The Layer Name. :type name: basestring :param layer_attr: Extra Layer config. :type layer_attr: ExtraLayerAttribute|None :return: LayerOutput object. :rtype: LayerOutput """ assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput) if vectors.size is not None and weights.size is not None: assert vectors.size % weights.size == 0 if size is None: size = vectors.size / weights.size else: assert size == vectors.size / weights.size Layer( name=name, type=LayerType.LINEAR_COMBINATION_LAYER, size=size, inputs=[Input(weights.name), Input(vectors.name)], **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size) convex_comb_layer = linear_comb_layer @wrap_name_default() @layer_support() def block_expand_layer(input, block_x=0, block_y=0, stride_x=0, stride_y=0, padding_x=0, padding_y=0, num_channels=None, name=None, layer_attr=None): """ Expand feature map to minibatch matrix. - matrix width is: block_y * block_x * num_channels - matirx height is: outputH * outputW .. math:: outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x The expand method is the same with ExpandConvLayer, but saved the transposed value. After expanding, output.sequenceStartPositions will store timeline. The number of time steps are outputH * outputW and the dimension of each time step is block_y * block_x * num_channels. This layer can be used after convolution neural network, and before recurrent neural network. The simple usage is: .. code-block:: python block_expand = block_expand_layer(input=layer, num_channels=128, stride_x=1, stride_y=1, block_x=1, block_x=3) :param input: The input layer. :type input: LayerOutput :param num_channels: The channel number of input layer. :type num_channels: int|None :param block_x: The width of sub block. :type block_x: int :param block_y: The width of sub block. :type block_y: int :param stride_x: The stride size in horizontal direction. :type stride_x: int :param stride_y: The stride size in vertical direction. :type stride_y: int :param padding_x: The padding size in horizontal direction. :type padding_x: int :param padding_y: The padding size in vertical direction. :type padding_y: int :param name: The name of this layer, which can not specify. :type name: None|basestring. :param layer_attr: Extra Layer config. :type layer_attr: ExtraLayerAttribute|None :return: LayerOutput object. :rtype: LayerOutput """ if num_channels is None: assert input.num_filters is not None num_channels = input.num_filters l = Layer( name=name, inputs=Input( input.name, block_expand=BlockExpand( channels=num_channels, block_x=block_x, block_y=block_y, stride_x=stride_x, stride_y=stride_y, padding_x=padding_x, padding_y=padding_y)), type=LayerType.BLOCK_EXPAND, **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size) @wrap_name_default() @layer_support() def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None): """ A layer to do max out on conv layer output. - Input: output of a conv layer. - Output: feature map size same as input. Channel is (input channel) / groups. So groups should be larger than 1, and the num of channels should be able to devided by groups. .. math:: y_{si+j} = \max_k x_{gsi + sk + j} g = groups s = input.size / num_channels 0 \le i < num_channels / groups 0 \le j < s 0 \le k < groups Please refer to Paper: - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf - Multi-digit Number Recognition from Street View \ Imagery using Deep Convolutional Neural Networks: \ https://arxiv.org/pdf/1312.6082v4.pdf The simple usage is: .. code-block:: python maxout = maxout_layer(input, num_channels=128, groups=4) :param input: The input layer. :type input: LayerOutput :param num_channels: The channel number of input layer. If None will be set automatically from previous output. :type num_channels: int|None :param groups: The group number of input layer. :type groups: int :param name: The name of this layer, which can not specify. :type name: None|basestring. :param layer_attr: Extra Layer attribute. :type layer_attr: ExtraLayerAttribute :return: LayerOutput object. :rtype: LayerOutput """ assert input.layer_type == LayerType.CONV_LAYER assert isinstance(input.activation, LinearActivation) assert groups > 1 if num_channels is None: assert input.num_filters is not None num_channels = input.num_filters assert num_channels % groups == 0 l = Layer( name=name, inputs=Input( input.name, maxout=MaxOut( channels=num_channels, groups=groups)), type=LayerType.MAXOUT, **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name, LayerType.MAXOUT, parents=[input], size=l.config.size) @wrap_name_default() @layer_support() def