# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function """ Steps to transpile trainer: 1. split variable to multiple blocks, aligned by product(dim[1:]) (width). 2. rename splited grad variables to add trainer_id suffix ".trainer_%d". 3. modify trainer program add split_op to each grad variable. 4. append send_op to send splited variables to server and 5. add recv_op to fetch params(splited blocks or origin param) from server. 6. append concat_op to merge splited blocks to update local weights. Steps to transpile pserver: 1. create new program for parameter server. 2. create params and grad variables that assigned to current server instance. 3. create a sub-block in the server side program 4. append ops that should run on current server instance. 5. add listen_and_serv op """ import math import sys import numpy as np import collections import six from .ps_dispatcher import RoundRobin, HashName, PSDispatcher from .. import core, framework from ..framework import Program, default_main_program, \ default_startup_program, Block, \ Parameter, grad_var_name from .details import * from functools import reduce LOOKUP_TABLE_TYPE = "lookup_table" LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad" OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName() RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName( ) RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC class VarBlock: def __init__(self, varname, offset, size): self.varname = varname # NOTE: real offset is offset * size self.offset = offset self.size = size def __str__(self): return "%s:%d:%d" % (self.varname, self.offset, self.size) def same_or_split_var(p_name, var_name): return p_name == var_name or p_name.startswith(var_name + ".block") def slice_variable(var_list, slice_count, min_block_size): """ We may need to split dense tensor to one or more blocks and put them equally onto parameter server. One block is a sub-tensor aligned by dim[0] of the tensor. We need to have a minimal block size so that the calculations in the parameter server side can gain better performance. By default minimum block size 8K elements (maybe 16bit or 32bit or 64bit). Args: var_list (list): List of variables. slice_count (int): Numel of count that variables will be sliced, which could be the pserver services' count. min_block_size (int): Minimum splitted block size. Returns: blocks (list[(varname, block_id, current_block_size)]): A list of VarBlocks. Each VarBlock specifies a shard of the var. """ blocks = [] for var in var_list: split_count = slice_count var_numel = reduce(lambda x, y: x * y, var.shape) max_pserver_count = int(math.floor(var_numel / float(min_block_size))) if max_pserver_count == 0: max_pserver_count = 1 if max_pserver_count < slice_count: split_count = max_pserver_count block_size = int(math.ceil(var_numel / float(split_count))) if len(var.shape) >= 2: # align by dim1(width) dim1 = reduce(lambda x, y: x * y, var.shape[1:]) remains = block_size % dim1 if remains != 0: block_size += dim1 - remains # update split_count after aligning split_count = int(math.ceil(var_numel / float(block_size))) for block_id in range(split_count): curr_block_size = min(block_size, var_numel - ( (block_id) * block_size)) block = VarBlock(var.name, block_id, curr_block_size) blocks.append(str(block)) return blocks class DistributeTranspilerConfig(object): """ slice_var_up (bool): Do Tensor slice for pservers, default is True. split_method (PSDispatcher): RoundRobin or HashName can be used try to choose the best method to balance loads for pservers. min_block_size (int): Minimum splitted element number in block. According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156 We can use bandwidth effiently when data size is larger than 2MB.If you want to change it, please be sure you see the slice_variable function. """ slice_var_up = True split_method = None min_block_size = 8192 class DistributeTranspiler(object): """ **DistributeTranspiler** Convert the fluid program to distributed data-parallelism programs. The main_program will be transformed to use a remote parameter server to do parameter optimization. And the optimization graph will be put into a parameter server program. Examples: .. code-block:: python # Define your model before these codes. port = os.getenv("PADDLE_PSERVER_PORT", "6174") pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "") eplist = [] for ip in pserver_ips.split(","): eplist.append(':'.join([ip, port])) pserver_endpoints = ",".join(eplist) trainers = int(os.getenv("PADDLE_TRAINERS")) current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0")) role = os.getenv("PADDLE_TRAINING_ROLE") t = distribute_transpiler.DistributeTranspiler() t.transpile( trainer_id, pservers=pserver_endpoints, trainers=trainers) if role == "PSERVER": pserver_program = t.get_pserver_program(current_endpoint) pserver_startup_program = t.get_startup_program(current_endpoint, pserver_program) elif role == "TRAINER": trainer_program = t.get_trainer_program() """ def __init__(self, config=None): if config is not None: self.config = config else: self.config = DistributeTranspilerConfig() if self.config.split_method is None: self.config.split_method = RoundRobin assert (self.config.min_block_size >= 8192) assert (self.config.split_method.__bases__[0] == PSDispatcher) def transpile(self, trainer_id, program=None, pservers="127.0.0.1:6174", trainers=1, sync_mode=True, startup_program=None): """ Run the transpiler. Args: trainer_id (int): id for current trainer worker, if you have n workers, the id may range from 0 ~ n-1 program (Program|None): program to transpile, default is fluid.default_main_program(). pservers (str): comma separated ip:port string for the pserver list. trainers (int): number of trainers in the distributed job. sync_mode (bool): Do sync training or not, default is True. startup_program (Program|None): startup_program to transpile, default is fluid.default_main_program(). """ if program is None: program = default_main_program() if startup_program is None: startup_program = default_startup_program() self.origin_program = program self.startup_program = startup_program self.origin_startup_program = self.startup_program.clone() self.trainer_num = trainers self.sync_mode = sync_mode self.trainer_id = trainer_id pserver_endpoints = pservers.split(",") self.pserver_endpoints = pserver_endpoints self.optimize_ops, self.params_grads = self._get_optimize_pass() ps_dispatcher = self.config.split_method(self.pserver_endpoints) self.has_distributed_lookup_table = self._has_distributed_lookup_table() self.param_name_to_grad_name = dict() self.grad_name_to_param_name = dict() for param_var, grad_var in self.params_grads: self.param_name_to_grad_name[param_var.name] = grad_var.name self.grad_name_to_param_name[grad_var.name] = param_var.name # add distributed attrs to program self.origin_program._is_distributed = True self.origin_program._endpoints = self.pserver_endpoints self.origin_program._is_chief = self.trainer_id == 0 self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None # split and create vars, then put splited vars in dicts for later use. # step 1: split and create vars, then put splited vars in dicts for later use. self._init_splited_vars() # step 2: insert send op to send gradient vars to parameter servers ps_dispatcher.reset() send_vars = [] # in general cases, the number of pservers is times of 2, and this # will lead to uneven distribution among weights and bias: # fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1 # fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2 # shuffle the map will avoid the uneven distribution above grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping)) if not self.config.slice_var_up: np.random.seed(self.origin_program.random_seed) np.random.shuffle(grad_var_mapping_items) grad_name_to_send_dummy_out = dict() for grad_varname, splited_vars in grad_var_mapping_items: eplist = ps_dispatcher.dispatch(splited_vars) if not self.config.slice_var_up: assert (len(splited_vars) == 1) splited_grad_varname = grad_varname if len(splited_vars) == 1: splited_grad_varname = splited_vars[0].name index = find_op_by_output_arg(program.global_block(), splited_grad_varname) elif len(splited_vars) > 1: orig_var = program.global_block().vars[splited_grad_varname] index = find_op_by_output_arg(program.global_block(), splited_grad_varname) self._insert_split_op(program, orig_var, index, splited_vars) index += 1 else: AssertionError("Can not insert the send op by original " "variable name :", splited_grad_varname) dummy_output = program.global_block().create_var( name=framework.generate_control_dev_var_name()) grad_name_to_send_dummy_out[grad_varname] = dummy_output # get send op_role_var, if not splited, the grad should have .trainer suffix # if splited, grad should be the original grad var name (split_by_ref and send # will be on the same place). ParallelExecutor # will use op_role_var to get expected device place to run this op. program.global_block()._insert_op( index=index + 1, type="send", inputs={"X": splited_vars}, outputs={"Out": dummy_output}, attrs={ "epmap": eplist, RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE, OP_ROLE_VAR_ATTR_NAME: [ self.grad_name_to_param_name[grad_varname], splited_grad_varname ], "sync_mode": not self.sync_mode, }) for _, var in enumerate(splited_vars): send_vars.append(var) if self.sync_mode: send_barrier_out = program.global_block().create_var( name=framework.generate_control_dev_var_name()) input_deps = grad_name_to_send_dummy_out.values() program.global_block().append_op( type="send_barrier", inputs={"X": input_deps}, outputs={"Out": send_barrier_out}, attrs={ "endpoints": pserver_endpoints, RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE }) # step 3: insert recv op to receive parameters from parameter server recv_vars = [] for _, var in enumerate(send_vars): recv_vars.append(self.grad_param_mapping[var]) ps_dispatcher.reset() eplist = ps_dispatcher.dispatch(recv_vars) for i, ep in enumerate(eplist): self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i]) self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i]) # step4: Concat the parameters splits together after recv. all_recv_outputs = [] for param_varname, splited_var in six.iteritems(self.param_var_mapping): eps = [] for var in splited_var: index = [v.name for v in recv_vars].index(var.name) eps.append(eplist[index]) if self.sync_mode: recv_dep_in = send_barrier_out else: # connect deps to send op in async mode recv_dep_in = grad_name_to_send_dummy_out[ self.param_name_to_grad_name[param_varname]] all_recv_outputs.extend(splited_var) # get recv op_role_var, if not splited, the grad should have .trainer suffix # if splited, grad should be the original grad var name. ParallelExecutor # will use op_role_var to get expected device place to run this op. orig_grad_name = self.param_name_to_grad_name[param_varname] recv_op_role_var_name = orig_grad_name splited_trainer_grad = self.grad_var_mapping[orig_grad_name] if len(splited_trainer_grad) == 1: recv_op_role_var_name = splited_trainer_grad[0].name program.global_block().append_op( type="recv", inputs={"X": [recv_dep_in]}, outputs={"Out": splited_var}, attrs={ "epmap": eps, RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE, OP_ROLE_VAR_ATTR_NAME: [param_varname, recv_op_role_var_name], "sync_mode": not self.sync_mode }) if self.sync_mode: # form a WAW dependency program.global_block().append_op( type="fetch_barrier", inputs={}, outputs={"Out": all_recv_outputs}, attrs={ "endpoints": pserver_endpoints, RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE }) for param_varname, splited_var in six.iteritems(self.param_var_mapping): if len(splited_var) <= 1: continue orig_param = program.global_block().vars[param_varname] program.global_block().append_op( type="concat", inputs={"X": splited_var}, outputs={"Out": [orig_param]}, attrs={"axis": 0}) self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist) if self.has_distributed_lookup_table: self._replace_lookup_table_op_with_prefetch(program, pserver_endpoints) self._split_table_grad_and_add_send_vars(program, pserver_endpoints) def get_trainer_program(self): """ Get transpiled trainer side program. Returns: Program: trainer side program. """ # remove optimize ops and add a send op to main_program # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay? delete_ops(self.origin_program.global_block(), self.optimize_ops) self.origin_program.