// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/kernels/funcs/math_function.h" namespace phi { template void ChannelShuffleKernel(const Context& dev_ctx, const DenseTensor& x, int groups, const std::string& data_format, DenseTensor* out) { auto* in = &x; dev_ctx.template Alloc(out); bool channel_last = (data_format == "NHWC"); const auto& in_dims = in->dims(); const auto& o_dims = out->dims(); DenseTensor t(*in); if (!channel_last) { t.Resize({in_dims[0], groups, in_dims[1] / groups, in_dims[2], in_dims[3]}); } else { t.Resize({in_dims[0], in_dims[1], in_dims[2], groups, in_dims[3] / groups}); } auto axis = !channel_last ? std::vector{0, 2, 1, 3, 4} : std::vector{0, 1, 2, 4, 3}; DenseTensor o(*out); if (!channel_last) { o.Resize({in_dims[0], in_dims[1] / groups, groups, in_dims[2], in_dims[3]}); } else { o.Resize({in_dims[0], in_dims[1], in_dims[2], in_dims[3] / groups, groups}); } phi::funcs::Transpose trans; trans(dev_ctx, t, &o, axis); out->Resize(o_dims); } } // namespace phi