ctc_layer(input, label, size=None, name=None, norm_by_times=False, layer_attr=None): """ Connectionist Temporal Classification (CTC) is designed for temporal classication task. That is, for sequence labeling problems where the alignment between the inputs and the target labels is unknown. More details can be found by referring to `Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks `_ Note: Considering the 'blank' label needed by CTC, you need to use (num_classes + 1) as the input size. num_classes is the category number. And the 'blank' is the last category index. So the size of 'input' layer, such as fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer should also be num_classes + 1. The example usage is: .. code-block:: python ctc = ctc_layer(input=input, label=label, size=9055, norm_by_times=True) :param input: The input layer. :type input: LayerOutput :param label: The data layer of label with variable length. :type label: LayerOutput :param size: category numbers + 1. :type size: int :param name: The name of this layer :type name: basestring|None :param norm_by_times: Whether to normalization by times. False by default. :type norm_by_times: bool :param layer_attr: Extra Layer config. :type layer_attr: ExtraLayerAttribute|None :return: LayerOutput object. :rtype: LayerOutput """ assert isinstance(input, LayerOutput) assert isinstance(label, LayerOutput) if label.size is not None: if size is not None: assert size == label.size + 1 else: size = label.size + 1 Layer( name=name, type=LayerType.CTC_LAYER, size=size, norm_by_times=norm_by_times, inputs=[input.name, label.name], **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size) @wrap_name_default() @layer_support() def warp_ctc_layer(input, label, size=None, name=None, blank=0, norm_by_times=False, layer_attr=None): """ A layer intergrating the open-source `warp-ctc `_ library, which is used in `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin `_, to compute Connectionist Temporal Classification (CTC) loss. Besides, another `warp-ctc `_ repository, which is forked from the official one, is maintained to enable more compiling options. During the building process, PaddlePaddle will clone the source codes, build and install it to :code:`third_party/install/warpctc` directory. To use warp_ctc layer, you need to specify the path of :code:`libwarpctc.so`, using following methods: 1. Set it in :code:`paddle.init` (python api) or :code:`paddle_init` (c api), such as :code:`paddle.init(use_gpu=True, warpctc_dir=your_paddle_source_dir/third_party/install/warpctc/lib)`. 2. Set environment variable LD_LIBRARY_PATH on Linux or DYLD_LIBRARY_PATH on Mac OS. For instance, :code:`export LD_LIBRARY_PATH=your_paddle_source_dir/third_party/install/warpctc/lib:$LD_LIBRARY_PATH`. More details of CTC can be found by referring to `Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks `_. Note: - Let num_classes represent the category number. Considering the 'blank' label needed by CTC, you need to use (num_classes + 1) as the input size. Thus, the size of both warp_ctc layer and 'input' layer should be set to num_classes + 1. - You can set 'blank' to any value ranged in [0, num_classes], which should be consistent as that used in your labels. - As a native 'softmax' activation is interated to the warp-ctc library, 'linear' activation is expected instead in the 'input' layer. The example usage is: .. code-block:: python ctc = warp_ctc_layer(input=input, label=label, size=1001, blank=1000, norm_by_times=False) :param input: The input layer. :type input: LayerOutput :param label: The data layer of label with variable length. :type label: LayerOutput :param size: category numbers + 1. :type size: int :param name: The name of this layer, which can not specify. :type name: basestring|None :param blank: the 'blank' label used in ctc :type blank: int :param norm_by_times: Whether to normalization by times. False by default. :type norm_by_times: bool :param layer_attr: Extra Layer config. :type layer_attr: ExtraLayerAttribute|None :return: LayerOutput object. :rtype: LayerOutput """ assert isinstance(input, LayerOutput) assert isinstance(label, LayerOutput) if label.size is not None: if size is not None: assert size == label.size + 1 else: size = label.size + 1 Layer( name=name, type=LayerType.WARP_CTC_LAYER, size=size, blank=blank, norm_by_times=norm_by_times, inputs=[input.name, label.name], **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size) @wrap_name_default() @wrap_param_attr_default() @layer_support() def