__str__() return self.origin_program def _get_trainer_startup_program(self, recv_vars, eplist): """ Get transpiled trainer side startup program. Args: recv_vars (list): Variable list to recv for current trainer_id eplist (list): A list of strings indicating Returns: Program: trainer side startup program. """ startup_program = self.startup_program # FIXME(gongwb): delete not need ops. # note that: some parameter is not trainable and those ops can't be deleted. for varname, splited_var in six.iteritems(self.param_var_mapping): # Get the eplist of recv vars eps = [] for var in splited_var: index = [v.name for v in recv_vars].index(var.name) eps.append(eplist[index]) for var in splited_var: if startup_program.global_block().has_var(var.name): continue startup_program.global_block().create_var( name=var.name, persistable=False, type=var.type, dtype=var.dtype, shape=var.shape, lod_level=var.lod_level) op = startup_program.global_block().append_op( type="recv", inputs={"X": []}, outputs={"Out": splited_var}, attrs={ "epmap": eps, RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE }) fetch_barrier_out = startup_program.global_block().create_var( name=framework.generate_control_dev_var_name()) startup_program.global_block().append_op( type="fetch_barrier", inputs={}, outputs={"Out": fetch_barrier_out}, attrs={ "endpoints": self.pserver_endpoints, RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE }) for varname, splited_var in six.iteritems(self.param_var_mapping): #add concat ops to merge splited parameters received from parameter servers. if len(splited_var) <= 1: continue # NOTE: if enable memory optimization, origin vars maybe removed. if startup_program.global_block().vars.has_key(varname): orig_param = startup_program.global_block().vars[varname] else: origin_param_var = self.origin_program.global_block().vars[ varname] orig_param = startup_program.global_block().create_var( name=varname, persistable=origin_param_var.persistable, type=origin_param_var.type, dtype=origin_param_var.dtype, shape=origin_param_var.shape) startup_program.global_block().append_op( type="concat", inputs={"X": splited_var}, outputs={"Out": [orig_param]}, attrs={"axis": 0}) return startup_program def get_pserver_program(self, endpoint): """ Get parameter server side program. Args: endpoint (str): current parameter server endpoint. Returns: Program: the program for current parameter server to run. """ # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers. # NOTE: assume blocks of the same variable is not distributed # on the same pserver, only change param/grad varnames for # trainers to fetch. sys.stderr.write("get_pserver_program() is deprecated, call\ get_pserver_programs() to get pserver main and startup\ in a single call.") # step1 pserver_program = Program() pserver_program.random_seed = self.origin_program.random_seed # step2: Create vars to receive vars at parameter servers. recv_inputs = [] for v in self.param_grad_ep_mapping[endpoint]["params"]: self._clone_var(pserver_program.global_block(), v) for v in self.param_grad_ep_mapping[endpoint]["grads"]: # create vars for each trainer in global scope, so # we don't need to create them when grad arrives. # change client side var name to origin name by # removing ".trainer_%d" suffix suff_idx = v.name.find(".trainer_") if suff_idx >= 0: orig_var_name = v.name[:suff_idx] else: orig_var_name = v.name # NOTE: single_trainer_var must be created for multi-trainer # case to merge grads from multiple trainers single_trainer_var = \ pserver_program.global_block().create_var( name=orig_var_name, persistable=True, type=v.type, dtype=v.dtype, shape=v.shape) if self.sync_mode and self.trainer_num > 1: for trainer_id in range(self.trainer_num): var = pserver_program.global_block().create_var( name="%s.trainer_%d" % (orig_var_name, trainer_id), persistable=False, type=v.type, dtype=v.dtype, shape=v.shape) recv_inputs.append(var) else: recv_inputs.append(single_trainer_var) # step 3 # Create a union-find data structure from optimize ops, # If two ops are connected, we could add these two ops # into one set. ufind = self._create_ufind(self.optimize_ops) # step 3.2 # Iterate through the ops and append optimize op which # located on current pserver opt_op_on_pserver = [] for _, op in enumerate(self.optimize_ops): if self._is_optimizer_op(op) and self._is_opt_op_on_pserver( endpoint, op): opt_op_on_pserver.append(op) # step 3.3 # Iterate through the ops, and if an op and the optimize ops # which located on current pserver are in one set, then # append it into the sub program. global_ops = [] def __append_optimize_op__(op, block, grad_to_block_id, merged_var, lr_ops): if self._is_optimizer_op(op): self._append_pserver_ops(block, op, endpoint, grad_to_block_id, self.origin_program, merged_var) elif op not in lr_ops: self._append_pserver_non_opt_ops(block, op) def __op_have_grad_input__(op): for varname in op.input_arg_names: if varname.find("@GRAD") >= 0: return varname return "" def __clone_lr_op_sub_block__(op, program, lr_block): if not op.has_attr('sub_block'): return origin_block_desc = op.attr('sub_block') origin_block = self.origin_program.block(origin_block_desc.id) assert isinstance(origin_block, Block) # we put the new sub block to new block to follow the block # hierarchy of the original blocks new_sub_block = program.create_block(lr_block.idx) # clone vars for var in origin_block.vars: new_sub_block._clone_variable(var) # clone ops for origin_op in origin_block.ops: cloned_op = self._clone_lr_op(program, new_sub_block, origin_op) # clone sub_block of op __clone_lr_op_sub_block__(cloned_op, program, new_sub_block) # reset the block of op op.set_attr('sub_block', new_sub_block) # append lr decay ops to the child block if exists lr_ops = self._get_lr_ops() # record optimize blocks and we can run them on pserver parallel optimize_blocks = [] if len(lr_ops) > 0: lr_decay_block = pserver_program.create_block( pserver_program.num_blocks - 1) optimize_blocks.append(lr_decay_block) for _, op in enumerate(lr_ops): cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op) # append sub blocks to pserver_program in lr_decay_op __clone_lr_op_sub_block__(cloned_op, pserver_program, lr_decay_block) # append op to the current block grad_to_block_id = [] pre_block_idx = pserver_program.num_blocks - 1 for idx, opt_op in enumerate(opt_op_on_pserver): per_opt_block = pserver_program.create_block(pre_block_idx) optimize_blocks.append(per_opt_block) # append grad merging ops before clip and weight decay # cases may like: # L2Decay op -> clip op -> optimize for _, op in enumerate(self.optimize_ops): # find the origin @GRAD var before clipping grad_varname_for_block = __op_have_grad_input__(op) if ufind.is_connected(op, opt_op) and grad_varname_for_block: merged_var = self._append_pserver_grad_merge_ops( per_opt_block, grad_varname_for_block, endpoint, grad_to_block_id, self.origin_program) break # append optimize op once then append other ops. for _, op in enumerate(self.optimize_ops): # optimizer is connected to itself if ufind.is_connected(op, opt_op) and op not in global_ops: __append_optimize_op__(op, per_opt_block, grad_to_block_id, merged_var, lr_ops) # dedup grad to ids list grad_to_block_id = list(set(grad_to_block_id)) # append global ops if global_ops: opt_state_block = pserver_program.create_block( pserver_program.num_blocks - 1) optimize_blocks.append(opt_state_block) for glb_op in global_ops: __append_optimize_op__(glb_op, opt_state_block, grad_to_block_id, None, lr_ops) # process distributed lookup_table prefetch_var_name_to_block_id = [] if self.has_distributed_lookup_table: pserver_index = self.pserver_endpoints.index(endpoint) table_opt_block = self._create_table_optimize_block( pserver_index, pserver_program, pre_block_idx, grad_to_block_id) optimize_blocks.append(table_opt_block) prefetch_var_name_to_block_id = self._create_prefetch_block( pserver_index, pserver_program, table_opt_block) checkpoint_block_id = self._create_checkpoint_save_block( pserver_program, table_opt_block.idx) pserver_program._distributed_lookup_table = self.table_name # NOTE: if has_distributed_lookup_table is False, then prefetch_block will # not be executed, so it's safe to use optimize_block to hold the place if self.has_distributed_lookup_table: assert len(prefetch_var_name_to_block_id) > 0 else: assert len(prefetch_var_name_to_block_id) == 0 attrs = { "optimize_blocks": optimize_blocks, "endpoint": endpoint, "Fanin": self.trainer_num, "sync_mode": self.sync_mode, "grad_to_block_id": grad_to_block_id, } if len(prefetch_var_name_to_block_id) > 0: attrs['prefetch_var_name_to_block_id'] \ = prefetch_var_name_to_block_id attrs['checkpint_block_id'] = checkpoint_block_id # step5 append the listen_and_serv op pserver_program.global_block().append_op( type="listen_and_serv", inputs={'X': recv_inputs}, outputs={}, attrs=attrs) # add distributed attrs pserver_program._slice_vars_and_attrs = self._get_slice_vars_and_attrs( endpoint) pserver_program._sync_with_cpp() # save pserver program to generate pserver side startup relatively. self.pserver_program = pserver_program return pserver_program def get_pserver_programs(self, endpoint): """ Get pserver side main program and startup program for distributed training. Args: endpoint (str): current pserver endpoint. Returns: tuple: (main_program, startup_program), of type "Program" """ pserver_prog = self.get_pserver_program(endpoint) pserver_startup = self.get_startup_program(endpoint) return pserver_prog, pserver_startup def get_startup_program(self, endpoint, pserver_program=None, startup_program=None): """ **Deprecated** Get startup program for current parameter server. Modify operator input variables if there are variables that were split to several blocks. Args: endpoint (str): current pserver endpoint. pserver_program (Program): deprecated, call get_pserver_program first. startup_program (Program): deprecated, should pass startup_program when initalizing Returns: Program: parameter server side startup program. """ sys.stderr.write("get_startup_program() is deprecated, call\ get_pserver_programs() to get pserver main and startup\ in a single call.") if pserver_program != None: sys.stderr.write("passing pserver_program to get_startup_program()\ is deprecated, you can use new API get_pserver_programs() to\ get both pserver main program and startup program.") if startup_program != None: sys.stderr.write("passing startup_program to get_startup_program()\ is deprecated, use fluid.program_guard() or pass this argument\ to transpile() call.") s_prog = Program() orig_s_prog = self.startup_program s_prog.random_seed = orig_s_prog.random_seed params = self.param_grad_ep_mapping[endpoint]["params"] def _get_splited_name_and_shape(varname): for idx, splited_param in enumerate(params): pname = splited_param.name if same_or_split_var(pname, varname) and varname != pname: return pname, splited_param.shape return "", [] # 1. create vars in pserver program to startup program pserver_vars = pserver_program.global_block().vars created_var_map = collections.OrderedDict() for _, var in six.iteritems(pserver_vars): tmpvar = s_prog.global_block()._clone_variable(var) created_var_map[var.name] = tmpvar # 2. rename op outputs for op in orig_s_prog.global_block().ops: new_outputs = collections.OrderedDict() # do not append startup op if var is not on this pserver op_on_pserver = False # TODO(gongwb): remove this line. if op.type not in ["recv", "fetch_barrier", "concat"]: for key in op.output_names: newname, _ = _get_splited_name_and_shape(op.output(key)[0]) if newname: op_on_pserver = True new_outputs[key] = created_var_map[newname] elif op.output(key)[0] in pserver_vars: op_on_pserver = True new_outputs[key] = pserver_vars[op.output(key)[0]] if op_on_pserver: # most startup program ops have no inputs new_inputs = self._get_input_map_from_op(pserver_vars, op) if op.type in [ "gaussian_random", "fill_constant", "uniform_random" ]: op.set_attr("shape", list(new_outputs["Out"].shape)) s_prog.global_block().append_op( type=op.type, inputs=new_inputs, outputs=new_outputs, attrs=op.all_attrs()) # add slice vars s_prog._slice_vars_and_attrs = self._get_slice_vars_and_attrs(endpoint) return s_prog def _get_slice_vars_and_attrs(self, endpoint): slice_vars_and_attrs = [] block_suffix = "block" for param in self.param_grad_ep_mapping[endpoint]["params"]: orig_var_name, block_name, _ = self._get_varname_parts(param.name) if not block_name: continue block_idx = int(block_name.split(block_suffix)[1]) orig_var = self.origin_program.global_block().vars[orig_var_name] skip_numel = 0 slice_vars = self.param_var_mapping[orig_var_name] for slice_var in slice_vars[:block_idx]: skip_numel += reduce(lambda x, y: x * y, slice_var.shape) slice_vars_and_attrs.append([orig_var, skip_numel, param]) return slice_vars_and_attrs # ====================== private transpiler functions ===================== def _has_distributed_lookup_table(self): # process lookup_table_op # 1. check all lookup_table_op is distributed # 2. check all lookup_table_op share the same