# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid import compiler import numpy as np import unittest import os import sys import math def simple_fc_net(): img = fluid.layers.data(name='image', shape=[784], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') hidden = img for _ in range(4): hidden = fluid.layers.fc( hidden, size=200, act='tanh', bias_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(value=1.0))) prediction = fluid.layers.fc(hidden, size=10, act='softmax') loss = fluid.layers.cross_entropy(input=prediction, label=label) loss = fluid.layers.mean(loss) return loss class TestPassBuilder(unittest.TestCase): def check_network_convergence(self, use_cuda, build_strategy=None): os.environ['CPU_NUM'] = str(4) main = fluid.Program() startup = fluid.Program() with fluid.program_guard(main, startup): loss = simple_fc_net() test_program = main.clone(for_test=True) opt = fluid.optimizer.SGD(learning_rate=0.001) opt.minimize(loss) batch_size = 32 image = np.random.normal(size=(batch_size, 784)).astype('float32') label = np.random.randint(0, 10, (batch_size, 1), dtype="int64") place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(startup) feed_dict = {'image': image, 'label': label} train_cp = compiler.CompiledProgram(main).with_data_parallel( loss_name=loss.name, build_strategy=build_strategy) test_cp = compiler.CompiledProgram(test_program).with_data_parallel( loss_name=loss.name, build_strategy=build_strategy, share_vars_from=train_cp) for i in range(5): _ = exe.run(train_cp, fetch_list=[loss.name], feed=feed_dict) test_loss, = exe.run(test_cp, fetch_list=[loss.name], feed=feed_dict) train_loss = exe.run(train_cp, fetch_list=[loss.name], feed=feed_dict) avg_test_loss_val = np.array(test_loss).mean() if math.isnan(float(avg_test_loss_val)): sys.exit("got NaN loss, testing failed.") avg_train_loss_val = np.array(train_loss).mean() if math.isnan(float(avg_train_loss_val)): sys.exit("got NaN loss, training failed.") self.assertTrue( np.allclose( train_loss, test_loss, atol=1e-8), "Train loss: " + str(train_loss) + "\n Test loss:" + str(test_loss)) def test_parallel_testing_with_new_strategy(self): build_strategy = fluid.BuildStrategy() self.assertFalse(build_strategy.fuse_elewise_add_act_ops) build_strategy.fuse_elewise_add_act_ops = True pass_builder = build_strategy._finalize_strategy_and_create_passes() self.assertTrue("fuse_elewise_add_act_pass" in [p.type() for p in pass_builder.all_passes()]) origin_len = len(pass_builder.all_passes()) viz_pass = pass_builder.append_pass("graph_viz_pass") self.assertEqual(origin_len + 1, len(pass_builder.all_passes())) pass_builder.insert_pass( len(pass_builder.all_passes()), "graph_viz_pass") self.assertEqual(origin_len + 2, len(pass_builder.all_passes())) pass_builder.remove_pass(len(pass_builder.all_passes()) - 1) self.assertEqual(origin_len + 1, len(pass_builder.all_passes())) viz_pass.set("graph_viz_path", "/tmp/test_viz_pass") self.check_network_convergence( use_cuda=core.is_compiled_with_cuda(), build_strategy=build_strategy) try: os.stat("/tmp/test_viz_pass") except os.error: self.assertFalse(True) if __name__ == '__main__': unittest.main()