crf_layer(input, label, size=None, weight=None, param_attr=None, name=None, coeff=1.0, layer_attr=None): """ A layer for calculating the cost of sequential conditional random field model. The example usage is: .. code-block:: python crf = crf_layer(input=input, label=label, size=label_dim) :param input: The first input layer is the feature. :type input: LayerOutput :param label: The second input layer is label. :type label: LayerOutput :param size: The category number. :type size: int :param weight: The third layer is "weight" of each sample, which is an optional argument. :type weight: LayerOutput :param param_attr: Parameter attribute. None means default attribute :type param_attr: ParameterAttribute :param name: The name of this layers. It is not necessary. :type name: None|basestring :param coeff: The coefficient affects the gradient in the backward. :type coeff: float :param layer_attr: Extra Layer config. :type layer_attr: ExtraLayerAttribute|None :return: LayerOutput object. :rtype: LayerOutput """ assert isinstance(input, LayerOutput) assert isinstance(label, LayerOutput) assert weight is None or isinstance(weight, LayerOutput) if input.size is not None and label.size is not None: assert input.size == label.size if size is None: size = input.size else: assert size == input.size ipts = [Input(input.name, **param_attr.attr), Input(label.name)] if weight is not None: ipts.append(Input(weight.name)) Layer( name=name, type=LayerType.CRF_LAYER, size=size, inputs=ipts, coeff=coeff, **ExtraLayerAttribute.to_kwargs(layer_attr)) parents = [input, label] if weight is not None: parents.append(weight) # The size for LayerOutput means the dimension of the output. # It's different from the meaning of crf layer, which is the number of # classes. return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1) @wrap_name_default() @wrap_param_attr_default() @layer_support() def crf_decoding_layer(input, size, label=None, param_attr=None, name=None, layer_attr=None): """ A layer for calculating the decoding sequence of sequential conditional random field model. The decoding sequence is stored in output.ids. If a second input is provided, it is treated as the ground-truth label, and this layer will also calculate error. output.value[i] is 1 for incorrect decoding or 0 for correct decoding. The example usage is: .. code-block:: python crf_decoding = crf_decoding_layer(input=input, size=label_dim) :param input: The first input layer. :type input: LayerOutput :param size: size of this layer. :type size: int :param label: None or ground-truth label. :type label: LayerOutput or None :param param_attr: Parameter attribute. None means default attribute :type param_attr: ParameterAttribute :param name: The name of this layers. It is not necessary. :type name: None|basestring :param layer_attr: Extra Layer config. :type layer_attr: ExtraLayerAttribute|None :return: LayerOutput object. :rtype: LayerOutput """ assert isinstance(input, LayerOutput) assert label is None or isinstance(label, LayerOutput) ipts = [Input(input.name, **param_attr.attr)] if label is not None: ipts.append(Input(label.name)) Layer( name=name, type=LayerType.CRF_DECODING_LAYER, size=size, inputs=ipts, **ExtraLayerAttribute.to_kwargs(layer_attr)) parents = [input] if label is not None: parents.append(label) # The size for LayerOutput means the dimension of the output. # It's different from the meaning of crf layer, which is the number of # classes. return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1) @wrap_act_default(act=SigmoidActivation()) @wrap_bias_attr_default(has_bias=True) @wrap_param_attr_default() @wrap_name_default() @layer_support() def nce_layer(input, label, num_classes=None, act=None, param_attr=None, weight=None, num_neg_samples=10, neg_distribution=None, name=None, bias_attr=None, layer_attr=None): """ Noise-contrastive estimation. Implements the method in the following paper: A fast and simple algorithm for training neural probabilistic language models. The example usage is: .. code-block:: python cost = nce_layer(input=[layer1, layer2], label=layer2, param_attr=[attr1, attr2], weight=layer3, num_classes=3, neg_distribution=[0.1,0.3,0.6]) :param name: layer name :type name: basestring :param input: input layers. It could be a LayerOutput of list/tuple of LayerOutput. :type input: LayerOutput|list|tuple|collections.Sequence :param label: label layer :type label: LayerOutput :param weight: weight layer, can be None(default) :type weight: LayerOutput :param num_classes: number of