table. distributed_lookup_table_ops = [] # support only one distributed_lookup_table now self.table_name = None for op in self.origin_program.global_block().ops: if op.type == LOOKUP_TABLE_TYPE: if op.attr('is_distributed') is True: if self.table_name is None: self.table_name = op.input("W")[0] if self.table_name != op.input("W")[0]: raise RuntimeError("all distributed lookup_table_ops" " should have only one table") distributed_lookup_table_ops.append(op) else: if self.table_name is not None: assert op.input("W")[0] != self.table_name return len(distributed_lookup_table_ops) > 0 def _update_dist_lookup_table_vars(self, param_list, grad_list, params_grads): # TODO(wuyi): put find a way to put dist lookup table stuff all together. # update self.table_param_grad and self.trainer_side_table_grad_list program = self.origin_program if self.has_distributed_lookup_table: param_list = [ param for param in param_list if param.name != self.table_name ] grad_list = [ grad for grad in grad_list if grad.name != grad_var_name(self.table_name) ] self.table_param_grad = [ param_grad for param_grad in params_grads if param_grad[0].name == self.table_name ][0] table_grad_var = self.table_param_grad[1] if self.sync_mode: self.trainer_side_table_grad_list = [ program.global_block().create_var( name="%s.trainer_%d.pserver_%d" % (table_grad_var.name, self.trainer_id, index), type=table_grad_var.type, shape=table_grad_var.shape, dtype=table_grad_var.dtype) for index in range(len(self.pserver_endpoints)) ] else: self.trainer_side_table_grad_list = [ program.global_block().create_var( name="%s.pserver_%d" % (table_grad_var.name, index), type=table_grad_var.type, shape=table_grad_var.shape, dtype=table_grad_var.dtype) for index in range(len(self.pserver_endpoints)) ] return param_list, grad_list def _init_splited_vars(self): # update these mappings for further transpile: # 1. param_var_mapping: param var name -> [splited params vars] # 2. grad_var_mapping: grad var name -> [splited grads vars] # 3. grad_param_mapping: grad.blockx -> param.blockx # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []} param_list = [] grad_list = [] param_grad_set = set() for p, g in self.params_grads: # skip parameter marked not trainable if type(p) == Parameter and p.trainable == False: continue if p.name not in param_grad_set: param_list.append(p) param_grad_set.add(p.name) if g.name not in param_grad_set: grad_list.append(g) param_grad_set.add(g.name) param_list, grad_list = self._update_dist_lookup_table_vars( param_list, grad_list, self.params_grads) if self.config.slice_var_up: # when we slice var up into blocks, we will slice the var according to # pserver services' count. A pserver may have two or more listening ports. grad_blocks = slice_variable(grad_list, len(self.pserver_endpoints), self.config.min_block_size) param_blocks = slice_variable(param_list, len(self.pserver_endpoints), self.config.min_block_size) else: # when we do NOT slice var up into blocks, we will always slice params # grads into one block. grad_blocks = slice_variable(grad_list, 1, self.config.min_block_size) param_blocks = slice_variable(param_list, 1, self.config.min_block_size) assert (len(grad_blocks) == len(param_blocks)) # origin_param_name -> [splited_param_vars] self.param_var_mapping = self._create_vars_from_blocklist( self.origin_program, param_blocks) # origin_grad_name -> [splited_grad_vars] self.grad_var_mapping = self._create_vars_from_blocklist( self.origin_program, grad_blocks, add_trainer_suffix=self.trainer_num > 1) # dict(grad_splited_var -> param_splited_var) self.grad_param_mapping = collections.OrderedDict() for g, p in zip(grad_blocks, param_blocks): g_name, g_bid, _ = g.split(":") p_name, p_bid, _ = p.split(":") self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \ self.param_var_mapping[p_name][int(p_bid)] # create mapping of endpoint -> split var to create pserver side program self.param_grad_ep_mapping = collections.OrderedDict() [ self.param_grad_ep_mapping.update({ ep: { "params": [], "grads": [] } }) for ep in self.pserver_endpoints ] # transpiler function for dis lookup_table def _replace_lookup_table_op_with_prefetch(self, program, pserver_endpoints): # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op # self.all_prefetch_input_vars = # [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1] # [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]] self.all_prefetch_input_vars = [] # self.all_prefetch_input_vars = # [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1] # [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]] self.all_prefetch_output_vars = [] continue_search_lookup_table_op = True while continue_search_lookup_table_op: continue_search_lookup_table_op = False all_ops = program.global_block().ops for op in all_ops: if op.type == LOOKUP_TABLE_TYPE: continue_search_lookup_table_op = True lookup_table_op_index = list(all_ops).index(op) ids_name = op.input("Ids") out_name = op.output("Out") ids_var = program.global_block().vars[ids_name[0]] prefetch_input_vars = self._create_splited_vars( source_var=ids_var, block=program.global_block(), tag="_prefetch_in_") self.all_prefetch_input_vars.append(prefetch_input_vars) out_var = program.global_block().vars[out_name[0]] prefetch_output_vars = self._create_splited_vars( source_var=out_var, block=program.global_block(), tag="_prefetch_out_") self.all_prefetch_output_vars.append(prefetch_output_vars) # insert split_ids_op program.global_block()._insert_op( index=lookup_table_op_index, type="split_ids", inputs={ 'Ids': [ program.global_block().vars[varname] for varname in ids_name ] }, outputs={"Out": prefetch_input_vars}) # insert prefetch_op program.global_block()._insert_op( index=lookup_table_op_index + 1, type="prefetch", inputs={'X': prefetch_input_vars}, outputs={"Out": prefetch_output_vars}, attrs={ "epmap": pserver_endpoints, # FIXME(qiao) temporarily disable this config because prefetch # is not act as other rpc op, it's more like a forward op # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE }) # insert concat_op program.global_block()._insert_op( index=lookup_table_op_index + 2, type="merge_ids", inputs={ 'Ids': [ program.global_block().vars[varname] for varname in ids_name ], 'X': prefetch_output_vars }, outputs={ "Out": [ program.global_block().vars[varname] for varname in out_name ] }) # delete lookup_table_op