classes. :type num_classes: int :param act: Activation, default is Sigmoid. :type act: BaseActivation :param param_attr: The Parameter Attribute|list. :type param_attr: ParameterAttribute :param num_neg_samples: number of negative samples. Default is 10. :type num_neg_samples: int :param neg_distribution: The distribution for generating the random negative labels. A uniform distribution will be used if not provided. If not None, its length must be equal to num_classes. :type neg_distribution: list|tuple|collections.Sequence|None :param bias_attr: Bias parameter attribute. True if no bias. :type bias_attr: ParameterAttribute|None|False :param layer_attr: Extra Layer Attribute. :type layer_attr: ExtraLayerAttribute :return: layer name. :rtype: LayerOutput """ if isinstance(input, LayerOutput): input = [input] assert not isinstance(param_attr, collections.Sequence) param_attr = [param_attr] else: if isinstance(param_attr, collections.Sequence): assert len(input) == len(param_attr) else: param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))] assert isinstance(input, collections.Sequence) assert isinstance(label, LayerOutput) assert label.layer_type == LayerType.DATA if num_classes is None: num_classes = label.size if neg_distribution is not None: assert isinstance(neg_distribution, collections.Sequence) assert len(neg_distribution) == num_classes assert abs(sum(neg_distribution) - 1.0) < 1e-5 if not isinstance(act, BaseActivation): raise TypeError() ipts_for_layer = [] parents = [] for each_input, attr in zip(input, param_attr): assert isinstance(each_input, LayerOutput) ipts_for_layer.append(Input(each_input.name, **attr.attr)) parents.append(each_input) ipts_for_layer.append(label.name) parents.append(label) if weight is not None: assert isinstance(weight, LayerOutput) assert weight.layer_type == LayerType.DATA ipts_for_layer.append(weight.name) parents.append(weight) l = Layer( name=name, type=LayerType.NCE_LAYER, num_classes=num_classes, neg_sampling_dist=neg_distribution, active_type=act.name, num_neg_samples=num_neg_samples, inputs=ipts_for_layer, bias=ParamAttr.to_bias(bias_attr), **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name, LayerType.NCE_LAYER, parents=parents, size=l.config.size, activation=act) """ following are cost Layers. """ @wrap_name_default() @layer_support() def rank_cost(left, right, label, weight=None, name=None, coeff=1.0, layer_attr=None): """ A cost Layer for learning to rank using gradient descent. Details can refer to `papers `_. This layer contains at least three inputs. The weight is an optional argument, which affects the cost. .. math:: C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}}) o_{i,j} & = o_i - o_j \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\} In this formula: - :math:`C_{i,j}` is the cross entropy cost. - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order and 0 means reverse order. - :math:`o_i` and :math:`o_j`: the left output and right output. Their dimension is one. The example usage is: .. code-block:: python cost = rank_cost(left=out_left, right=out_right, label=label) :param left: The first input, the size of this layer is 1. :type left: LayerOutput :param right: The right input, the size of this layer is 1. :type right: LayerOutput :param label: Label is 1 or 0, means positive order and reverse order. :type label: LayerOutput :param weight: The weight affects the cost, namely the scale of cost. It is an optional argument. :type weight: LayerOutput :param name: The name of this layers. It is not necessary. :type name: None|basestring :param coeff: The coefficient affects the gradient in the backward. :type coeff: float :param layer_attr: Extra Layer Attribute. :type layer_attr: ExtraLayerAttribute :return: LayerOutput object. :rtype: LayerOutput """ assert left.size == 1 assert right.size == 1 assert label.size == 1 ipts = [left.name, right.name, label.name] parents = [left, right, label] if weight is not None: ipts.append(weight.name) parents.append(weight) Layer( name=name, type=LayerType.RANK_COST, inputs=ipts, coeff=coeff, **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1) @wrap_name_default() @layer_support() def lambda_cost(input, score, name, NDCG_num=5, max_sort_size=-1, layer_attr=None): """ lambdaCost for lambdaRank LTR approach. The example usage is: .. code-block:: python cost = lambda_cost(input=input, score=score, NDCG_num=8, max_sort_size=-1) :param input: Samples of the same query should be loaded as sequence. :type input: LayerOutput :param score: The 2nd input. Score of each sample. :type input: LayerOutput :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain), e.g., 5 for NDCG@5. It must be less than for equal to the minimum size of lists. :type NDCG_num: int :param max_sort_size: The size of partial sorting in calculating gradient. If max_sort_size = -1, then for each list, the algorithm will sort the entire list to get gradient. In other cases, max_sort_size must be greater than or equal to NDCG_num. And if max_sort_size is greater than the size of a list, the algorithm will sort the entire list of get gradient. :type max_sort_size: int :param name: The name of this layers. It is not necessary. :type name: None|basestring :param layer_attr: Extra Layer Attribute. :type layer_attr: ExtraLayerAttribute :return: LayerOutput object. :rtype: LayerOutput """ assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput) if score.size is not None: assert score.size == 1 Layer( name=name, type=LayerType.LAMBDA_COST, inputs=[input.name, score.name], NDCG_num=NDCG_num, max_sort_size=max_sort_size, **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name, LayerType.LAMBDA_COST, parents=[input, score], size=1) @wrap_name_default() @layer_support() def cross_entropy(input, label, name=None, coeff=1.0, weight=None, layer_attr=None): """ A loss layer for multi class entropy. The example usage is: .. code-block:: python cost = cross_entropy(input=input_layer, label=label_layer) :param input: The first input layer. :type input: LayerOutput. :param label: The input label. :type input: LayerOutput. :param name: The name of this layers. It is not necessary. :type name: None|basestring. :param coeff: The cost is multiplied with coeff. The coefficient affects the gradient in the backward. :type coeff: float. :param weight: The cost of each sample is multiplied with each weight. The weight should be a layer with size=1. Note that gradient will not be calculated for weight. :type weight: LayerOutout :param layer_attr: Extra Layer Attribute. :type layer_attr: ExtraLayerAttribute :return: LayerOutput object. :rtype: LayerOutput. """ ipts, parents = __cost_input__(input, label, weight) Layer( name=name, type=LayerType.CROSS_ENTROPY, inputs=ipts, coeff=coeff, **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1) @wrap_name_default() @layer_support() def cross_entropy_with_selfnorm(input, label, name=None, coeff=1.0, softmax_selfnorm_alpha=0.1, layer_attr=None): """ A loss layer for multi class entropy with selfnorm. Input should be a vector of positive numbers, without normalization. The example usage is: .. code-block:: python cost = cross_entropy_with_selfnorm(input=input_layer, label=label_layer) :param input: The first input layer. :type input: LayerOutput. :param label: The input label. :type input: LayerOutput. :param name: The name of this layers. It is not necessary. :type name: None|basestring. :param coeff: The coefficient affects the gradient in the backward. :type coeff: float. :param softmax_selfnorm_alpha: The scale factor affects the cost. :type softmax_selfnorm_alpha: float. :param layer_attr: Extra Layer Attribute. :type layer_attr: ExtraLayerAttribute :return: LayerOutput object. :rtype: LayerOutput. """ Layer( name=name, type=LayerType.CROSS_ENTROPY_WITH_SELFNORM, inputs=[input.name, label.name], coeff=coeff, softmax_selfnorm_alpha=softmax_selfnorm_alpha, **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name, LayerType.CROSS_ENTROPY_WITH_SELFNORM, parents=[input, label], size=1) @wrap_name_default() @layer_support() def sum_cost(input, name=None, layer_attr=None): """ A loss layer which calculate the sum of the input as loss The example usage is: .. code-block:: python cost = sum_cost(input=input_layer) :param input: The first input layer. :type input: LayerOutput. :param name: The name of this layers. It is not necessary. :type name: None|basestring. :param layer_attr: Extra Layer Attribute. :type layer_attr: ExtraLayerAttribute :return: LayerOutput object. :rtype: LayerOutput. """ assert isinstance(input, LayerOutput) Layer( name=name, type=LayerType.SUM_COST, inputs=[input.name], **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1) @wrap_name_default() @layer_support() def huber_cost(input, label, name=None, coeff=1.0, layer_attr=None): """ A loss layer for huber loss. The example usage is: .. code-block:: python cost = huber_cost(input=input_layer, label=label_layer) :param input: The first input layer. :type input: LayerOutput. :param label: The input label. :type input: LayerOutput. :param name: The name of this layers. It