delete_ops(program.global_block(), [op]) # break for loop break def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints): # 2. add split_ids_op and send_op to send gradient to pservers # there should only be one table_name all_ops = program.global_block().ops table_grad_name = grad_var_name(self.table_name) for op in all_ops: if table_grad_name in op.output_arg_names: op_index = list(all_ops).index(op) # insert split_ids_op program.global_block()._insert_op( index=op_index + 1, type="split_ids", inputs={ 'Ids': [program.global_block().vars[table_grad_name]] }, outputs={"Out": self.trainer_side_table_grad_list}) program.global_block()._insert_op( index=op_index + 2, type="send", inputs={'X': self.trainer_side_table_grad_list}, outputs={'Out': []}, attrs={ "sync_mode": True, "epmap": pserver_endpoints, RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE, OP_ROLE_VAR_ATTR_NAME: [ self.grad_name_to_param_name[table_grad_name], table_grad_name ] }) break def _create_prefetch_block(self, pserver_index, pserver_program, optimize_block): # STEP: create prefetch block table_var = pserver_program.global_block().vars[self.table_name] prefetch_var_name_to_block_id = [] for index in range(len(self.all_prefetch_input_vars)): prefetch_block = pserver_program.create_block(optimize_block.idx) trainer_ids = self.all_prefetch_input_vars[index][pserver_index] pserver_ids = pserver_program.global_block().create_var( name=trainer_ids.name, type=trainer_ids.type, shape=trainer_ids.shape, dtype=trainer_ids.dtype) trainer_out = self.all_prefetch_output_vars[index][pserver_index] pserver_out = pserver_program.global_block().create_var( name=trainer_out.name, type=trainer_out.type, shape=trainer_out.shape, dtype=trainer_out.dtype) prefetch_block.append_op( type="lookup_sparse_table", inputs={'Ids': pserver_ids, "W": table_var}, outputs={"Out": pserver_out}, attrs={ "is_sparse": True, # has no effect on lookup_table op "is_distributed": True, "padding_idx": -1 }) prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str( prefetch_block.idx)) return prefetch_var_name_to_block_id def _create_table_optimize_block(self, pserver_index, pserver_program, pre_block_idx, grad_to_block_id): # STEP: create table optimize block # create table param and grad var in pserver program origin_param_var = self.origin_program.global_block().vars[ self.table_name] zero_dim = int( math.ceil(origin_param_var.shape[0] / len(self.pserver_endpoints))) table_shape = list(origin_param_var.shape) table_shape[0] = zero_dim param_var = pserver_program.global_block().create_var( name=origin_param_var.name, shape=table_shape, dtype=origin_param_var.dtype, type=core.VarDesc.VarType.SELECTED_ROWS, persistable=True) # parameter must be selected rows param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS) grad_var = pserver_program.global_block()._clone_variable( self.origin_program.global_block().vars[grad_var_name( self.table_name)]) # create table optimize block in pserver program table_opt_op = [ op for op in self.optimize_ops if 'Param' in op.input_names and op.input("Param")[0] == self.table_name ][0] table_opt_block = pserver_program.create_block(pre_block_idx) if self.sync_mode: # create grad vars in pserver program table_grad_var = self.table_param_grad[1] pserver_side_table_grad_list = [ pserver_program.global_block().create_var( name="%s.trainer_%d.pserver_%d" % (table_grad_var.name, index, pserver_index), type=table_grad_var.type, shape=table_grad_var.shape, dtype=table_grad_var.dtype) for index in range(self.trainer_num) ] # append sum op for pserver_side_table_grad_list table_opt_block.append_op( type="sum", inputs={"X": pserver_side_table_grad_list}, outputs={"Out": [grad_var]}, attrs={"use_mkldnn": False}) else: # in async_mode, for table gradient, it also need to be splited to each parameter server origin_grad_name = grad_var.name splited_grad_name = self.trainer_side_table_grad_list[ pserver_index].name if not splited_grad_name.startswith(origin_grad_name): raise ValueError("origin_grad_var: " + splited_grad_name + " grad_var:" + grad_var.name) grad_var = pserver_program.global_block()._rename_var( origin_grad_name, splited_grad_name) lr_var = pserver_program.global_block().vars[table_opt_op.input( "LearningRate")[0]] inputs = { "Param": [param_var], "Grad": [grad_var], "LearningRate": [lr_var] } outputs = {"ParamOut": [param_var]} # only support sgd now import logging logging.warn( "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of " + table_opt_op.type) table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs) # add table parameter gradient and it's block id to grad_to_block_id grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx)) return table_opt_block def _create_checkpoint_save_block(self, pserver_program, pre_block_idx): """ create a new block to handle save checkpoint. """ import os pserver_program.global_block().create_var( name="kLookupTablePath", persistable=True, type=core.VarDesc.VarType.RAW) checkpoint_save_block = pserver_program.create_block(pre_block_idx) # this 'file_path' do not be used in save lookup table variable checkpoint_save_block.append_op( type='save', inputs={'X': [self.table_name]}, outputs={}, attrs={'file_path': "none"}) return checkpoint_save_block.idx def _create_vars_from_blocklist(self, program, block_list, add_trainer_suffix=False): """ Create vars for each split. NOTE: only grads need to be named for different trainers, use add_trainer_suffix to rename the grad vars. Args: program (ProgramDesc): ProgramDesc which gradients blong. block_list (list[(varname, block_id, block_size)]): List of gradient blocks. add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True. Returns: var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping from original var name to each var split. """ # varname->[(block_id, current_block_size)] block_map = collections.OrderedDict() var_mapping = collections.OrderedDict() for block_str in block_list: varname, offset, size = block_str.split(":") if varname not in block_map: block_map[varname] = [] block_map[varname].append((int(offset), int(size))) for varname, splited in six.iteritems(block_map): orig_var = program.global_block().var(varname) if len(splited) == 1: if self.sync_mode and add_trainer_suffix: new_var_name = "%s.trainer_%d" % \ (orig_var.name, self.trainer_id) program.global_block()._rename_var(varname, new_var_name) var_mapping[varname] = \ [program.global_block().var(new_var_name)] else: var_mapping[varname] = \ [program.global_block().var(orig_var.name)] continue var_mapping[varname] = [] orig_shape = orig_var.shape orig_dim1_flatten = 1 if len(orig_shape) >= 2: orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:]) for i, block in enumerate(splited): size = block[1] rows = size // orig_dim1_flatten splited_shape = [rows] if len(orig_shape) >= 2: splited_shape.extend(orig_shape[1:]) new_var_name = "" if self.sync_mode and add_trainer_suffix: new_var_name = "%s.block%d.trainer_%d" % \ (varname, i, self.trainer_id) else: new_var_name = "%s.block%d" % \ (varname, i) var = program.global_block().create_var( name=new_var_name, persistable=False, dtype=orig_var.dtype, type=orig_var.type, shape=splited_shape) # flattend splited var var_mapping[varname].append(var) program.global_block()._sync_with_cpp() return var_mapping def _create_splited_vars(self, source_var, block, tag): return [ block.create_var( name=str(source_var.name + tag + str(index)), type=source_var.type, shape=source_var.shape, dtype=source_var.dtype) for index in range(len(self.pserver_endpoints)) ] def _clone_var(self, block, var, persistable=True): return block.create_var( name=var.name, shape=var.shape, dtype=var.dtype, type=var.type, lod_level=var.lod_level, persistable=persistable) def _insert_split_op(self, program, orig_var, index, splited_vars): if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS: height_sections = [] for v in splited_vars: height_sections.append(v.shape[0]) program.global_block()._insert_op( index=index + 1, type="split_selected_rows", inputs={"X": orig_var}, outputs={"Out": splited_vars}, attrs={"height_sections": height_sections}) elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR: sections = [] for v in splited_vars: sections.append(v.shape[0]) program.global_block()._insert_op( index=index + 1, type="split_byref", inputs={"X": orig_var}, outputs={"Out": splited_vars}, attrs={"sections": sections} # assume split evenly ) else: AssertionError("Variable type should be in set " "[LOD_TENSOR, SELECTED_ROWS]") def _get_optimizer_input_shape(self, op_type, varkey, orig_shape, param_shape): """ Returns the shape for optimizer inputs that need to be reshaped when Param and Grad is split to multiple servers. """ # HACK(typhoonzero): Should use functions of corresponding optimizer in # optimizer.py to get the shape, do not bind this in the transpiler. if op_type == "adam": if varkey in ["Moment1", "Moment2"]: return param_shape elif op_type == "adagrad": if varkey == "Moment": return param_shape elif op_type == "adamax": if varkey in ["Moment", "InfNorm"]: return param_shape elif op_type == "momentum": if varkey == "Velocity": return param_shape elif op_type == "rmsprop": if varkey in ["Moment", "MeanSquare"]: return param_shape elif op_type == "sgd": pass return orig_shape def _get_varname_parts(self, varname): # returns origin, blockid, trainerid orig_var_name = "" trainer_part = "" block_part = "" trainer_idx = varname.find(".trainer_") if trainer_idx >= 0: trainer_part = varname[trainer_idx + 1:] else: trainer_idx = len(varname) block_index = varname.find(".block") if block_index >= 0: block_part = varname[block_index + 1:trainer_idx] else: block_index = len(varname) orig_var_name = varname[0:min(block_index, trainer_idx)] return orig_var_name, block_part, trainer_part def _orig_varname(self, varname): orig, _, _ = self._get_varname_parts(varname) return orig def _append_pserver_grad_merge_ops(self, optimize_block, grad_varname_for_block, endpoint, grad_to_block_id, origin_program): program = optimize_block.program pserver_block = program.global_block() grad_block = None for g in self.param_grad_ep_mapping[endpoint]["grads"]: if self._orig_varname(g.name) == \ self._orig_varname(grad_varname_for_block): grad_block = g break if not grad_block: # do not append this op if current endpoint # is not dealing with this grad block return orig_varname, block_name, trainer_name = self._get_varname_parts( grad_block.name) if block_name: merged_var_name = '.'.join([orig_varname, block_name]) else: merged_var_name = orig_varname merged_var = \ pserver_block.vars[merged_var_name] grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx)) if self.sync_mode and self.trainer_num > 1: vars2merge = [] for i in range(self.trainer_num): per_trainer_name = "%s.trainer_%d" % \ (merged_var_name, i) vars2merge.append(pserver_block.vars[per_trainer_name]) optimize_block.append_op( type="sum", inputs={"X": vars2merge}, outputs={"Out": merged_var}, attrs={"use_mkldnn": False}) optimize_block.append_op( type="scale", inputs={"X": merged_var}, outputs={"Out": merged_var}, attrs={"scale": 1.0 / float(self.trainer_num)}) return merged_var def _append_pserver_ops(self, optimize_block, opt_op, endpoint, grad_to_block_id, origin_program, merged_var): program = optimize_block.program pserver_block = program.global_block() new_inputs = collections.OrderedDict() def _get_param_block(opt_op): # param is already created on global program param_block = None for p in self.param_grad_ep_mapping[endpoint]["params"]: if same_or_split_var(p.name, opt_op.input("Param")[0]): param_block = p break return param_block for key in opt_op.input_names: if key == "Grad": new_inputs[key] = merged_var elif key == "Param": param_block = _get_param_block(opt_op) if not param_block: return tmpvar = pserver_block.create_var( name=param_block.name, persistable=True, dtype=param_block.dtype, shape=param_block.shape) new_inputs[key] = tmpvar elif key == "LearningRate": # learning rate variable has already be created by non-optimize op, # don't create it once again. lr_varname = opt_op.input(key)[0] if lr_varname in pserver_block.vars: new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]] else: origin_var = origin_program.global_block().vars[lr_varname] tmpvar = pserver_block.create_var( name=origin_var.name, persistable=origin_var.persistable, dtype=origin_var.dtype, shape=origin_var.shape) new_inputs[key] = tmpvar for key in opt_op.input_names: new_shape = None if key in ["Param", "Grad", "LearningRate"]: continue var = self.origin_program.global_block().vars[opt_op.input(key)[0]] # update accumulator variable shape param_shape = new_inputs["Param"].shape new_shape = self._get_optimizer_input_shape(opt_op.type, key, var.shape, param_shape) tmpvar = pserver_block.create_var( name=var.name, persistable=var.persistable, dtype=var.dtype, shape=new_shape) new_inputs[key] = tmpvar # change output's ParamOut variable outputs = self._get_output_map_from_op( self.origin_program.global_block().vars, opt_op) outputs["ParamOut"] = new_inputs["Param"] optimize_block.append_op( type=opt_op.type, inputs=new_inputs, outputs=outputs, attrs=opt_op.all_attrs()) def _is_splited_grad_var(self, var, var_dict): grad_block = None for _, g in six.iteritems(var_dict): if self._orig_varname(g.name) == self._orig_varname(var.name): if g.name.find(".trainer_") == -1: grad_block = g break return grad_block def _clone_lr_op(self, program, block, op): inputs = self._get_input_map_from_op( self.origin_program.global_block().vars, op) for key, varlist in six.iteritems(inputs): if not isinstance(varlist, list): varlist = [varlist] for var in varlist: if var not in program.global_block().vars: block._clone_variable(var) outputs = self._get_output_map_from_op( self.origin_program.global_block().vars, op) for key, varlist in six.iteritems(outputs): if not isinstance(varlist, list): varlist = [varlist] for var in varlist: if var not in program.global_block().vars: block._clone_variable(var) return block.append_op( type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs()) def _append_pserver_non_opt_ops(self, optimize_block, opt_op): program = optimize_block.program # Append the ops for parameters that do not need to be optimized/updated inputs = self._get_input_map_from_op( self.origin_program.global_block().vars, opt_op) for key, varlist in six.iteritems(inputs): if not isinstance(varlist, list): varlist = [varlist] for var in varlist: # for ops like clipping and weight decay, get the splited var # for inputs/outputs grad_block = self._is_splited_grad_var( var, program.global_block().vars) if grad_block: inputs[key] = grad_block elif var.name not in program.global_block().vars: program.global_block().create_var( name=var.name, persistable=var.persistable, dtype=var.dtype, shape=var.shape) outputs = self._get_output_map_from_op( self.origin_program.global_block().vars, opt_op) for key, varlist in six.iteritems(outputs): if not isinstance(varlist, list): varlist = [varlist] for var in varlist: grad_block = self._is_splited_grad_var( var, program.global_block().vars) if grad_block: outputs[key] = grad_block elif var.name not in program.global_block().vars: program.global_block()._clone_variable(var) return optimize_block.append_op( type=opt_op.type, inputs=inputs, outputs=outputs, attrs=opt_op.all_attrs()) def _is_op_connected(self, op1, op2): # If one op's input is another op's output or # one op's output is another op's input, we say # the two operator is connected. if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \ set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()): return True return False def _create_ufind(self, optimize_ops): # Create a unit find data struct by optimize ops ufind = UnionFind(optimize_ops) for i in range(len(optimize_ops)): for j in range(i, len(optimize_ops)): op1 = optimize_ops[i] op2 = optimize_ops[j] if self._is_op_connected(op1, op2): ufind.union(op1, op2) return ufind def _is_optimizer_op(self, op): if "Param" in op.input_names and \ "LearningRate" in op.input_names: return True return False def _is_opt_op_on_pserver(self, endpoint, op): param_names = [ p.name for p in self.param_grad_ep_mapping[endpoint]["params"] ] if op.input("Param")[0] in param_names: return True else: for n in param_names: param = op.input("Param")[0] if same_or_split_var(n, param) and n != param: return True return False def _get_input_map_from_op(self, varmap, op): """Returns a dict from op input name to the vars in varmap.""" iomap = collections.OrderedDict() for key in op.input_names: vars = [] for varname in op.input(key): vars.append(varmap[varname]) if len(vars) == 1: iomap[key] = vars[0] else: iomap[key] = vars return iomap def _get_output_map_from_op(self, varmap, op): """Returns a dict from op output name to the vars in varmap.""" iomap = collections.OrderedDict() for key in op.output_names: vars = [] for varname in op.output(key): vars.append(varmap[varname]) if len(vars) == 1: iomap[key] = vars[0] else: iomap[key] = vars return iomap def _get_lr_ops(self): lr_ops = [] # find learning rate variables by optimize op lr_vars = set() for op in self.optimize_ops: if self._is_optimizer_op(op): lr_vars.add(op.input("LearningRate")[0]) find_ops = [] # find ops which output is lr var block = self.origin_program.global_block() for op in block.ops: if set(op.output_arg_names) & lr_vars: find_ops.append(op) # make a union find struct by the ops in default_main_program ufind = UnionFind(block.ops) for op1 in block.ops: for op2 in block.ops: # NOTE: we need to skip all optimize ops, since it is connected # with forward/backward ops and lr ops, we only need the lr ops. if op1 != op2 and self._is_op_connected(op1, op2) and \ not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2): ufind.union(op1, op2) # find all ops which is related with lr var for op1 in block.ops: for op2 in find_ops: if ufind.is_connected(op1, op2): lr_ops.append(op1) # we only need to append op for once break return lr_ops def _is_opt_role_op(self, op): # NOTE: depend on oprole to find out whether this op is for # optimize op_maker = core.op_proto_and_checker_maker optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize if op_maker.kOpRoleAttrName() in op.attr_names and \ int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role): return True return False def _get_optimize_pass(self): """ Get optimizer operators, parameters and gradients from origin_program Returns: opt_ops (list): optimize operators. params_grads (dict): paramter->gradient. """ block = self.origin_program.global_block() opt_ops = [] params_grads = [] origin_var_dict = self.origin_program.global_block().vars for op in block.ops: if self._is_opt_role_op(op): opt_ops.append(op) # HACK(wuyi): if we find grad vars from input of optimize # ops, we may get the output of clip op. Use syntax "@GRAD" # and op_role_var to get the pair. for input_name in op.input_arg_names: if input_name.find("@GRAD") != -1 and \ op.attr(RPC_OP_ROLE_ATTR_NAME): param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0] params_grads.append([ origin_var_dict[param_name], origin_var_dict[input_name] ]) else: pass return opt_ops, params_grads