is not necessary. :type name: None|basestring. :param coeff: The coefficient affects the gradient in the backward. :type coeff: float. :param layer_attr: Extra Layer Attribute. :type layer_attr: ExtraLayerAttribute :return: LayerOutput object. :rtype: LayerOutput. """ assert isinstance(input, LayerOutput) if input.size is not None: assert input.size == 1 Layer( name=name, type=LayerType.HUBER, inputs=[input.name, label.name], coeff=coeff, **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput(name, LayerType.HUBER, parents=[input, label], size=1) @wrap_name_default() @layer_support() def multi_binary_label_cross_entropy(input, label, name=None, coeff=1.0, layer_attr=None): """ A loss layer for multi binary label cross entropy. The example usage is: .. code-block:: python cost = multi_binary_label_cross_entropy(input=input_layer, label=label_layer) :param input: The first input layer. :type input: LayerOutput :param label: The input label. :type input: LayerOutput :param name: The name of this layers. It is not necessary. :type name: None|basestring :param coeff: The coefficient affects the gradient in the backward. :type coeff: float :param layer_attr: Extra Layer Attribute. :type layer_attr: ExtraLayerAttribute :return: LayerOutput object. :rtype: LayerOutput """ if input.activation is None or \ not isinstance(input.activation, SigmoidActivation): logger.log( logging.WARN, "%s is not recommend for multi_binary_label_cross_entropy's activation, " "maybe the sigmoid is better" % repr(input.activation)) Layer( name=name, type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY, inputs=[input.name, label.name], coeff=coeff, **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name, LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY, parents=[input, label], size=1) @wrap_name_default() @layer_support() def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None): """ This is a L1 loss but more smooth. It requires that the size of input and label are equal. The formula is as follows, .. math:: L = \sum_{i} smooth_{L1}(input_i - label_i) in which .. math:: smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if} \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases} More details can be found by referring to `Fast R-CNN `_ The example usage is: .. code-block:: python cost = smooth_l1_cost(input=input_layer, label=label_layer) :param input: The input layer. :type input: LayerOutput :param label: The input label. :type input: LayerOutput :param name: The name of this layers. It is not necessary. :type name: None|basestring :param coeff: The coefficient affects the gradient in the backward. :type coeff: float :param layer_attr: Extra Layer Attribute. :type layer_attr: ExtraLayerAttribute :return: LayerOutput object. :rtype: LayerOutput """ assert isinstance(input, LayerOutput) assert isinstance(label, LayerOutput) assert input.size == label.size Layer( name=name, type=LayerType.SMOOTH_L1, inputs=[input.name, label.name], coeff=coeff, **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name, LayerType.SMOOTH_L1, parents=[input, label], size=1) @wrap_name_default() def multiplex_layer(input, name=None, layer_attr=None): """ This layer multiplex multiple layers according to the index, which is provided by the first input layer. inputs[0]: the index of the layer to output of size batchSize. inputs[1:N]; the candidate output data. For each index i from 0 to batchSize -1, the output is the i-th row of the (index[i] + 1)-th layer. For each i-th row of output: .. math:: y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1) where, y is output. :math:`x_{k}` is the k-th input layer and :math:`k = x_{0}[i] + 1`. The example usage is: .. code-block:: python maxid = multiplex_layer(input=layers) :param input: Input layers. :type input: list of LayerOutput :param name: Layer name. :type name: basestring :param layer_attr: extra layer attributes. :type layer_attr: ExtraLayerAttribute. :return: LayerOutput object. :rtype: LayerOutput """ assert isinstance(input, collections.Sequence) assert len(input) > 2, 'multiplex_layer should have more than 2 inputs' for i in range(1, len(input)): assert isinstance(input[i], LayerOutput) assert input[i].size == input[1].size, \ "All the input layers except the first one should have the same size" l = Layer( name=name, type='multiplex', inputs=[x.name for x in input], size=input[1].size, **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name=name, layer_type=LayerType.MULTIPLEX_LAYER, parents=input, size=l.config.size) @wrap_name_default("dropout") def dropout_layer(input, dropout_rate, name=None): """ @TODO(yuyang18): Add comments. :param name: :param input: :param dropout_rate: :return: """ return addto_layer( name=name, input=input, act=LinearActivation(), bias_attr=False, layer_attr=ExtraAttr(drop_rate=dropout_rate)) @wrap_name_default() @wrap_act_default(act=LinearActivation()) @wrap_param_attr_default() @layer_support(DROPOUT) def row_conv_layer(input, context_len, act=None, name=None, param_attr=None, layer_attr=None): """ The row convolution is called lookahead convolution. It is firstly introduced in paper of `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin `_ . The bidirectional RNN that learns representation for a sequence by performing a forward and a backward pass through the entire sequence. However, unlike unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online and low-latency setting. The lookahead convolution incorporates information from future subsequences in a computationally efficient manner to improve unidirectional recurrent neural networks. The connection of row convolution is different form the 1D sequence convolution. Assumed that, the future context-length is k, that is to say, it can get the output at timestep t by using the the input feature from t-th timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input activations are d, the activations r_t for the new layer at time-step t are: .. math:: r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}} \quad \text{for} \quad (1 \leq i \leq d) Note: The `context_len` is `k + 1`. That is to say, the lookahead step number plus one equals context_len. .. code-block:: python row_conv = row_conv_layer(input=input_layer, context_len=3) :param input: The input layer. :type input: LayerOutput :param context_len: The context length equals the lookahead step number plus one. :type context_len: int :param act: Activation Type. Default is linear activation. :type act: BaseActivation :param param_attr: The Parameter Attribute. If None, the parameter will be initialized smartly. It's better set it by yourself. :type param_attr: ParameterAttribute :param layer_attr: Extra Layer config. :type layer_attr: ExtraLayerAttribute|None :return: LayerOutput object. :rtype: LayerOutput """ assert isinstance(input, LayerOutput) assert context_len > 0, "the context_len must be greatet than 0." Layer( inputs=[Input(input.name, **param_attr.attr)], name=name, context_length=context_len, type=LayerType.ROW_CONV_LAYER, active_type=act.name, **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size) @layer_support() @wrap_name_default() @wrap_param_attr_default() def prelu_layer(input, name=None, partial_sum=1, param_attr=None, layer_attr=None): """ The Parameter Relu activation that actives outputs with a learnable weight. Reference: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf .. math:: z_i &\\quad if \\quad z_i > 0 \\\\ a_i * z_i &\\quad \\mathrm{otherwise} The example usage is: .. code-block:: python prelu = prelu_layer(input=layers, partial_sum=1) :param name: Name of this layer. :type name: basestring :param input: The input layer. :type input: LayerOutput :param partial_sum: this parameter makes a group of inputs share a same weight. - partial_sum = 1, indicates the element-wise activation: each element has a weight. - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share a same weight. - partial_sum = number of outputs, indicates all elements share a same weight. :type partial_sum: int :param param_attr: The parameter attribute. See ParameterAttribute for details. :type param_attr: ParameterAttribute|None :param layer_attr: Extra layer configurations. Default is None. :type layer_attr: ExtraLayerAttribute|None :return: LayerOutput object. :rtype: LayerOutput """ assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.' assert isinstance(param_attr, ParameterAttribute) l = Layer( name=name, type=LayerType.PRELU, inputs=Input(input.name, **param_attr.attr), partial_sum=partial_sum, **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name=name, layer_type=LayerType.PRELU, parents=input, size=l.config.size) @wrap_name_default() @layer_support(ERROR_CLIPPING, DROPOUT) @wrap_act_default(act=LinearActivation()) def gated_unit_layer(input, size, act=None, name=None, gate_attr=None, gate_param_attr=None, gate_bias_attr=True, inproj_attr=None, inproj_param_attr=None, inproj_bias_attr=True, layer_attr=None): """ The gated unit layer implements a simple gating mechanism over the input. The input :math:`X` is first projected into a new space :math:`X'`, and it is also used to produce a gate weight :math:`\sigma`. Element-wise prodict between :match:`X'` and :math:`\sigma` is finally returned. Reference: Language Modeling with Gated Convolutional Networks https://arxiv.org/abs/1612.08083 .. math:: y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c) The example usage is: .. code-block:: python gated_unit = gated_unit_layer(size=128, input=input_layer)) :param input: input for this layer. :type input: LayerOutput :param size: output size of the gated unit. :type size: int :param act: activation type of the projected input. :type act: BaseActivation :param name: name of this layer. :type name: basestring :param gate_attr: Attributes to tune the gate output, for example, error clipping threshold, dropout and so on. See ExtraLayerAttribute for more details. :type gate_attr: ExtraLayerAttribute|None :param gate_param_attr: Attributes to tune the learnable projected matrix parameter of the gate. :type gate_param_attr: ParameterAttribute|None :param gate_bias_attr: Attributes to tune the learnable bias of the gate. :type gate_bias_attr: ParameterAttribute|None :param inproj_attr: Attributes to the tune the projected input, for example, error clipping threshold, dropout and so on. See ExtraLayerAttribute for more details. :type inproj_attr: ExtraLayerAttribute|None :param inproj_param_attr: Attributes to tune the learnable parameter of the projection of input. :type inproj_param_attr: ParameterAttribute|None :param inproj_bias_attr: Attributes to tune the learnable bias of projection of the input. :type inproj_bias_attr: ParameterAttribute|None :param layer_attr: Attributes to tune the final output of the gated unit, for example, error clipping threshold, dropout and so on. See ExtraLayerAttribute for more details. :type layer_attr: ExtraLayerAttribute|None :return: LayerOutput object. :rtype: LayerOutput """ assert isinstance( input, LayerOutput), 'The gated linear unit accepts only one input.' input_proj = fc_layer( input=input, name="%s_input_proj" % name, size=size, act=act, layer_attr=inproj_attr, param_attr=inproj_param_attr, bias_attr=inproj_bias_attr) gate = fc_layer( size=size, name="%s_gate" % name, act=SigmoidActivation(), input=input, layer_attr=gate_attr, param_attr=gate_param_attr, bias_attr=gate_bias_attr) return mixed_layer( name="%s_gated_act" % name, input=dotmul_operator(input_proj, gate), layer_attr=layer_attr) @wrap_name_default() @layer_support() def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None): """ The crop layer crops images by offset and shape. User can set crop shape by args 'shape' explicitly or by reference input layer. The example usage is: .. code-block:: python crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3]) :param input: The input layer.If two inputs were setted, the second input will be regarded as reference input :type input: LayerOutput or Sequence :param offset: The crop offset :type offset: Sequence :param axis: start axis to be cropped. To image input layer: - 0: batch size - 1: channels - 2: height - 3: width :type partial_sum: int :param shape: The shape to be cropped. Default is None. :type shape: Sequence | None :param name: Name of this layer. :type name: basestring :return: LayerOutput object. :rtype: LayerOutput """ if isinstance(input, LayerOutput): input = [input] else: assert isinstance(input, collections.Sequence) l = Layer( inputs=[x.name for x in input], axis=axis, offset=offset, shape=shape, name=name, type=LayerType.CROP_LAYER, **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name=name, layer_type=LayerType.CROP_LAYER, parents=input, size=l.config.size) @wrap_name_default("clip") def clip_layer(input, clip_threshold_low, clip_threshold_high, name=None): """ A layer for clipping the input value by the threshold. .. math:: out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right) .. code-block:: python clip = clip_layer(input=input_layer, clip_threshold_low=-10, clip_threshold_high=10) :param name: The Layer Name. :type name: basestring :param input: The input layer. :type input: LayerOutput. :param clip_threshold_low: The lower threshold for clipping. :type clip_threshold_low: float :param clip_threshold_high: The upper threshold for clipping. :type clip_threshold_high: float :return: LayerOutput """ Layer( name=name, type=LayerType.CLIP_LAYER, inputs=[input.name], clip_threshold_low=clip_threshold_low, clip_threshold_high=clip_threshold_high) return LayerOutput( name, LayerType.CLIP_LAYER, parents=[input], size=input.size)